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Abstract

Abduction belongs to the most fundamental reasoning
methods. It is a method for reverse inference, this means
one is interested in explaining observed behavior by
finding appropriate causes. We study logic-based ab-
duction, where knowledge is represented by proposi-
tional formulas. The computational complexity of this
problem is highly intractable in many interesting set-
tings. In this work we therefore present an extensive
parameterized complexity analysis of abduction within
various fragments of propositional logic together with
(combinations of) natural parameters.

Introduction
The young PhD student Bob wakes up during the night and
discovers that the light in his room is not working. Look-
ing out of the window, he sees that in his neighbor’s flat the
light is on. He reasons that there is no blackout. Therefore
he concludes that either the light bulb is broken or that he
had forgotten to pay his bills.

This kind of reasoning is called abductive reasoning (Ab-
duction for short) and belongs to the most fundamental rea-
soning methods. In contrast to deductive reasoning, it is a
method for reverse inference. This means one is interested in
explaining observed behavior by finding appropriate causes.
It is widely believed that humans use abduction in their rea-
soning when searching for diagnostic explanations. In this
paper we study logic-based abduction, where knowledge is
represented by a (set of) propositional formula(s). This rea-
soning problem has many important applications such as
system and medical diagnosis, planning, configuration and
database updates.

In the propositional abduction problem we are given a
propositional theory T , a set of hypotheses H and a set of
manifestationsM . The task is to find a solution S ⊆ H such
that S ∪ T is consistent and logically entails M . Thus, we
require that the situation represented in S is possible in the
system described by T and that S explains the observations.

The classical complexity of abduction has been exten-
sively studied in the literature (Selman and Levesque 1990;
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Eiter and Gottlob 1995; Creignou and Zanuttini 2006; Nordh
and Zanuttini 2008; Creignou, Schmidt, and Thomas 2010).
Unfortunately the computational complexity of this problem
turned out to be highly intractable in many interesting set-
tings, which imposes a severe obstacle to the broad applica-
bility of this formalism. Although syntactical fragments of
lower complexity were explored, there is still the need for
improvement.

A successful way of dealing with intractability is the con-
cept of parameterized complexity. There (structural) param-
eters and their influence on the complexity of the problem
are studied. The aim is to find so called fixed-parameter
tractable (FPT) algorithms with respect to some parameter
k, i.e. algorithms with runtime f(k) ·nO(1), where f is some
function depending only on k. Such algorithms are consid-
ered to be tractable when the parameter value is sufficiently
small. For more details we refer to the next section.

Abduction has recently been shown to be fixed-parameter
tractable when parameterized by treewidth (Gottlob, Pichler,
and Wei 2010), but all other possible parameters remained
unexplored. In this work we consider various fragments of
propositional logic, namely Horn, definite Horn and Krom
together with (combinations of) natural parameters.

Very related to the quest of searching for FPT algorithms
is the search for efficient preprocessing techniques. More
precisely the goal is to obtain in polynomial time an equiv-
alent instance (called kernel) whose size is bounded by a
function of the parameter. While it is trivial to construct a
kernel of exponential size for an arbitrary FPT problem, ob-
taining in polynomial time a kernel of size polynomial in the
parameter remains a central algorithmic challenge that may
or may not be achievable. Our main contributions are the
following:
• We perform a classical complexity analysis of a new ab-

duction problem asking for solutions of certain size.
• We present several fixed-parameter tractability results and

even a polynomial kernel in case of Krom formulas.
• For the remaining fixed-parameter tractable problems we

prove that no polynomial kernel exists unless the Polyno-
mial Hierarchy collapses to the third level.

• For parameterizations where we do not show fixed-
parameter tractability, we present parameterized in-
tractability results by either proving completeness in the
W-hierarchy or hardness for para-NP.

An overview of the results can be found in Tables 1 and 2.
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ABD[PROP] ABD[HORN] ABD[HORN]≤/= ABD[DEFHORN] ABD[DEFHORN]≤/=
M para-NP-h∗∗ para-NP-h∗∗ para-NP-h (Thm 5) P ∗ para-NP-h (Thm 5)
H, |M | = 1 para-NP-h (Prop 4) npk (Thm 14) npk (Thm 11) P ∗ npk (Thm 11)
k – – W[P]-c (Cor 9) – W[P]-c (Cor 9)
k, |M | = 1 – – W[P]-c (Thm 8) – W[P]-c (Thm 8)
tw npk (Thm 14) npk (Thm 14) npk (Cor 15/16) P ∗ npk (Cor 12)
(τ,H) npk (Thm 14) npk (Thm 14) npk (Cor 15/16) P ∗ npk (Cor 12)
V npk (Thm 14) npk (Thm 14) npk (Cor 15/16) P ∗ FPT (Prop 13)
∗ cf. (Eiter and Gottlob 1995)
∗∗ cf. (Selman and Levesque 1990)

Table 1: Results for PROP, HORN and DEFHORN.

