
A First-Order Interpreter for Knowledge-Based Golog
with Sensing Based on Exact Progression and Limited Reasoning

Yi Fan Minghui Cai Naiqi Li Yongmei Liu
Department of Computer Science

Sun Yat-sen University
Guangzhou 510006, China
ymliu@mail.sysu.edu.cn

Abstract

While founded on the situation calculus, current imple-
mentations of Golog are mainly based on the closed-
world assumption or its dynamic versions or the do-
main closure assumption. Also, they are almost exclu-
sively based on regression. In this paper, we propose a
first-order interpreter for knowledge-based Golog with
sensing based on exact progression and limited reason-
ing. We assume infinitely many unique names and
handle first-order disjunctive information in the form
of the so-called proper+ KBs. Our implementation is
based on the progression and limited reasoning algo-
rithms for proper+ KBs proposed by Liu, Lakemeyer
and Levesque. To improve efficiency, we implement the
two algorithms by grounding via a trick based on the
unique name assumption. The interpreter is online but
the programmer can use two operators to specify offline
execution for parts of programs. The search operator re-
turns a conditional plan, while the planning operator is
used when local closed-world information is available
and calls a modern planner to generate a sequence of
actions.

Introduction
When it comes to high-level robotic control, the idea of
high-level program execution as embodied by the Golog
language provides a useful alternative to planning. How-
ever, current implementations of Golog offer limited first-
order capabilities. For example, implementation of Golog
is based on the closed-world assumption (CWA), and that
of IndiGolog (De Giacomo, Levesque, and Sardiña 2001)
is based on a just-in-time assumption, which reduces to a
dynamic CWA. The interpreter for knowledge-based Golog
proposed by Reiter (2001b) is based on the domain clo-
sure assumption (DCA) and reduces first-order reasoning
to propositional one. But in many real-world applications,
CWA or even DCA are inappropriate. In particular, there is a
need to deal with disjunctive information and the domain of
individuals might be incompletely known. Such information
can be represented as a proper+ KB, which is equivalent to a
possibly infinite set of ground clauses. Liu, Lakemeyer and
Levesque (2004) proposed a logic of limited belief called

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the subjective logic SL and showed that SL-based reason-
ing with proper+ KBs is decidable. Recently, Claßen and
Lakemeyer (2009) proposed an SL-based Golog interpreter.

An essential component of any Golog interpreter is a
query evaluation module, which solves the projection prob-
lem, that is, to decide if a formula holds after a sequence
of actions have been performed. Two methods to solve the
projection problem are regression and progression. An ad-
vantage of progression compared to regression is that after
a KB has been progressed, many queries about the resulting
state can be processed without any extra overhead. More-
over, when the action sequence becomes very long, regres-
sion simply becomes unmanageable. However, current im-
plementations of Golog are almost exclusively based on re-
gression. This might be due to the negative result that pro-
gression is not always first-order definable (Lin and Reiter
1997). However, Liu and Lakemeyer (2009) showed that
for a restricted class of the so-called local-effect actions and
proper+ KBs, progression is not only first-order definable
but also efficiently computable.

Golog interpreters can be put into three categories: on-
line, offline, and a combination of the two. In the presence
of sensing, Reiter’s interpreter for knowledge-based Golog
is online, while the one for sGolog (Lakemeyer 1999) is of-
fline, and generates conditional plans. IndiGolog combines
online execution with offline execution of parts of programs,
specified by the programmer with a search operator. To im-
prove efficiency of Golog interpreters, there has been work
on exploiting state-of-the-art planners. Baier et al. (2007)
developed an approach for compiling procedural domain
control knowledge written in a Golog-like program into a
planning instance.

In this paper, we propose a first-order interpreter for
knowledge-based Golog with sensing based on exact pro-
gression and limited reasoning. Hence we call our version
LBGolog (Limited-Belief-based Golog). We handle first-
order incomplete information in the form of proper+ KBs
which assume infinitely many unique names. Our imple-
mentation is based on the aforementioned progression and
limited reasoning algorithms for proper+ KBs by Liu, Lake-
meyer and Levesque. To improve efficiency, we implement
the two algorithms by grounding via a trick based on the
unique name assumption. The interpreter is online but the
programmer can use two operators to specify offline execu-

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

734



tion for parts of programs. The search operator returns a
conditional plan, while the planning operator is used when
locally complete information is available and calls a modern
planner to generate a sequence of actions. We have exper-
imented our interpreter with a number of domains, and the
results show the feasibility and efficiency of our approach.

Background work
In this section, we introduce the background work of this pa-
per, i.e., proper+ KBs, situation calculus, progression, sub-
jective logic, and closed-world assumption on knowledge.

We assume a first-order languageLwith equality, a count-
ably infinite set of constants, which are intended to be unique
names, and no other function symbols. A literal is an atom
or its negation, and a clause is a set of literals. We let E
denote the union of the axioms of equality and the infinite
set {(d 6= d′) | d and d′ are distinct constants}. Let Γ and
Γ′ be two sets of sentences. We write Γ |=E Γ′ to mean
E ∪ Γ classically entails Γ′, and we write Γ⇔E Γ′ to mean
Γ |=E Γ′ and vice versa. Let φ be a formula, and let µ and
µ′ be two terms/formulas. We denote by φ(µ/µ′) the result
of replacing every occurrence of µ in φ with µ′. We let φxd
denote φ with all free occurrences of variable x replaced by
constant d.

Intuitively, a proper+ KB is equivalent to a possibly in-
finite set of ground clauses. To formally define it, we let e
range over ewffs, i.e., quantifier-free formulas whose only
predicate is equality, and we let ∀φ denote the universal clo-
sure of φ. We let θ range over substitutions of all variables
by constants, and write φθ as the result of applying θ to φ.

Definition 1 Let e be an ewff and c a clause. A formula of
the form ∀(e ⊃ c) is called a ∀-clause. A KB is proper+ if it
is a finite non-empty set of ∀-clauses. Given a proper+ KB
Σ, gnd(Σ) is defined as {cθ | ∀(e ⊃ c) ∈ Σ and |=E eθ}.

A proper+ KB is suitable for representing first-order dis-
junctive information for a possibly infinite domain. Also, it
is easy to see that any propositional KB can be expressed
as a proper+ KB. A proper+ KB describing a blocks world
appears in the “Experiments” section.

Situation calculus (Reiter 2001a)
We will not go over the language Lsc here except to note
the following components: action functions including those
changing the world and binary sensing actions which do not
change the world but inform the agent whether some condi-
tion holds in the current world; a constant S0 denoting the
initial situation; a function do(a, s) denoting the successor
situation to s resulting from performing action a; a finite
number of relational fluents, i.e., predicates taking a situa-
tion term as their last argument. Often, we need to restrict
our attention to formulas that refer to a particular situation
τ , and we call such formulas uniform in τ . We ignore func-
tional fluents in this paper.

