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Abstract

Given a partially observable dynamic system and a diagnoser
observing its evolution over time, diagnosability analysis for-
mally verifies (at design time) if the diagnosis system will be
able to infer (at runtime) the required information on the hid-
den part of the dynamic state. Diagnosability directly depends
on the availability of observations, and can be guaranteed by
different sets of sensors, possibly associated with different
costs. In this paper, we tackle the problem of synthesizing ob-
servability requirements, i.e. automatically discovering a set
of observations that is sufficient to guarantee diagnosability.
We propose a novel approach with the following character-
izing features. First, it fully covers a comprehensive formal
framework for diagnosability analysis, and enables ranking
configurations of observables in terms of cost, minimality,
and diagnosability delay. Second, we propose two comple-
mentary algorithms for the synthesis of observables. Third,
we describe an efficient implementation that takes full advan-
tage of mature symbolic model checking techniques. The pro-
posed approach is thoroughly evaluated over a comprehensive
suite of benchmarks taken from the aerospace domain.

Introduction
When designing a system that needs supervision, the im-
portant question of what sensors to install arises. In most
situations the number of sensors one can use is limited;
only a limited number of system parameters are directly
observable, and other parameters and properties such as
faults have to be inferred by a diagnostic process. In mis-
sion critical systems (e.g. production, power, avionics) it
is of prime importance to formally verify such sensor con-
figurations w.r.t. some desired diagnostic model. The ques-
tion one asks is, “Can a given diagnostic model be imple-
mented on the basis of the available sensors?” This prob-
lem is commonly referred to as diagnosability and has been
studied in a variety of works (e.g. (Sampath et al. 1995;
Jiang et al. 2001; Travé-Massuyes, Escobet, and Milne
2001; Cimatti, Pecheur, and Cavada 2003; Cordier, Travé-
Massuyes, and Pucel 2006; Rintanen and Grastien 2007;
Bayoudh, Travé-Massuyes, and Olive 2008)).

The problem we treat in this paper is a generalization
of diagnosability, namely the synthesis of observability re-
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quirements guaranteeing diagnosability (Travé-Massuyes,
Escobet, and Milne 2001; Yassine, Ploix, and Flaus 2008;
Cassez, Tripakis, and Altisen 2007; Wang, Lafortune, and
Lin 2008; Ru and Hadjicostis 2010; Briones, Lazovik, and
Dague 2008; Grastien 2009). The problem is also known
as sensor placement and sensor selection for diagnosabil-
ity, terms which can be used interchangeably if one sees a
sensor as either a physical or an abstract observable system
property, simple or complex. The question we ask is, “What
are the sensor configurations that guarantee diagnosabil-
ity?” One can be more specific and ask for one or all sensor
configurations that are diagnosable, diagnosable and mini-
mal, diagnosable and cardinality-minimum, or diagnosable
and cost-minimum.

The innovative aspect of our work is that we offer a uni-
fied framework for the synthesis of: all diagnosable config-
urations; all minimal diagnosable configurations; all mini-
mum diagnosable configurations w.r.t. a cost function. To
this aim, we developed two algorithms: one inspired by
(Grastien 2009), which aims at saving resources by only
looking for cost-minimum solution, and a new one inspired
by methods for fault tree analysis, which as a first step com-
putes all diagnosable sensor placements and then applies
various efficient minimization routines. Finally, we gener-
alize the framework to the problem of synthesis with a finite
delay.

Diagnosability
We now describe the diagnosability framework used in
this paper, adapted from (Cimatti, Pecheur, and Cavada
2003). Diagnosability analysis works with partially observ-
able plants (see Figure 1). Such plants are connected through
sensor and actuator signals to a controller. The internal state
of the plant is hidden.

Definition 1. A (partially observable) plant is a structure
P = 〈X,X0, U, Y, δ, λ〉, where X,U,Y are finite sets, respec-
tively called the state space, input space, and output space,
X0 ⊆ X is the set of initial states, δ ⊆ X × U × X is
the transition relation, and λ ⊆ X × Y is the observation
relation. We require that ∀x.∃y.λ(x, y).