ABD[KROM] ABD[KROM]≤ ABD[KROM]=
M W[1]-c (Thm 26) W[1]-c (Thm 25) para-NP-h (Thm 7)
(H,M) pk (Thm 29) pk (Thm 29) pk (Thm 29)
k – W[2]-c (Thm 21) W[2]-c (Thm 21)
(k,M) – W[1]-c (Thm 22) W[1]-c (Thm 23)
k, |M | = 1 – P ∗ W[1]-c (Thm 23)
τ npk (Thm 27) npk (Thm 27) npk (Thm 27)
V pk (Thm 29) pk (Thm 29) pk (Thm 29)
∗ cf. (Creignou and Zanuttini 2006)

Table 2: Results for KROM.

Preliminaries
Let PROP be the class of all (propositional) formulas. The
class of formulas in conjunctive normal form is denoted by
CNF. It is convenient to view a formula in CNF also as a set
of clauses and a clause as a set of literals. KROM ⊆ CNF de-
notes the class of all formulas having clause size at most 2.
Horn (Definite Horn) formulas are CNF formulas with at
most (resp. exactly) one positive literal per clause.

We use standard notation and denote by var (ϕ) the set of
propositional variables occurring in a formula ϕ.

Let Res(ϕ) be an operator extending ϕ ∈ CNF by itera-
tively applying resolution and dropping tautological clauses
until a fixed-point is reached. Applying resolution adds the
clause C ∪ D to ϕ if C ∪ {x} ∈ ϕ and D ∪ {¬x} ∈ ϕ.
Resolution on Krom formulas will always yield a Krom for-
mula. In that case Res(ϕ) can be computed in polynomial
time. Let C be a non-tautological clause then C ∈ Res(ϕ)
if and only if ϕ |= C. For details, see e.g. (Leitsch 1997).

Let C ⊆ PROP. A (propositional) abduction instance for
C-theories consists of a tuple 〈V,H,M, T 〉, where V is the
set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is
the set of manifestations, and T ∈ C is the theory, a formula
over V . It is required that M ∩H = ∅.
Definition 1. Let P = 〈V,H,M, T 〉 be an abduction in-
stance. S ⊆ H is a solution (or explanation) to P if T ∪ S
is consistent and T ∪ S |= M (entailment). Sol(P) denotes
the set of all solutions to P .

Let C ⊆ PROP. The solvability problem for propositional
abduction ABD[C] for C-theories is the following problem:

ABD[C]
Instance: An abduction instance P .
Problem: Decide Sol(P) 6= ∅.

We introduce a version of the abduction problem where the
size of the solutions is limited. Let ∼∈ {=,≤}.

ABD[C]∼
Instance: An abduction instance P and an integer k.
Problem: Is there a set S ∈ Sol(P) s.t. |S| ∼ k.

Parameterized algorithmics (cf. (Downey and Fellows 1999;
Flum and Grohe 2006; Niedermeier 2006)) is an approach to
finding optimal solutions for NP-hard problems. The idea is
to accept the seemingly inevitable combinatorial explosion,
but to confine it to one aspect of the problem, the parame-
ter. More precisely, a problem is fixed-parameter tractable
(FPT) with respect to a parameter k if there is an algo-
rithm solving any problem instance of size n in f(k) ·nO(1)

time for some computable function f . Analogously to clas-
sical complexity theory, (Downey and Fellows 1999) de-
veloped a framework providing reducibility and complete-
ness notions. A parameterized reduction of a parameterized
problem Π to a parameterized problem Π′ is an FPT al-
gorithm that transforms an instance (I, k) of Π to an in-
stance (I ′, k′) of Π′ such that: (1) (I, k) is a yes-instance
of Π if and only if (I ′, k′) is a yes-instance of Π′, and (2)
k′ = g(k), that is, k′ depends only on k. This notion leads
to a hierarchy of parameterized complexity classes, princi-
pally: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP where
XP is the class of parameterized problems solvable in time
O(ng(k)) for some function g. A parameterized problem Π
is para-NP-hard if there is some fixed k for which Π re-
stricted to instances (x, k) is NP-hard.

A common method in parameterized algorithmics
is to provide polynomial-time executable data-reduction
rules (Downey and Fellows 1999). It is easily shown that
a parameterized problem Π is FPT if and only if there is a
polynomial time data-reduction (or kernelization) algorithm
that transforms a problem instance (I, k) of Π into an in-
stance (I ′, k′) of Π such that: (1) (I, k) is a yes-instance if
and only if (I ′, k′) is a yes-instance, (2) k′ ≤ f(k), and (3)
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|I ′| ≤ g(k) for functions f and g depending only on k. Al-
though in general the kernelization bound g(k) may be ex-
ponential in k, it has been shown that many FPT problems
admit polynomial kernels, that is, polynomial time kernel-
ization algorithms where the kernelization bound is a poly-
nomial function of k, g(k) = kO(1).