A particular domain of application is specified by a basic
action theory (BAT) of the following form:

D = Σ ∪ Dap ∪ Dss ∪ Dsf ∪ Duna ∪ DS0
, where

1. Σ is the set of the foundational axioms for situations.

2. Dap is a set of action precondition axioms, one for each
action, of the form Poss(A(~x), s) ≡ ΠA(~x, s), where
ΠA(~x, s) is uniform in s.

3. Dss is a set of successor state axioms (SSAs), one for each
fluent, of the form F (~x, do(a, s)) ≡ ΦF (~x, a, s), where
ΦF (~x, a, s) is uniform in s.

4. Dsf is a set of sensed fluent axioms, one for each sens-
ing action, of the form SF (A(~x), s) ≡ ΨA(~x, s), where
ΨA(~x, s) is uniform in s.

5. Duna is the set of unique names axioms for actions.
6. DS0 , the initial KB, is a set of sentences uniform in S0.
We use D to represent a BAT throughout this paper.

Progression
Lin and Reiter (1997) formalized the notion of progression.
Let α be a ground action and let Sα represent do(α, S0).
Definition 2 Let M and M ′ be structures with the same do-
mains for sorts action and object. We write M ∼Sα M ′

if the following two conditions hold: (1) M and M ′ inter-
pret all situation-independent predicate and function sym-
bols identically. (2) M and M ′ agree on all fluents at Sα:
For every relational fluent F , and every variable assignment
σ, M,σ |= F (~x, Sα) iff M ′, σ |= F (~x, Sα).

Definition 3 Let DSα be a set of sentences uniform in Sα.
DSα is a progression of the initial KB DS0

wrt α if for any
structure M , M is a model of DSα iff there is a model M ′
of D such that M ∼Sα M ′.

Lin and Reiter showed that progression is not first-order
definable in general. Recently, Liu and Lakemeyer (2009)
showed that for local-effect actions, progression is always
first-order definable and computable. Actions in many dy-
namic domains have only local effects in the sense that if
an action A(~c ) changes the truth value of an atom F (~d, s),
then ~d is contained in ~c . This contrasts with actions hav-
ing non-local effects such as moving a briefcase, which will
also move all the objects inside the briefcase without hav-
ing mentioned them. We skip the formal definition here. In
fact, any action with bounded effects, which means that its
execution will only change the truth values of a bounded
number of fluent atoms, can be put into a local-effect action
by including more action arguments. Hence the local-effect
restriction is a reasonable one, but it may cause some incon-
venience in domain encoding.

The proof of (Liu and Lakemeyer 2009) is a very simple
one via the concept of forgetting (Lin and Reiter 1994).

Definition 4 Let p be a ground atom. Let M1 and M2 be
two structures. We write M1 ∼p M2 if M1 and M2 agree
on everything except possibly on the interpretation of p.

Definition 5 Let T be a theory, and p a ground atom. A
theory T ′ is a result of forgetting p in T , if for any structure
M , M |= T ′ iff there is a model M ′ of T s.t. M ∼p M ′.

Clearly, if both T ′ and T ′′ are results of forgetting p in
T , then they are logically equivalent. We use forget(T, p) to
denote the result of forgetting p in T . Lin and Reiter showed
that for any finite theory T and atom p, forgetting p in T is

735



first-order definable and can be obtained from T and p by
simple syntactic manipulations.

Theorem 1 Let D be local-effect and α = A(~c) a ground
action. We use Ω(s) to denote the set of F (~a, s) where F
is a fluent, and ~a is contained in ~c. Then the following is a
progression of DS0

wrt α:

forget(DS0 ∪ Dss[Ω],Ω(S0))(S0/Sα),

where Dss[Ω] is the instantiation of Dss wrt Ω.

We now extend the notion of progression to accommo-
date sensing actions. For simplicity, for each ground sens-
ing action α, we introduce two auxiliary actions αT and αF ,
which represent α with sensing results true and false, re-
spectively. We use the notation (¬)φ to denote φ if the sens-
ing result is true, and ¬φ otherwise.

Definition 6 Let α be a ground sensing action and µ ∈
{T, F}. Let DSα be a set of sentences uniform in Sα.
DSα is a progression of DS0

wrt αµ if for any structure
M , M is a model of DSα iff there is a model M ′ of
D ∪ {(¬)SF (α, S0)} s.t. M ∼Sα M ′.

It is easy to prove the following:

Theorem 2 For a ground sensing action α = A(~c), (DS0 ∪
{(¬)ΨA(~c, S0)})(S0/Sα) is a progression of DS0 wrt αµ.

We say that Dsf is quantifier-free if for each action func-
tion A(~x), ΨA is quantifier-free. We say that Dss is es-
sentially quantifier-free if for each action function A(~x) and
each fluent F , by using Duna, ΦF (~x,A(~x), s) can be sim-
plified to a quantifier-free formula. The following theorem
follows from Theorem 5.13 of (Liu and Lakemeyer 2009).

Definition 7 A well-formed basic action theory is a local-
effect one such that Dss is essentially quantifier-free, Dsf is
quantifier-free, and DS0

is proper+.

Theorem 3 Suppose that D is well-formed. Then progres-
sion of DS0

wrt any ground action is definable as a proper+
KB and can be efficiently computed.

We use prog(DS0 , α) to denote a proper+ KB which is a
progression of DS0 wrt α. It is straightforward to generalize
the notation to prog(DS0 , σ), where σ is a ground situation.
We also use Dσ to denote prog(DS0

, σ).

The subjective logic SL
With the goal of specifying a reasoning service for first-
order KBs with disjunctive information in the form of
proper+ KBs, (Liu, Lakemeyer, and Levesque 2004), later
referred to by (LLL04), proposed a logic of limited belief
called the subjective logic SL. Reasoning based on SL is
logically sound and sometimes complete. Given disjunctive
information, it performs unit propagation, but only does case
analysis in a limited way.

The language SL is a first-order logic with equality whose
atomic formulas are belief atoms of form Bkφ where φ ∈ L
and Bk is a modal operator for any k ≥ 0. Bkφ is read as
“φ is a belief at level k”. We let SLk denote the set of SL-
formulas whose only modal operators are Bj for j ≤ k. We
call formulas of L objective, and formulas of SL subjective.