We note that a state can be associated with more than one
observation value. In this way, it is possible to model in-
complete and/or imperfect sensing (see for instance (Bertoli
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Figure 1: Architecture of a diagnosis system.

et al. 2001)). The sensor and actuator signals are intercepted
by the diagnoser, whose task is to give a state estimation to
the controller. Diagnosis is usually carried out on the ob-
servable part of a finite system trace, called history window,
which is used for diagnosing the hidden state.

Definition 2. A system trace (feasible execution) of such a
plant with a discrete number of time steps t is described as
a sequence π = 〈x0, y0, u1, x1, y1, . . . , ut, xt, yt〉 such that
x0 ∈ X0, δ(xi−1, ui, xi) for i = 1, . . . , t, and λ(xi, yi) for
i = 0, . . . , t. The observable part consists of the input and
output signal: obs(π) = 〈y0, u1, y1, . . . , ut, yt〉.

The diagnosability of a plant is defined w.r.t. a set of di-
agnosis conditions, where two properties define two sets of
states that must always be distinguishable. For instance, fault
detection and fault identification can be expressed by condi-
tions such as fault⊥¬fault and faulta⊥faultb, respec-
tively.

Definition 3. A diagnosis condition for a plant P is a pair of
nonempty sets of states c1, c2 ⊆ X , with c1∩c2 = ∅, written
c1⊥c2.

A violation to diagnosability is witnessed by a pair of fi-
nite traces with equivalent observability, where in the last
state of the first trace c1 holds, and in the last state of the
second trace c2 holds. Such a pair of traces is called a criti-
cal pair. We generalize this definition of (Cimatti, Pecheur,
and Cavada 2003) to take into account the possibility of di-
agnosis with a delay d ∈ N.

Definition 4. A critical pair for diagnosis condition c1⊥c2
and delay d, given plant P , is a pair of system traces π1
and π2, both of length t + d, with equivalent observability
obs(π1) = obs(π2), such that c1(xtπ1

) ∧ c2(xtπ2
) holds. 1

Intuitively, we allow diagnosing using the observations in
the next d steps after occurrence of the condition.

Finally, we say that a plant is diagnosable with any finite
delay if there exists d ∈ N such that it is diagnosable with
delay d.

1The notation c(x) means that state x is in the set of states c.
The notation xtπ represents the state in trace π at time t.

Synthesis for Diagnosability
We now define the problem addressed in this paper, i.e.
synthesis of observability requirements. This means finding
(one or more) suitable configuration of sensors that will en-
sure diagnosability. In order to do this, and without loss of
generality, we consider an observation relation λ presented,
in structured form, by N observation relations λi. We as-
sume that the outputs are Boolean vectors, that is, Y = BN
(where B = {0, 1}). Given N total observation relations
λi ⊆ X ×B, the induced observation relation λ ⊆ X ×BN
is defined as λ(x, B) iff for all i ∈ [1, N ].λi(x, B[i]).

A sensor configuration represents a set of observability
requirements, i.e. a subset of all the observations that are
possible in the current system.

Definition 5 (Sensor Configuration, Plant Restriction).
Let P = 〈X,X0, U, Y, δ, [λ1, . . . , λN ]〉 be a plant. A sen-
sor configuration for P is a set of indices sc ⊆ {1, . . . , N}.
The restriction of P to a sensor configuration sc, denoted
P↓sc, is the plant < X,X0, U, Y, δ, [λ

′
1, . . . , λ

′
N ] >, where

λ′i = λi if i ∈ sc, and λ′i = λ◦ : X × {0} otherwise.

Since λ◦ associates 0 to every state, it conveys no infor-
mation. This models the fact that in P↓sc only the informa-
tion available from the sensors in sc is available. In the fol-
lowing we assume that a plant P and a diagnosability prop-
erty for P are given. We want to find solutions that guarantee
diagnosability and minimize the number of sensors or some
cost measure.

Problem 1 (Minimal sensor configurations). Find all the
sensor configurations sc ⊆ {1, . . . , N} such that P↓sc sat-
isfies the diagnosability property, and sc is minimal, that is,
for every sc′ ⊆ sc, if P↓sc′ satisfies the diagnosability prop-
erty then sc = sc′.

Problem 2 (Minimum sensor configurations). Find all the
sensor configurations sc ⊆ {1, . . . , N} such that P↓sc sat-
isfies the diagnosability property, and sc is minimum w.r.t.
cardinality, that is, for every sc′ ⊆ {1, . . . , N}, if P↓sc′ sat-
isfies the diagnosability property then | sc | ≤ | sc′ |.