Let s be a set of ground clauses. The notation UP(s) is
used to denote the closure of s under unit propagation, that
is, the least set s′ satisfying: 1. s ⊆ s′; and 2. if a literal
ρ ∈ s′ and {ρ} ∪ c ∈ s′, where ρ denotes the complement
of ρ, then c ∈ s′. Let φ ∈ L. The notation (Bkφ) ↓, called
belief reduction, is defined as follows:

1. (Bkc)↓ = Bkc, where c is a clause;
2. (Bke)↓ = e, where e is an equality literal;
3. (Bk¬¬φ)↓ = Bkφ;
4. (Bk(φ ∨ ψ)) ↓ = (Bkφ ∨Bkψ), where φ or ψ is not a

clause; and (Bk¬(φ ∨ ψ))↓ = (Bk¬φ ∧Bk¬ψ);
5. (Bk∃xφ)↓ = ∃xBkφ; and (Bk¬∃xφ)↓ = ∀xBk¬φ.

A setup is a set of non-empty ground clauses. For any
setup s and ϕ ∈ SL, s |= ϕ is defined inductively as follows:

1. s |= (d = d′) iff d and d′ are the same constant;
2. s |= ¬ϕ iff s |6=ϕ;
3. s |= ϕ ∨ ω iff s |= ϕ or s |= ω;
4. s |= ∃xϕ iff for some constant d, s |= ϕxd ;
5. s |= Bkφ iff one of the following holds:

(a) subsume: k = 0, φ is a clause c, and there is c′ ∈ UP(s)
s.t. c′ ⊆ c;

(b) reduce: φ is not a clause and s |= (Bkφ)↓;
(c) split: k > 0 and there is c ∈ s s.t. for all ρ ∈ c,

s ∪ {ρ} |= Bk−1φ.
A set Γ of sentences entails a sentence ϕ, written Γ |= ϕ, if
every setup s satisfying every sentence of Γ also satisfies ϕ.

Reiter (2001b) introduced the closed-world assumption
on knowledge that a given K of axioms about what an agent
knows captures everything that the agent knows; any knowl-
edge sentences not following logically from K are taken to
be false. This assumption relieves the axiomatizer from hav-
ing to figure out the relevant lack of knowledge axioms when
given what the agent does know. Let Σ be a proper+ KB. We
adapt Reiter’s idea to SL as follows:

Definition 8 bcl(B0Σ)
def
= B0Σ ∪ {¬Bkφ |B0Σ 6|=Bkφ}.

By an important result from (LLL04) that B0Σ |= Bkφ
iff gnd(Σ) |= Bkφ, we have bcl(B0Σ) = B0Σ ∪ {¬Bkφ |
gnd(Σ) |= ¬Bkφ}. Thus it is easy to prove

Theorem 4 Let Σ be a proper+ KB. Then
1. bcl(B0Σ) is satisfiable.
2. For any ϕ ∈ SL, bcl(B0Σ) |= ϕ or bcl(B0Σ) |= ¬ϕ.
3. For any ϕ ∈ SL, gnd(Σ) |= ϕ iff bcl(B0Σ) |= ϕ.

Finally, we relate reasoning about subjective formulas to
reasoning about objective formulas. Let ϕ ∈ SL. We de-
fine its objective formula, denoted by ϕo, as the formula ob-
tained from ϕ by replacing each belief atom Bkφ with φ.
A proper+ KB Σ is proper if gnd(Σ) is a consistent set of
ground literals. It is easy to show that when a proper KB Σ
is complete, gnd(Σ) |= ϕ iff Σ |=E ϕo. Thus

Theorem 5 Let Σ be a complete proper KB. Then
bcl(B0Σ) |= ϕ iff Σ |=E ϕo.

736



LBGolog: syntax and semantics
The following are the programming constructs of LBGolog.
A difference with normal Golog is that all tests φ are SL0

formulas. For readability, we also write B0ψ as Knowsψ.
1. α primitive action
2. φ? test action
3. (δ1; δ2) sequence
4. (δ1 | δ2) nondeterministic choice of actions
5. (π~x.φ→ δ) guarded nondet. choice of arguments
6. δ∗ nondeterministic iteration
7. if φ then δ1 else δ2 endIf conditional
8. while φ do δ endWhile while loop
9. proc P (~x) δ endProc procedure definition
10. P (~c) procedure call
11. Σδ search operator
12. Υ(τ, δ) planning operator
The first 10 constructs, called the basic constructs, are the

same as those of Golog except that here we have guarded
nondeterministic choice of arguments π~x.φ→ δ, where any
variable of ~x must appear in φ, and it is executed by nonde-
terministically picking ~x such that φ(~x) holds and then per-
forming δ(~x). We call a program basic if it uses only basic
constructs. As in IndiGolog, there is a search operator Σδ,
where δ is a basic program, which specifies that lookahead
should be performed over δ to ensure that nondeterministic
choices are resolved in a way that guarantees its successful
completion. We allow δ in Σδ to use sensing actions, so the
search operator returns a conditional plan, where branchings
are conditioned on the results of sensing actions.

In addition, there is a planning operator Υ(τ, δ), where τ
is a type predicate with a finite domain, that is, the initial
KB DS0 contains a sentence of the form ∀x.τ(x) ≡ x =
d1 ∨ . . .∨ x = dn, where d1, . . . , dn are constants. Any use
of Υ(τ, δ) must satisfy the following restrictions: every con-
stant appearing in δ is of type τ , δ is a basic program with-
out sensing actions, and δ does not support procedural calls
other than the simple case that δ is a procedural call itself.
Υ(τ, δ) is executed by calling a state-of-the-art planner to
generate a sequence of actions constituting a legal execution
of program δ where objects are restricted to elements of type
τ . Thus we require that when executing Υ(τ, δ), the agent
should have complete knowledge regarding the execution of
δ restricted to τ . We will formalize this requirement when
we present the implementation of the planning operator.

From now on, we restrict our attention to well-formed
BATs. Following (Claßen and Lakemeyer 2009), the for-
mal semantics we present here is an adaptation of the single-
step transition semantics of (De Giacomo, Lespérance, and
Levesque 2000). A central concept is that of a configura-
tion, denoted as a pair (δ, σ), where δ is a program (that
remains to be executed) and σ a situation (of actions that
have been performed). A configuration can be final, i.e.,
the run can successfully terminate in that situation, or it
can make certain transitions to other configurations. Our
semantics is based on progression, SL-based limited rea-
soning, and closed-world assumption on knowledge: when
we evaluate a test φ wrt a configuration (δ, σ), we check if
bcl(B0Dσ) |= φ[σ], where Dσ denotes prog(DS0

, σ). Note
that φ is a situation-suppressed formula, and φ[σ] denotes

the formula obtained from φ by taking σ as the situation ar-
guments of all fluents.

For lack of space, we leave out semantics of procedures.
Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 endIf
def
= [φ?; δ1] | [¬φ?; δ2],

while φ do δ endWhile
def
= [φ?; δ]∗;¬φ?.

We first give the semantics for basic constructs. The set of
final configurations wrtD, denotedFD (in the sequel, we of-
ten omit the D subscript), is inductively defined as follows:

1. (nil, σ) ∈ F .
2. (φ?, σ) ∈ F if bcl(B0Dσ) |= φ[σ].
3. (δ1; δ2, σ) ∈ F if (δ1, σ) ∈ F and (δ2, σ) ∈ F .
4. (δ1 | δ2, σ) ∈ F if (δ1, σ) ∈ F or (δ2, σ) ∈ F .
5. (π~x.φ → δ, σ) ∈ F if there exist constants ~c such that
bcl(B0Dσ) |= φ(~c)[σ] and (δ(~c), σ) ∈ F .

6. (δ∗, σ) ∈ F .
The transition relation between configurations wrt D, de-

noted→D, is inductively defined as follows:
1. (α, σ)→ (nil, do(α, σ)) if α = A(~c) is an ordinary prim-

itive action and bcl(B0Dσ) |= B0ΠA(~c, σ).
2. (α, σ)→ (nil, do(αµ, σ)) if α = A(~c) is a sensing action

with result µ, and bcl(B0Dσ) |= B0ΠA(~c, σ).
3. (δ1; δ2, σ)→ (γ; δ2, σ

′) if (δ1, σ)→ (γ, σ′).
4. (δ1; δ2, σ)→(γ, σ′) if (δ1, σ)∈F and (δ2, σ)→(γ, σ′).
5. (δ1 | δ2, σ)→(γ, σ′) if (δ1, σ)→(γ, σ′) or (δ2, σ)→(γ, σ′).
6. (π~x.φ → δ, σ) → (γ, σ′) if there exist constants ~c s.t.
bcl(B0Dσ) |= φ(~c)[σ] and (δ(~c), σ)→ (γ, σ′).

7. (δ∗, σ)→ (γ; δ∗, σ′) if (δ, σ)→ (γ, σ′).
To define the semantics of search and planning operators,

we define a relation C: intuitively, (δ, σ, ρ) ∈ C means an
offline execution of program δ in situation σ results in con-
ditional plan ρ. To define C, we introduce an auxiliary re-
lation E : intuitively, (ρ, δ, σ, ρ′) ∈ E means in situation
σ, executing conditional plan ρ and then program δ, leads
to conditional plan ρ′. One might wonder why we need
(ρ, δ, σ, ρ′) ∈ E instead of simply (ρ; δ, σ, ρ′) ∈ C. The
reason is that we would like to define (ρ, δ, σ, ρ′) ∈ E by
induction on ρ. Formally, C is defined as follows:

1. (nil, σ, nil) ∈ C.
2. (α, σ, α) ∈ C if α is A(~c) and bcl(B0Dσ) |=B0ΠA(~c, σ).
3. (φ?, σ, nil) ∈ C if bcl(B0Dσ) |= φ[σ].
4. (δ1; δ2, σ, ρ) ∈ C if there exists ρ′ such that (δ1, σ, ρ

′) ∈ C
and (ρ′, δ2, σ, ρ) ∈ E .

5. (δ1 | δ2, σ, ρ) ∈ C if (δ1, σ, ρ) ∈ C or (δ2, σ, ρ) ∈ C.
6. (π~x.φ → δ, σ, ρ) ∈ C if there exist constants ~c such that
bcl(B0Dσ) |= φ(~c)[σ] and (δ(~c), σ, ρ) ∈ C.

7. (δ∗, σ, nil) ∈ C; and (δ∗, σ, ρ) ∈ C if there exists ρ′ such
that (δ, σ, ρ′) ∈ C and (ρ′, δ∗, σ, ρ) ∈ E .
The formal definition of E is as follows:

1. (nil, δ, σ, ρ′) ∈ E if (δ, σ, ρ′) ∈ C.

737



2. (α; ρ, δ, σ, α; ρ′) ∈ E if α is an ordinary primitive action
and (ρ, δ, do(α, σ), ρ′) ∈ E .

3. (α; ρ, δ, σ, ρ′) ∈ E if α is a sensing action and there ex-
ist ρ1 and ρ2 such that (ρ, δ, do(αT , σ), ρ1) ∈ E and
(ρ, δ, do(αF , σ), ρ2) ∈ E and ρ′ is: α; if KnowsΨA(~c)
then ρ1 else ρ2 endIf.

4. (if φ then ρ1 else ρ2 endIf, δ, σ, ρ) ∈ E if the following
holds: if bcl(B0Dσ) |= φ[σ], then (ρ1, δ, σ, ρ) ∈ E , oth-
erwise (ρ2, δ, σ, ρ) ∈ E .

To define the semantics of Υ(τ, δ), we define the restric-
tion of δ to τ , denoted by δτ . Intuitively, δτ is δ where
objects are restricted to elements of type τ . Formally, δτ
is obtained from δ as follows: replace each formula of
the form ∀xφ with ∀x.Knowsτ(x) ⊃ φ, and ∃xφ with
∃x.Knowsτ(x) ∧ φ, and replace each construct of the form
π~x.φ→ δ with π~x.

∧
Knowsτ(xi) ∧ φ→ δ.

We can now expand the definition of→ as follows:

8. (Σδ, σ)→ (ρ, σ) if (δ, σ, ρ) ∈ C.

9. (Υ(τ, δ), σ)→ (ρ, σ) if (δτ , σ, ρ) ∈ C.

Finally an online execution of an LBGolog program δ0
starting from a situation σ0 is a sequence of configura-
tions (δ0, σ0), . . . , (δn, σn), s.t. for i < n, (δi, σi) →
(δi+1, σi+1). The execution is successful if (δn, σn) ∈ F .

We now illustrate programming in LBGolog with the
Wumpus world. We assume there is only one piece of gold.
When writing the control program, we take a cautious strat-
egy and ensure that the agent keeps alive. Below is the
main program, where n1 is a constant for coordinate 1, and
coor(x) is the coordinate type predicate. The agent first
senses the environment. If she knows that the gold is at
location (1, 1), she grabs the gold, otherwise she explores
the dungeon. Then she climbs out, or she moves to location
(1, 1) by use of the planning operator, and climbs out.
proc main
sense stench; sense breeze; sense gold;
if Knows(gold(n1, n1)) then grab
else explore endIf
(climb | Υ(coor,moveLoc(n1, n1)); climb)

endProc
The following procedure moves to location (X,Y ) by

traversing only visited locations. Here agt(x, y) means that
the agent is at location (x, y).
proc moveLoc(X,Y )

[πx0, y0, x1, y1.Knows(agt(x0, y0) ∧ explored(x1, y1))
→ move(x0, y0, x1, y1)]∗;

πx2, y2.Knows(agt(x2, y2))→ move(x2, y2, X, Y )
endProc

The procedure below explores the dungeon. Here
wp(x, y) means that the wumpus is at location (x, y), and
pit(x, y) means that there is a pit at location (x, y). While
the agent knows she has not got the gold, she picks an unvis-
ited safe location, moves there, and senses the environment.
If she knows the gold is at her location, she grabs the gold.
Otherwise, if she knows that the wumpus is alive and she
knows the location of the wumpus, she shoots the wumpus.
We omit the procedure for shooting the wumpus.