Minimum sensor configurations are also minimal, follow-
ing the definition in Problem 2. The notion of minimum con-
figurations can be generalized with respect to a cost func-
tion expressed as cost : 2{1,...,N} → N. We require that
cost(sc1) ≤ cost(sc2) if sc1 ⊆ sc2, and cost(sc1) <
cost(sc2) if sc1 ( sc2.

Problem 3 (Minimum cost sensor configurations). Given
a diagnosability property for P , find all the sensor config-
urations sc ⊆ {1, . . . , N} such that P↓sc satisfies the di-
agnosability property, and sc is cost minimum, that is, for
every sc′ ⊆ {1, . . . , N}, if P↓sc′ satisfies the diagnosability
property then cost(sc) ≤ cost(sc′).

It is straightforward to see that minimum sensor configu-
rations (Problem 2) are a special case of minimum cost sen-
sor configurations (Problem 3), by taking cost(sc) =| sc |.
Furthermore, minimum cost sensor configurations them-
selves are a special case of minimal sensor configurations,
as shown and proved below.
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Lemma 1. If a sensor configuration sc optimizes cost as
defined in Problem 3, it is also minimal as defined in Prob-
lem 1.

Proof. Let sc′ ⊆ sc and assume that P↓sc′ satisfies the diag-
nosability property. Suppose that sc′ ( sc. By definition of
cost function, cost(sc′) < cost(sc), which contradicts the
fact that sc is cost minimum. It follows that sc′ = sc.

Symbolic Parameterized Twin Plant
In (Jiang et al. 2001), the problem of diagnosability for P
is reduced to searching critical pairs of P. This is done with
the coupled twin plant construction, that consists of two syn-
chronized copies of the original plant, where input and out-
put are equivalent at each moment in time.

Definition 6 (Twin Plant). The twin plant of P , denoted
TWIN(P ), is the plant 〈X ·X,X0 ·X0, U, Y, δ·δ, λ·λ〉, where
X · X ⊆ X2, and, for all x1, x2 ∈ X , (x1, x2) ∈ X · X
iff there exists y ∈ Y such that λ(x1, y) and λ(x2, y);
X0 · X0 = {(x1, x2) ∈ X · X | x1 ∈ X0 ∧ x2 ∈ X0};
((x1, x2), u, (x

′
1, x
′
2)) ∈ δ · δ iff (x1, u, x

′
1) ∈ δ and

(x2, u, x
′
2) ∈ δ and (x1, x2) ∈ X ·X and (x′1, x

′
2) ∈ X ·X;

((x1, x2), y) ∈ λ · λ iff λ(x1, y) and λ(x2, y).

There is a one-to-one correspondence between pairs of
indistinguishable traces of P and traces of TWIN(P ). Thus,
the problem of diagnosability for P can be reformulated as a
reachability problem for TWIN(P ). Given a sensor configu-
ration sc, the twin plant construction for P↓sc is such that the
traces of the left and right twins can only be distinguished
using information provided by sensors in sc. This amounts
to checking whether the plant obtained by dropping the sen-
sors that are not in sc is still diagnosable.

Symbolic Encoding We now describe a symbolic encod-
ing for the twin plant that allows us to use symbolic model
checking techniques to search for sensor configurations.

Following (McMillan 1993), a plant P is modeled using
vectors of logical variables →X ,→U ,→Y , such that a truth as-
signment to→X [→U ,→Y , resp.] represents a state [an input, an
output, resp.]. The transition relation is represented by a for-
mula δ(→X ,→U ,→X ′), while the initial states are represented
by the formula X0(

→
X ). →X ′ is called vector of next-state

variables, and an assignment to→X ′ represents the state after
a transition. Similarly, the observation relation is represented
by a formula λ(→X ,→Y ). Sets of states are symbolically char-
acterized by formulae, and set operations have a counterpart
in the logical connectives. The symbolic representation of
a twin plant uses variable vectors →X1,

→
X2,
→
U ,
→
Y . Any sub-

set of X × X × U × Y can be described with a formula
φ(
→
X1,
→
X2,
→
U ,
→
Y ). For instance, the formula c1(