proc explore
while Knows(¬getsGold) ∧
∃x, y.Knows((¬wp(x, y) ∨ ¬wpAlive) ∧ ¬pit(x, y)) ∧

¬Knows(explored(x, y)) do
πx, y.Knows((¬wp(x, y) ∨ ¬wpAlive) ∧ ¬pit(x, y)) ∧

¬Knows(explored(x, y))→
Υ(coor,moveLoc(x, y));
sense stench; sense breeze; sense gold;
if Knows(∃x0, y0.agt(x0, y0) ∧ gold(x0, y0))
then grab else

if ∃x1, y1.Knows(wpAlive ∧ wp(x1, y1))
then shootWumpus endIf endIf endWhile

endProc

Implementing progression and query
evaluation by grounding

To implement LBGolog, we need to implement progres-
sion and evaluation of an SL formula against the closure
of B0Dσ , where Dσ is the current KB. Initially, we imple-
mented the progression and query evaluation algorithms by
Liu, Lakemeyer and Levesque. However, the implementa-
tions were not efficient. So we decided to implement them
by grounding. But we have infinitely many unique names.
The trick is to use an appropriate number of them as rep-
resentatives of those not mentioned by the KB. The general
picture is this. We first ground the initial KB, perform unit
propagation on it. When an action is performed, if it men-
tions new constants, we extend the current ground KB with
these constants, then progress the ground KB, and do unit
propagation on it. Whenever we need to evaluate a query, we
use the current ground KB to answer the query. Proofs for
results in this section are straightforward, and hence omitted.

Grounding
We define the width of a proper+ KB Σ as the maximum
number of distinct variables in a ∀-clause of Σ. Let j be the
width of Σ. For simplicity, we assume that there are a set U
of j reserved constants u1, . . . , uj : they do not appear in the
initial KB and will not be mentioned by any action. We call
constants not in U normal constants. For a set Γ of formulas,
we useH(Γ) to denote the set of normal constants appearing
in Γ, and letH+(Γ) representH(Γ) extended with a normal
constant not appearing in Γ.

Definition 9 Let Σ be a proper+ KB with width j. Let N
be a set of normal constants containing those appearing in
Σ. We define prop(Σ, N) as the set of those clauses of
gnd(Σ) which uses only constants from N or U . We use
uprop(Σ, N) to represent UP(prop(Σ, N)).

The intuition is that constants not appearing in Σ behave
the same, and we take U constants as their representatives.

Example 1 Consider a simple proper+ KB Σ =
{∀x.¬on(x,A),∀x, y.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y)}.
Then Σ has width 2, and U = {u1, u2}. Let N = {A}. So
prop(Σ, N) = {¬on(A,A),¬on(u1, A),¬on(u2, A),
¬on(A, u1) ∨ ¬clear(u1),¬on(A, u2) ∨ ¬clear(u2),
¬on(u1, A) ∨ ¬clear(A),¬on(u1, u2) ∨ ¬clear(u2),
¬on(u2, A) ∨ ¬clear(A),¬on(u2, u1) ∨ ¬clear(u1)}.

738



In the sequel, we let Σp denote a ground proper+ KB with
U constants. To prove correctness of grounding, we first
define the first-order KB represented by Σp.
Definition 10 We define FO(Σp) as follows: replace each
c in Σp with FO(c), denoting ∀(e ⊃ c(u1/x1, . . . , uj/xj)),
where e is the ewff

∧j
i=1 xi 6∈ H(Σp) ∧

∧
i6=k xi 6= xk, and

x 6∈ N is the abbreviation for
∧
d∈N x 6= d.

Theorem 6 FO(prop(Σ, N))⇔E Σ.

We now define extended grounding and show its correctness.
Definition 11 Let B be a finite set of normal constants not
occurring in Σp. We define egnd(Σp, B) inductively:

1. egnd(Σp, ∅) = Σp;
2. egnd(Σp, {d}) = Σp ∪ {c(uk/d) | c ∈ Σp, 1 ≤ k ≤ j};
3. egnd(Σp, {d} ∪B) = egnd(egnd(Σp, {d}), B).
Theorem 7 egnd(prop(Σ, N), B)⇔E prop(Σ, N ∪B).

Note that the way we do grounding is brute-force. For
example, if Σ contains ∀xP (x), then its ground KB con-
tains P (u1), . . . , P (uj), each of which carries the same in-
formation. However, brute-force grounding will facilitate
later progression operation.

Progression
We now define progression of a ground KB, and show its
equivalence to progression of the original KB.
Definition 12 Let D be a well-formed BAT, and α = A(~c)
a ground action. Let B be the set of constants appearing in
~c but not Σp. We define pprog(Σp, α) as

forget(egnd(Σp, B) ∪ Dss[Ω],Ω(S0))(S0/Sα),

if α is an ordinary primitive action, and Σp(S0/Sα) ∪
{(¬)ΨA(~c, Sα)} if α is a sensing action. We use
upprog(Σp, α) to represent UP(pprog(Σp, α)).
Forgetting a ground atom q from a set of ground clauses can
be done by computing all resolvents wrt q and then remov-
ing all clauses containing q. We generalize the notation to
pprog(Σp, σ) and upprog(Σp, σ), where σ is a ground sit-
uation. The lemma below establishes connection between
forgetting a ground atom from a proper+ KB and from its
ground KB.
Lemma 8 Let q be a ground atom. Let N be a set of nor-
mal constants containing those that appear in Σ or q. Then
forget(Σ, q)⇔E FO(forget(prop(Σ, N), q)).

By Theorems 1, 6, 7 and Lemma 8, we have
Theorem 9 FO(pprog(prop(Σ, N), α))⇔E prog(Σ, α).

Query Evaluation
We say a query φ is suitable for Σp if for each clause c in φ,
the number of variables in c and constants in c but not Σp is
no more than that of U constants in Σp.

We first define an evaluation procedure G[Σp, φ] where
φ ∈ L is suitable for Σp. It is the same as the W [Σ, k, φ]
procedure from (LLL04) to decide if B0Σ |= Bkφ where
k = 0 except for the case of evaluating clauses. G[Σp, φ] =
1 if one of the following conditions holds, and 0 otherwise.

1. φ is a clause c and there exists a clause c′ ∈ Σp such that
c′ ⊆ c(d1/u1, . . . , dk/uk), where {d1, . . . , dk} is the set
of normal constants that appear in c but not Σp.

2. φ = (d = d′) and d is identical to d′.

3. φ = (d 6= d′) and d is distinct from d′.

4. φ = ¬¬ψ and G[Σp, ψ] = 1.

5. φ = (ψ ∨ η), ψ or η is not a clause,
and G[Σp, ψ] = 1 or G[Σp, η] = 1.

6. φ = ¬(ψ ∨ η), G[Σp,¬ψ] = 1 and G[Σp,¬η] = 1.

7. φ = ∃xψ andG[Σp, ψ
x
d ]=1 for some d∈H+(Σp∪{ψ}).

8. φ = ¬∃xψ and G[Σp,¬ψxd ] for all d ∈ H+(Σp∪{ψ}).

Based on G, we now define an evaluation procedure
F [Σp, ϕ] where ϕ ∈ SL0 is suitable for Σp. F [Σp, ϕ] = 1
if one of the following conditions holds, and 0 otherwise.

1. ϕ = B0φ and G[Σp, φ] = 1.

2. ϕ = (t1 = t2) and t1 is identical to t2.

3. ϕ = ¬ω and F [Σp, ω] = 0.

4. ϕ = ϕ1 ∨ ϕ2, and F [Σp, ϕ1] = 1 or F [Σp, ϕ2] = 1.

5. ϕ=∃xω, and F [Σp, ω
x
d ]=1 for some d∈H+(Σp∪{ω}).

By exploiting that U constants serve as representatives of
constants not appearing in Σp, we can prove

Lemma 10 F [UP(Σp), ϕ] = 1 iff gnd(FO(Σp)) |= ϕ.

By Lemma 10 and Theorem 4(3), we have

Theorem 11 F [UP(Σp), ϕ] = 1 iff bcl(B0FO(Σp)) |= ϕ.

We now obtain the main conclusion of this section, which
shows the correctness of our implementation of progression
and query evaluation by grounding:

Theorem 12 F [upprog(uprop(DS0
, H(DS0

)), σ), ϕ] = 1
iff bcl(B0prog(DS0

, σ)) |= ϕ, where σ is a situation.

An interpreter
We have implemented an interpreter forLBGolog in Prolog.
We assume the user provides the following set of clauses
corresponding to the background basic action theory:

• init kb(l): l is a list of ∀-clauses of the initial KB;

• poss(α, σ, φ): formula φ is the precondition for action α
in situation σ;

• ssa(F, γ+, γ−): γ+ (resp. γ−) is the condition for mak-
ing fluent F true (resp. false);

• sf(β, σ, φ): β senses if formula φ holds in situation σ.

To improve efficiency, we implement the core parts of
progression and query evaluation operations in C, and pro-
vide the following primitive predicates in Prolog:

• bool query(φ, σ): φ is evaluated true in situation σ;

• open query(~x, φ, σ,~c): formula φ~x~c is evaluated true in
situation σ;

• prim prog(α, σ, σ′): progress the KB of situation σ to
situation σ′ wrt ordinary primitive action α;

739



• sens prog(β, µ, σ, σ′): progress the KB of situation σ
to situation σ′ wrt sensing action β with sensing result µ;
• del sit(σ): delete the KB about situation σ.

The two progression operators yield the new KBs while
keeping the old ones. Thus we need the del sit predicate.

The top part of the interpreter uses btrans and bfinal
to determine the next action to perform or to terminate.
lbGolog(E,S):-bfinal(E,S),!.
lbGolog(E,S):-btrans(E,S,E1,S1),!,

lbGolog(E1,S1).

Basic constructs
We define predicates bfinal/2 and btrans/4 to imple-
ment the F and→ relations. The Prolog syntax for the con-
structs are: E1:E2 for sequence, E1#E2 for nondet. choice;
pi(L,G,E) for guarded nondet. choice of arguments,
star(E) for nondet. iteration, A for primitive action, and
B for sensing action. For illustration, we present only some
of the clauses. We use predicate sub arg(lx, lc, px, pc)
to substitute all variables of lx occurring in program px
with corresponding constants of lc, resulting in program
pc. Predicate po(α, σ, φ′) (resp. sfns(α, σ, φ′)) holds iff
poss(α, σ, φ) (resp. sf(α, σ, φ)) holds and φ′ is φ with
situation arguments suppressed.
bfinal(?(P),S):-bool_query(P,S).
bfinal(E1#E2,S):-bfinal(E1,S);bfinal(E2,S).
bfinal(pi(L,G,E),S):-open_query(L,G,S,L1),

sub_arg(L,L1,E,E1),bfinal(E1,S).
bfinal(star(_),_).
btrans(B,S,nil,S1):-sens_action(B),po(B,S,P),

bool_query(knows(P),S),do(B,S,S1).
btrans(E1:E2,S,E,S1):-btrans(E1,S,E3,S1),

E=(E3:E2);bfinal(E1,S),btrans(E2,S,E,S1).
btrans(star(E),S,E1:star(E),S1):-

btrans(E,S,E1,S1).

To perform an action, do the corresponding input/output
actions, and then do progression.
do(B,S,S1):-sens_action(B),exec(B,R),

sens_prog(B,R,S,S1),del_sit(S).
exec(B,R):-write(B),write(’:(y/n)’),read(T),

(T=y->R=true;R=false).

Search operator Σ

We define predicates bdo/3 and ext/4 to implement re-
lations C and E respectively. During search, we main-
tain KBs of different situations. Once search succeeds or
backtracks, we delete KBs accordingly. Hence we design
predicates add extra sit(σ), del extra sit(σ) and
clear extra sits for managing KBs of situations ex-
plored in search.
bdo(B,S,B):-sens_action(B),po(B,P),

bool_query(knows(P),S).
bdo(E1:E2,S,C):-bdo(E1,S,C1),ext(C1,E2,S,C).
bdo(star(E),S,C):-C=nil;bdo(E,S,C1),

ext(C1,star(E),S,C).
ext(nil,E,S,C):-bdo(E,S,C).
ext(A:C,E,S,A:C1):-prim_action(A),

prim_prog(A,S,S1),add_extra_sit(S1),
(ext(C,E,S1,C1);del_extra_sit(S1),fail).

ext(B:C,E,S,C1):-sens_action(B),
sens_prog(B,true,S,ST),add_extra_sit(ST),
(ext(C,E,ST,CT);del_extra_sit(ST),fail),
sens_prog(B,0,S,SF),add_extra_sit(SF),
(ext(C,E,SF,CF);del_extra_sit(SF),fail),
sfns(B,S,F),C1=(B:if(knows(F),CT,CF)).

ext(if(P,C1,C2),E,S,C):-bool_query(P,S)->
ext(C1,E,S,C);ext(C2,E,S,C).

search(E,S,C):-bdo(E,S,C),clear_extra_sits.
btrans(search(E),S,E1,S):-search(E,S,E1).