→
X1)∧ c2(

→
X2)

expresses a state of the twin plant where the first instance is
in c1 and the second in c2. The transition relation is repre-
sented as δ · δ(→X1,

→
X2,
→
U ,
→
X1
′,
→
X2
′), where both “twins” are

constrained to respond to the same input→U .
The observation relation λ · λ is parameterized with re-

spect to any possible sensor configuration sc, allowing us to
symbolically encode a family of plants, one for each sensor

function ALLDIAGNOSABLE (TWIN(P ), φ)
1 notDiag := ⊥
2 do
3 maybeDiag := ¬ notDiag
4 π := check(TWIN(P ) |= maybeDiag→ φ)
5 if (π = ∅) do
6 return maybeDiag
7 endif
8 sc := Proj(

→
A , π0)

9 notDiag := notDiag
∨
{ sc′| sc→ sc′}

10 while (¬ notDiag)
11 return ⊥

Figure 2: Compute all diagnosable configurations. φ is the
LTL-formula expressing the absence of critical pairs.

configuration. To this aim, we introduce a vector of N acti-
vation variables→A , one for each component λi. A truth as-
signment to→A represents a sensor configuration sc, i.e.→A [i]
is true if and only if i is in sc, and thus λi is available. λ · λ
is characterized as→A [i]→ (λi(

→
X1,
→
Y )↔ λi(

→
X2,
→
Y )). The

transition relation is extended to constrain activation vari-
ables not to change over time.

Given this representation, all the standard symbolic tech-
niques become available, e.g. for image computation and
reachability analysis. Traditionally, Ordered Binary Deci-
sion Diagrams (OBDDS or BDDs for short) (Bryant 1992)
have been extensively used for this purpose. The basic set
theoretic operations on sets of states are given by logi-
cal operations on BDDs, that provide primitives to com-
pute efficiently all these operations. As an example, the for-
ward image of a set of states S with respect to the tran-
sition relation δ can be encoded as ∃→X . ∃→U . (S(

→
X ) ∧

δ(
→
X ,
→
U ,
→
X ′)). More recently, SAT-based verification meth-

ods (e.g. bounded model checking (Biere et al. 1999)) have
proved to be extremely effective.

FTA-based synthesis
The first approach we propose for the synthesis of observ-
ables is based on the computation of all diagnosable sensor
configurations. The algorithm we use is inspired by meth-
ods for FTA (Fault Tree Analysis) to compute minimal cut
sets of a Boolean function (Bozzano, Cimatti, and Tapparo
2007). The FTA problem asks which basic faults cause a
given top level event (TLE ). These basic faults are anal-
ogous to the observation relations λi, modeled by means of
the activation variables→A in our symbolic framework, while
the TLE corresponds to the diagnosability condition from
Definition 3. By duality, the problem we solve is to identify
all configurations that can cause a critical pair (Problem 4).
By taking the complement of the resulting set one obtains
the set of all diagnosable configurations.

Problem 4 (All non-diagnosable configurations). Find all
sensor configurations sc ⊆ {1, . . . , N} such that P↓sc does
not satisfy the diagnosability property.
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The simple way to solve the problem is to enumerate all
critical pairs, by exploring the reachable state space of the
parameterized twin plant. From each critical pair, one can
then identify all the corresponding non-diagnosable sensor
configurations. Once the set of configurations that admit at
least one critical pair is computed, the complement is exactly
the set of all the diagnosable configurations. A more efficient
way to discover all non-diagnosable configurations is to it-
eratively identify single critical pairs and the sensor config-
urations causing them. Additional non-diagnosable config-
urations can be identified by computing all subsets of the
offending configuration. Intuitively, if a certain sensor con-
figuration is not sufficient to rule out a critical pair, then a
fortiori the configurations obtained by removing other sen-
sors will not be sufficient either. This is dual to the dynamic
pruning technique used to find minimal cut sets in FTA: each
superset of a set of basic faults also explains the TLE , and
can be pruned from the set of minimal candidates.