The implementation of the search operator ensures that
nondeterministic choices are resolved in a way that guar-
antees the successful completion of the program. To see an
example, consider the program E below for catching a plane:

sense_gate_A : buy_paper :
(goto(gate_A) : buy_coffee #
buy_coffee : goto(gate_B)) : board

Assume that there are only two gates A and B, and
sense gate A tells the agent which gate to take. Note that
board is executable only if the agent gets to the right gate.
So an online execution of E might fail. This problem can
be solved by using the search operator. The interpretation of
search(E) results in the following program, whose online
execution is guaranteed to be successful.

sense_gate_A :
if(knows(it_is_gate_A),

buy_paper:goto(gate_A):buy_coffee:board,
buy_paper:buy_coffee:goto(gate_B):board)

Planning operator Υ

The main idea of our implementation of the planning oper-
ator Υ(τ, δ) is this: we construct a planning instance from
the BATD, τ and δ, and call an existing planner to solve the
instance. Our implementation is based the work by (Baier,
Fritz, and McIlraith 2007) on compiling procedural domain
control knowledge written in a Golog-like program into a
planning instance.

A planning instance is a pair I = (D,P ), where D is a
domain definition and P is a problem. We assume that D
and P are described in ADL. A domain definition consists
of domain predicates and operators. A problem consists of
domain objects, an initial state and a goal.

Baier et al. define a compiling function which, given a
planning instance I and a program δ, outputs a new instance
Iδ such that planning for the generated instance Iδ is equiva-
lent to planning for the original instance I under the control
of δ, except that plans for Iδ contain some auxiliary actions.

We now present a translation function which, given a
well-formed BAT D, a program Υ(τ, δ) and a ground situa-
tion σ, outputs a planning instance I . SinceD is local-effect,
for any action A(~x), we can generate an operator O(A(~x))
from Dap and Dss. We omit the details here. We let P(δ)
denote the set of predicates relevant to δ (wrtD), i.e., the set
of predicates that occur in tests of δ or precondition or effect
axioms for actions that occur in δ.

Definition 13 (Translation function T ) Given a well-
formed BAT D, a program Υ(τ, δ) and a ground situation
σ, we define a planning instance I as follows:

740



1. the domain predicates are elements of P(δ);
2. the operators are O(A(~x)) where A appears in δ;
3. the objects are elements of the type predicate τ ;
4. the initial state consists of ground atoms P (~c) ∈ UP(Dσ)

s.t. P ∈ P(δ), ~c ∈ τ and Dσ is the KB of σ.
5. the goal is true.

Note that this planning instance where “the goal is true”
will later be fed to Baier et al.’s compiling algorithm to gen-
erate the final planning instance where the goal is not true
any more but to reach the final state of the control program.
To prove property of T , we define a just-in-time assumption:
Definition 14 We say that a ground situation σ is just-in-
time for Υ(τ, δ) wrt D, if for each ground atom P (~c) s.t.
P ∈ P(δ) and ~c ∈ τ , P (~c) ∈ UP(Dσ) or ¬P (~c) ∈ UP(Dσ).

Thus the just-in-time assumption ensures complete infor-
mation regarding the execution of δ. Let δ be a program. We
define its objective program, denoted by δo, as the program
obtained from δ by replacing each test with its objective for-
mula. Under the just-in-time assumption, SL-based reason-
ing coincides with database query evaluation (by a general-
ize version of Theorem 5), and progression coincides with
database update. So we get:

Lemma 13 If σ is just-in-time for Υ(τ, δ), then (δτ , σ, ρ) ∈
CD iff ρ is a plan for I = T (D, τ, δ, σ) under control of δo.

We implement a predicate plan(τ, δ, σ, δ′) which does
the following: First, apply T on (D, τ, δ, σ) to generate a
planning instance I . Then apply Baier et al.’s compiling
function (with a slight modification) on (I, δo) to obtain a
planning instance Iδo , call FF planner (Hoffmann and Nebel
2001) on Iδo to get a plan ρ. Finally, filter out the auxiliary
actions from ρ. Actually, the domain part of the planning
instance Iδo does not depend on the current situation, and
is generated during preprocessing of the program. Only the
problem part is generated each time Υ(τ, δ) is called.

Correctness of the interpreter
Since the implementation of basic constructs and search op-
erator are in direct correspondence with their semantics,
based on correctness of progression and query evaluation
(Theorems 12), by induction on the program, it is easy to
prove Theorems 14 and 15 below.

Theorem 14 (Correctness of basic constructs) Let D be
well-formed, δ a basic program, and σ a ground situ-
ation. Then bfinal(δ, σ) succeeds iff (δ, σ) ∈ F , and
btrans(δ, σ, δ′, σ′) succeeds iff (δ, σ)→ (δ′, σ′).

Theorem 15 (Soundness and weak completeness of search)
LetD be well-fromed, δ a basic program and σ a ground sit-
uation. Then if btrans(search(δ), σ,P,S) succeeds with P=ρ,
then (δ, σ, ρ) ∈ C; and if (δ, σ, ρ) ∈ C for some ρ, then
btrans(search(δ), σ, P, S) succeeds or does not terminate.

To see why we get weak completeness, consider program
δ = (α∗; false?) | true?. Although (δ, σ, nil) ∈ C, to
search δ, we first search α∗; false? and wouldn’t terminate.

By Lemma 13 and correctness of the compling function
of Baier et al., we have:

Theorem 16 (Correctness of planning operator) Suppose
σ is just-in-time for Υ(τ, δ) wrt well-formed BAT D. We
have: if btrans(planning(τ, δ), σ, P, S) succeeds with P =
ρ, then (δ, σ, ρ) ∈ C; and if (δ, σ, ρ) ∈ C for some ρ, then
btrans(planning(τ, δ), σ, P, S) succeeds.

Experiments
We have experimented our interpreter with Wumpus world,
blocks world, Unix domain, and service robot domain. Here
we present experimental data about Wumpus world and give
an example execution of a program in the blocks world.

Table 1 shows our experimental data about Wumpus
world where we use the control program presented earlier.
In Table 1, Prob is the probability of a location containing
a pit. For each probability, we tested on 3000 random 8×8
maps. IMP is the number of maps for which it is impossible
to explore. The rest of the columns show the average of the
reward, the number of moves, the running time in seconds,
and the number of calls of the FF planner. Note that the av-
erage running time is less than 0.7 seconds, which shows the
efficiency of our interpreter.

Prob Gold IMP Reward Moves Time Calls
10% 1412 695 437 33 0.670 16
15% 890 917 275 22 0.430 11
20% 567 1171 175 14 0.254 7
30% 263 1581 82 6 0.112 3
40% 182 1924 58 3 0.064 2

Table 1. Experimental results for Wumpus world (8×8, 3000)

In the blocks world domain, we consider a program which
makes clear a list of blocks. The only primitive action is
move(x, y, z), moving block x from block y to block z.
There are 2 fluents: clear(x), block x has no blocks on top
of it; and on(x, y), block x is on block y.