Based on these ideas, we now describe in detail our algo-
rithm for computing all diagnosable sensor activations, as
shown in Figure 2. We use notDiag to represent all non-
diagnosable activations identified so far. Initially the non-
diagnosable activations are set to the empty set (symboli-
cally represented by ⊥). All available candidates can then
be computed through the negation of this formula (line 3 and
10). At each iteration, we verify if all our candidates guaran-
tee diagnosability. In other words, the diagnosability check
is used as a termination oracle. The algorithm is parame-
terized in order to deal with diagnosability with respect to
different delays. This is done by setting φ to different LTL
formulae, depending on the delay of interest. For d=0, we
have that φ is G¬TLE, i.e. the diagnosability condition is
unreachable. For a non-zero constant delay d (e.g. d=2), φ
is G¬(TLE ∧ X2>), i.e. it is never the case that the di-
agnosis condition is reached, and then the twin plant can
extend the trace for two more steps (without violating the
equality of the left and right outputs). For the case of diag-
nosability with any finite d, we set φ to G¬(TLE ∧G>),
meaning that it is impossible for the twin plant to reach the
diagnosis condition, and then infinitely extend the trace. If
the model checker proves the property maybeDiag → φ
(line 5), then the activations represented by maybeDiag are
all diagnosable activations for our problem and we return
it. Else, π represents a critical pair for one of the configu-
rations in maybeDiag. With the Proj() function, a simple
existential quantification routine, we identify the offending
activation (line 8). Proj(A, π0) extracts from the first state
of the trace (π0) the assignment to A (the vector of activa-
tion variables) that is a symbolic representation of the sen-
sor configuration that caused the counterexample π. Then
we update the set notDiag with the activation itself and all
of its subsets (line 9). This operation is sound, since the ex-
ecutions allowed on an activation are also allowed by all of
its subsets. The corresponding dual in FTA is the computa-
tion of widened cut sets (dynamic pruning, see (Bozzano,
Cimatti, and Tapparo 2007)) for identifying minimal sets of
basic faults.

On the set of all diagnosable configurations obtained
by this synthesis algorithm, we can now (optionally) ap-

ply minimization requirements as defined previously, or
any other kind of selection criteria. For solving Problem 1
we propose using classical procedures for minimization of
Boolean functions (e.g., (Coudert and Madre 1993) and
(Rauzy 1993)), based on BDD operations. To solve Prob-
lem 2 and Problem 3, we can simply traverse the tree rep-
resenting all diagnosable activations and pruning subtrees
with non-minimum cost.

Trace-based synthesis
The second algorithm we propose for synthesis of observ-
ability requirements directly addresses Problem 2 and Prob-
lem 3. The algorithm of the previous section with activation-
based pruning doesn’t identify necessary observability con-
ditions during search, and thus needs to find all diagnos-
able sensor configurations before any minimization can be
applied. Necessary observability requirements can however
be extracted from counterexamples to diagnosability, which
can then be used to prune the activation space, in order to
search only for sensor activations that minimize cost (uni-
form cost search).

The algorithm we describe here is inspired by the ap-
proach of (Grastien 2009), which also uses counterexamples
for diagnosability in order to gradually refine the observ-
ability requirements. We extend this approach by describing
a symbolic encoding of the twin plant, by using a symbolic
encoding to represent the observability requirements instead
of using an explicit enumeration of sensor activations, by us-
ing symbolic tools to compute the cost of sensor activations,
and by extending the main algorithm to find all minimum
configurations instead of only one.

function ALLMINIMUM (TWIN(P ), φ, costFN)
1 obsReq := >
2 do
3 configs := getMinConf (obsReq, costFN)
4 π := check(TWIN(P ) |= configs→ φ)
5 if (π = ∅) do
6 return configs
7 endif
8 obsReq := obsReq ∧ getObsReq(π)
9 while (obsReq)
10 return ⊥

Figure 3: Compute all cost-minimum diagnosable configu-
rations. getObsReq() corresponds to Eq. 1

The basic algorithm is shown in Figure 3. It uses a vari-
able obsReq to store the set of candidate sensor configura-
tions that make the system diagnosable, which initially con-
tains all possible configurations (line 1). At each iteration
we first compute, among all the candidate sensor configura-
tions, the symbolic representation of those that have mini-
mum cost with respect to the input cost function (line 3); we
assume that the function getMinConf(), for which we use
the same approach as for fta-based synthesis, returns a neg-
ative assignment to all activation variables (i.e., the sensor
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model orbiter rover cassini
# state vars 16 41 129
# input vars 3 2 26
state space 227 250 2166

reachable states 219 246 241

% reachable 0.40 6.25 2.35e-36
diameter 33 31 8

model elevator
8 fl. 12 fl. 16 fl. 20 fl.

# state vars 22 30 38 46
# input vars 0 0 0 0
state space 226 235 243 251

reachable states 214 219 223 227

% reachable 0.02 2.00e-3 9.54e-5 6.00e-6
diameter 4 4 4 4

Table 1: Properties of some benchmark models.

configuration with all sensors deactivated) if obsReq is >.
In line 4 we use LTL model checking to see if the current
cost-minimum observability requirements produce a critical
pair. If this is the case, model checking returns a trace π for
the twin plant that witnesses the violation to diagnosability.
If no counterexample is returned, we have found a set of
observability requirements that makes the system diagnos-
able, and the algorithm returns (line 6). The delay in diag-
nosability is dealt with by setting φ to the appropriate LTL
formula, similarly to the algorithm in previous section. Fi-
nally, in line 8 we extract the new observability requirements
from the counterexample π. Essentially we compute the set
of sensor configurations that may disambiguate counterex-
ample π. This can be obtained as the set of states satisfying
the following formula:∨

i

(
→
A [i]) such that (λi(x

t
1) 6= λi(x

t
2)) (1)

where (xt1, x
t
2) represents the state of the π trace at time t,

where t is the length of π. If there are no sensors that can
disambiguate the trace pair π, the expression in line 8 will
evaluate to ⊥, and the algorithm will return that the system
is not diagnosable under any configuration (line 10).

Experimental Evaluation
The algorithms proposed in previous sections have been im-
plemented on top of the NuSMV model checker (Cimatti et
al. 2002). For the comparison, we used the following bench-
marks.

ORBITER, ROVERS, and ROVERB are models of an or-
biter and of a planetary rover, both developed in the OM-
CARE project (see (Bozzano et al. 2008) and (Bozzano et
al. 2011)). The models describe the functional level, with
various relevant subsystems including failure modes. The
diagnosis property used for the benchmarks is whether a
working component has failed (fault detection). CASSINIS
and CASSINIB model the propulsion system of the Cassini
spacecraft (see (Bozzano, Cimatti, and Tapparo 2007)). It is
composed of two engines fed by redundant propellant/gas
circuit lines, which contain several valves and pyro-valves.

model obs fta-based trace-based
build synth # traces build synth # traces

elev-8 15 161.0 5.3 81 (5) 14.7 2.9 12 (5)
elev-12 15 228.9 6.3 32 (5) 76.2 4.2 11 (5)
elev-16 15 188.2 10.9 80 (5) 310.8 7.1 17 (5)
elev-20 15 590.4 10.5 41 (5) 1013.1 13.1 29 (5)
elev-12 20 1285.6 11.2 131 (5) 592.4 4.4 13 (5)
elev-12 25 1033.4 28.7 373 (5) 1661.5 4.9 14 (5)
elev-12 30 ↑ ↑ ↑ 1346.0 5.6 16 (5)
orbiter 15 N.A. < 1 8 (2) N.A. < 1 2 (2)
roverS 20 < 1 15.2 23 (2) < 1 8.4 11 (2)
roverS 25 < 1 16.2 30 (2) < 1 8.7 11 (2)
roverS 30 < 1 16.2 14 (2) < 1 9.7 9 (2)
roverS 35 < 1 18.7 45 (2) < 1 11.4 12 (2)
roverS 40 < 1 19.0 29 (2) < 1 11.0 13 (2)
cassiniS 15 N.A. 1.7 17 (2) N.A. 1.4 13 (2)
cassiniS 20 N.A. 1.3 11 (2) N.A. 1.5 13 (2)
cassiniB 22 N.A. 5.1 41 (2) N.A. 3.3 20 (2)
roverB 62 88.2 311.3 109 (2) 78.8 291.3 94 (2)
x34 105 N.A. 6.0 6 (2) N.A. 12.3 21 (2)
c432 40 ↑ ↑ ↑ N.A. 227.0 18 (3)

Table 2: The results for the two algorithms (timings in sec-
onds). build is the time required to enable the BDD-based in-
variant checking algorithm (N.A.when SAT-based induction
succeeds). ↑denotes out of memory.