The following are relevant axioms:
Poss(move(x, y, z), s) ≡ on(x, y) ∧ clear(x) ∧ clear(y),
Poss(sense on(x, y), s) ≡ true,
Poss(sense clear(x), s) ≡ true,
clear(x, do(a, s)) ≡ (∃y, z)a = move(y, x, z) ∨

clear(x, s) ∧ (¬∃y, z)a = move(y, z, x),
on(x, y, do(a, s)) ≡ (∃z)a = move(x, z, y) ∨

on(x, y, s) ∧ (¬∃z)a = move(x, y, z),
SF (sense clear(x), s) ≡ clear(x, s),
SF (sense on(x, y), s) ≡ on(x, y, s).

The initial KB is a proper+ KB as follows:
∀x.x 6= a ∧ x 6= b ∧ x 6= c ∧ x 6= d ⊃ clear(x),
∀x, y.x 6= a∧x 6= b∧x 6= c∧x 6= d∧x 6= y ⊃ ¬on(x, y),
∀x, y.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y),
∀x.¬on(x, x),
∀x, y.x 6= y ⊃ ¬on(x, y) ∨ ¬on(y, x),
∀x, y, z.y 6= z ⊃ ¬on(x, y) ∨ ¬on(x, z),
∀x, y, z.y 6= z ⊃ ¬on(y, x) ∨ ¬on(z, x).
Note that 4 blocks a, b, c and d appear in the initial KB.

The program is as below:
proc make clear all(L)
if ¬∀b1.Knows(b1 ∈ L)⊃ Knows(clear(b1))
then πb2.Knows(b2 ∈ L)∧¬Knows(clear(b2))

→(make clear(b2, L);make clear all(L)) endIf
endProc

741



proc make clear(x, L)
if ¬KWhether(clear(x)) then sense clear(x) endIf;
if ¬Knows(clear(x)) then

if ∃b1.Knows(on(b1, x))
then πb2.Knows(on(b2, x))

→(make clear(b2, L);move away(b2, x, L))
else πb3.¬KWhether(on(b3, x))

→(sense on(b3, x);make clear(x, L)) endIf
endIf endProc
proc move away(y, x, L)
if ∃b1.Knows(y 6= b1 ∧ clear(b1) ∧ b1 6∈ L)
then πb2.Knows(y 6= b2 ∧ clear(b2) ∧ b2 6∈ L)

→move(y, x, b2)
else πb3.Knows(b3 6∈ L)∧¬KWhether(clear(b3))

→(sense clear(b3);move away(y, x, L)) endIf
endProc

An example execution is given as follows:
?- lbGolog(make_clear_all([a,b,c,d])).
sense_clear(a):no.
sense_on(b,a):no.
sense_on(c,a):no.
sense_on(d,a):yes.
sense_clear(d):no.
sense_on(b,d):no.
sense_on(c,d):yes.
sense_clear(c):yes.
move(c,d,c1)
move(d,a,c2)
sense_clear(b):yes.
true.

Note how clever our agent is. Having discovered that c is
clear and on top of d, she considers to move c away. Real-
izing that she cannot put c on any block in [a, b, c, d], the
agent attempts to find an extra block and at last, she accom-
plishes her task with two extra blocks c1 and c2.

Conclusions
Other than those related work mentioned in the introduc-
tion, Petrick and Bacchus (2002) proposed a planning sys-
tem with incomplete information and sensing called PKS.
The form of incomplete knowledge they consider is mainly
a set of ground literals but also exclusive disjunctive knowl-
edge. It does offline execution based on incomplete pro-
gression and incomplete reasoning; but the incomplete pro-
cedures do not come with semantic characterizations. PKS
has a limited support for functions, which we do not support.

Now we summarize the contribution of this paper. First of
all, we propose an implementation of Golog based on exact
progression of first-order incomplete information. Secondly,
we make the unique name but not the closed-world or do-
main closure assumption; we also make the dynamic CWA
on knowledge; and we do limited reasoning with first-order
incomplete information. The only other similar system we
are aware of is the one by (Claßen and Lakemeyer 2009),
but it is based on regression. Thirdly, we implement the
progression and limited reasoning algorithms by Liu, Lake-
meyer and Levesque by grounding, and we provide theo-
retical foundation for it. Fourthly, we provide a planning
operator based on the work by (Baier, Fritz, and McIlraith
2007); however, they transform a program execution task

into a single planning task while for us, a planning prob-
lem is dynamically generated each time the planner is called
during a single program execution task. Lastly, we provide
a search operator which returns a conditional plan, and it is
different from the one in an extension of IndiGolog (Sardina
2001) in that ours does not rely on special branching actions
specified by the programmer.

However, we have only implemented limited reasoning at
the B0 level, that is, full unit propagation but no case analy-
sis. At this level, our reasoning is complete in the presence
of the closed-world assumption or its dynamic versions, or
in the presence of Horn disjunctive knowledge only. In the
future, we would like to implement reasoning at the B1

level. Also, we would like to investigate the support of pro-
cedure calls in the scope of planning operators, and explore
the support of state constraints in our system.

Acknowledgments
We thank the anonymous reviewers for helpful comments.
This work was supported by the Natural Science Foundation
of China under Grant No. 61073053.

References
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploiting pro-
cedural domain control knowledge in state-of-the-art planners. In
Proc. ICAPS-07, 26–33.
Claßen, J., and Lakemeyer, G. 2009. Tractable first-order golog
with disjunctive knowledge bases. In Proc. Commonsense 2009.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
golog, a concurrent programming language based on the situation
calculus. Artif. Intell. 121(1-2):109–169.
De Giacomo, G.; Levesque, H. J.; and Sardiña, S. 2001. Incre-
mental execution of guarded theories. ACM Trans. Comput. Log.
2(4):495–525.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. J. Artif. Intell. Res.
14:253–302.
Lakemeyer, G. 1999. On sensing and off-line interpreting in
Golog. In Logical Foundations for Cognitive Agents, Contribu-
tions in Honor of Ray Reiter.
Lin, F., and Reiter, R. 1994. Forget it! In Working Notes of AAAI
Fall Symposium on Relevance.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92(1–2):131–167.
Liu, Y., and Lakemeyer, G. 2009. On first-order definability and
computability of progression for local-effect actions and beyond.
In Proc. IJCAI-09.
Liu, Y.; Lakemeyer, G.; and Levesque, H. J. 2004. A logic of
limited belief for reasoning with disjunctive information. In Proc.
KR-04, 587–597.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proc. AIPS-02, 212–221.
Reiter, R. 2001a. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT Press.
Reiter, R. 2001b. On knowledge-based programming with sensing
in the situation calculus. ACM Trans. Comput. Log. 2(4):433–457.
Sardina, S. 2001. Local conditional high-level robot programs. In
Proc. LPAR-01.

742