Leakage failures are attached to all components. The diagno-
sis property of interest is a correct input pressure in at least
one of the engines in presence of a correct output pressure
from the gas and propellant tanks. ELEVATOR models an
elevator controller, parameterized by the number of floors.
The modeled properties are cabin and door movement, re-
quest and reset operations at each floor, and the controller
logic. The property of interest is whether the cabin is mov-
ing or not. C432 is a boolean circuit used as a benchmark
in the DX Competition (Feldman et al. 2010), whose gates
can permanently fail in various ways. The observables are
the inputs and output values for the gates of the circuit. The
property is whether a single gate is faulty. X34 is a bench-
mark describing a simplified version of the main propulsion
system of a spacecraft (Cimatti, Pecheur, and Cavada 2003).
The feature of some of the models are illustrated in Table 1.

For the experimental evaluation, we take a comparative
approach and focus on Problem 2, which asks to find all con-
figurations that minimize cardinality. In all tests, each ob-
servable has a cost of 1. The experimental evaluation was run
by disabling the computation of all reachable states. For the
trace-based algorithm, we decided to use backward search as
suggested by (Grastien 2009) in order to better evaluate the
approach our trace-based algorithm is inspired from. Con-
junctive partitioning of the transition relation is the default
for NuSMV. The BDD dynamic variable ordering was acti-
vated. No other optimizations are employed to allow for a
more fair comparison of the approaches. The machine used
for the experiments is an Intel Core 2 Duo 2.0GHz with 2GB
of RAM, running Linux 2.6.32-37-x86 64. Only one core
was used for each test run. The time limit was set to 1 hour
(3600 seconds), and the memory limit to 900MB.
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We report the results in Table 2. The labels have the fol-
lowing meaning: obs is the number of observables; build is
the time required to generate the BDD-based machine, which
is used to compute whether a fix point has been reached.
Synth is the time required to compute the diagnosable con-
figurations, based on SAT techniques. Sometimes SAT-based
is sufficient to conclude that a fix point has been reached.
In this case, N.A.is reported in the build column. # traces
reports the number of counterexamples needed to solve the
synthesis problem and (in parentheses) their average length.

We notice that the cost of the BDD-based induction is of-
ten substantial. This is due to two main reasons. First, the re-
sults are run with an active variable reordering algorithm that
tries to dynamically adjust the order of variables to minimize
the size of the BDDs being manipulated. Second, the twin
plant contains many comparisons between the two (left and
right) copies of the state vectors; these are formulae whose
BDDs may easily blow up with the wrong BDD-order, so the
variable reordering procedure is activated often. In fact, once
the BDD-based representation of the twin plant is built, the
cost of the BDD-based reachability turns out to be moderate.

The results show that the two algorithms have compara-
ble performance, both able to deal effective with models of
large size, with some leverage for the trace based. The in-
teresting fact is that the performance of the FTA-based al-
gorithm, which first synthesizes all diagnosable configura-
tions, shows that such an operation is feasible on real-world
models. This is important, because having all diagnosable
configurations allows one to efficiently extract all minimal
configurations, thus getting a better picture of necessary ob-
servability constraints. It also allows an engineer to employ
selection criteria for sensor configurations that are out of
scope of a cost function.

We also ran test cases to obtain all minimal configurations
(Problem 1). The performance difference was for all our
test cases very similar, therefore the results are not reported
explicitly. This result is also very important, because mini-
mal configurations can give fundamentally different ways to
solve a diagnosability problem.

Below we report the percentage of diagnosable configu-
rations for some of the models, together with the number of
minimal and minimum sensor configurations.

model diagnosable minimal minimum
elevator 30% 3 1
orbiter 27% 2 2
rover 11% 4 2
cassini 5% 3 3

Finally, in order to analyze the scalability with respect to
the delay in diagnosability, we analyzed the CASSINIB ex-
ample. The results, reported in following table, show that the
introduction of a non-zero delay yields a degrade in perfor-
mance.

FTA-based Trace-based
delay runtime (s) # traces runtime (s) # traces

0 5.18 43 4.69 41
5 47.77 41 39.12 35

10 36.58 36 30.69 30
20 26.56 26 37.48 35

any 42.96 43 28.37 26

However, the degrade does not appear to be directly re-
lated to the delay. Runtime includes building the BDD model
and performing synthesis, except the 0-delay case, where
SAT-based induction succeeds. In the case of d=0, both algo-
rithms identified 3 activations, and 27 activations in the case
of all other delays. The maximum tracelength for d=0 was 2
steps, and for the other runs 7 steps.

Related work
The problem of synthesis of observability requirements for
diagnosability in discrete systems has been widely studied
mostly with non-symbolic (explicit-state) approaches. For
instance, structural analysis is used in (Travé-Massuyes, Es-
cobet, and Milne 2001; Yassine, Ploix, and Flaus 2008).
While providing a way of abstraction for continuous dynam-
ics, these methods don’t account for the potential blow-up of
the discrete component, and have thus a limited scalability.
A solution based on safety 2-player games and weighted au-
tomata is described in (Cassez, Tripakis, and Altisen 2007).
Here sensor minimization is done by dynamic activation,
and the cost function is the mean cost of a run as the run
length approaches infinity. In (Wang, Lafortune, and Lin
2008) optimization is also done by dynamic activation, but
in terms of the more restrictive but computationally more ef-
ficient minimal (not minimum) cardinality of observations.
In (Ru and Hadjicostis 2010) the authors use an explicit-
state approach based on Petri nets for obtaining a minimum
sensor placement and propose algorithms to compute an ap-
proximate solution.

The problem is reformulated in terms of the twin-plant
construct in (Briones, Lazovik, and Dague 2008). Given all
observationally equivalent pairs of system runs, they give
algorithms to increase or decrease the system observability
in order to obtain a minimal sensor placement. A way to ob-
tain those pairs of traces is not covered; however, the authors
suggest to use an upper limit for trace lengths to reduce the
computational complexity.

Building on these ideas, (Grastien 2009) proposes an al-
gorithm to find the cost-optimal sensor placement. The algo-
rithm is based on the conflict-hitting set method, and gradu-
ally refines the sensor placement by finding a new diagnos-
ability counterexample for the current placement and obtain-
ing new observability requirements from it. The counterex-
amples themselves are computed using model-checking and
the twin plant approach, as proposed in (Cimatti, Pecheur,
and Cavada 2003). However, no symbolic encoding of the
synthesis algorithm itself is provided, and only the problem
of cost-minimum configurations is addressed. With respect
to (Grastien 2009), we give a more general definition of di-
agnosability as a disambiguation problem for sets of states
that don’t necessarily partition the state space, generalizing
the usual fault detection and identification case. Moreover,
we provide a fully symbolic implementation of their algo-
rithm and extend its scope to look for all cost-minimum sen-
sor sets. Finally, we provide a new algorithm inspired by
methods for fault tree analysis.

To the best of our knowledge, our approach is the only
one describing a method to symbolically compute all sensor
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placements that optimize the cost. Almost all methods men-
tioned above use an explicit-state approach to sensor syn-
thesis, and are thus much more prone to the state-space ex-
plosion problem which symbolical methods specifically ad-
dress. Furthermore, we offer a common framework for find-
ing all diagnosable configurations and for solving all mini-
mization problems, whereas other works either produce ap-
proximate solutions or focus only on individual problems.

Conclusions and Future Work
In this paper we have presented a broad range of algorithmic
strategies covering a variety of sensor configuration synthe-
sis problems for diagnosability. In particular, we proposed,
implemented, and compared two main approaches: one in-
spired by fault tree analysis, and another one based on the
extraction of observability requirements from counterexam-
ples to diagnosability. The experimental evaluation showed
the feasibility of computing all diagnosable configurations
in real-world models, allowing for different selection criteria
of sensor configurations. The key insight is a novel encod-
ing for the twin plant construction, that allows to symboli-
cally explore sets of sensor configurations. We propose an
implementation based on state-of-the-art for formal verifi-
cation technologies, including a combination of BDD-based
and SAT-based model checking.

As part of our future work, we plan to investigate a combi-
nation of the FTA-based and trace-based approaches. More-
over, we plan to generalize the definition of the cost func-
tion to include more general cost measures, and to explore
the use of abstraction techniques to enable a faster conver-
gence. Concerning the problem of delayed diagnosability,
we want to consider specialized induction techniques, and
to generalize the framework to the problem of synthesizing
the minimum delay sufficient to guarantee diagnosability.
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