Recently, lower bound methods for polynomial kerneliza-
tion have been developed, based on the following notion.

Definition 2. A parameterized problem P ⊆ Σ∗×N is com-
positional if there exists an algorithm that computes, given
a sequence (x1, k), . . . , (xt, k) ∈ Σ∗ × N, a new instance
(x′, k′) ⊆ Σ∗ × N s.t. the following properties hold: (1)
The algorithm requires time polynomial in

∑t
i=1 |xi| + k,

(2) (x′, k′) is a yes-instance if and only if there is some
1 ≤ i ≤ t s.t. (xi, k) is a yes-instance, and (3) k′ ≤ kO(1).

Theorem 3 ((Bodlaender et al. 2009)). Let Π be a param-
eterized problem s.t. the unparameterized version of Π is
NP-complete. If Π is compositional, then it does not admit
a polynomial kernel unless the Polynomial Hierarchy col-
lapses to the third level (PH = ΣP

3).

A polynomial parameter and time (PPT) reduction is
a polynomial time reduction increasing the parameter
only polynomially. (Bodlaender, Thomassé, and Yeo 2011)
showed that a PPT reduction from Π to Π′ preserves poly-
nomial kernels if the unparameterized version of Π is NP-
complete and the unparameterized version of Π′ is in NP.

In the sequel, we will consider parameterizations by the
vertex cover number and the treewidth of the primal graphs
of abduction instances. For an instance P = 〈V,H,M, T 〉,
such a graph has vertex set V and there is an edge between
two vertices if they occur together in a clause of T .

The vertex cover number τ(G) of a graph G is the size
of the smallest vertex cover of G. A vertex cover is a set of
vertices containing at least one endpoint of each edge.

The treewidth tw(G) is a measure for its “tree-likeness”,
cf. (Robertson and Seymour 1986) for a definition. All our
hardness results with respect to parameter τ carry over to
parameterizing by tw , since bounded τ implies bounded tw .

An independent set is a subset of the vertices which does
not contain both endpoints of any edge. INDEPENDENT SET
asks for such a set of size k. The problem is W[1]-complete
when parameterized by k.

A problem parameterized by k is in W[P] if there exists
a nondeterministic algorithm running in time f(k) · nO(1)

using only f ′(k) · log n many nondeterministic steps, where
f and f ′ are computable functions.

To show membership in the W-hierarchy we will use
MC[Σt,u], the model-checking problem over Σt,u formu-
las. The class Σt,u contains all first-order formulas of the
form ∃x1∀x2∃x3 . . . Qxtϕ(x1, . . . , xt), where ϕ is quanti-
fier free and Q is an ∃ if t is odd and a ∀ if t is even, and
the quantifier blocks – with the exception of the first ∃ block
– are of length at most u. Given a finite structure A and a
formula ϕ ∈ Σt,u, MC[Σt,u] asks whether A is a model of
ϕ. When parameterized by |ϕ|, MC[Σt,u] is W[t]-complete
for t ≥ 1, u ≥ 1 (Downey, Fellows, and Regan 1998).

For m ∈ N, we use [m] to denote the set {1, . . . ,m}.
Finally,O∗(·) is defined in the same way asO(·) but ignores
polynomial factors.

Classical Complexity
Early work on the complexity of propositional abduction
was done by (Selman and Levesque 1990). Among oth-
ers they showed that ABD[HORN] is NP-complete. A sys-
tematic complexity analysis was done by (Eiter and Got-
tlob 1995). Their results include that ABD[PROP] is ΣP

2-
complete and that ABD[DEFHORN] is in P. Note that the
hardness results for PROP and HORN hold even for |M | = 1
since in those classes one can add a new clause to the the-
ory where all existing manifestations imply a single new
manifestation. The problem ABD[KROM] was shown to
be NP-complete (Nordh and Zanuttini 2008) while it is in
P (Creignou and Zanuttini 2006) when restricted to |M | =
1. In the latter result, they use the fact that ABD[KROM] re-
stricted to a single manifestation has a solution if and only
if it has a solution of size ≤ 1. Therefore, ABD[KROM]≤
with |M | = 1 is in P by the same argument. The follow-
ing proposition is a consequence from a remark in (Eiter and
Gottlob 1995), which states that deciding S ∈ Sol(P) for an
instance P is DP-complete. This also shows that for PROP
parameters H and M are not sufficient.

Proposition 4. ABD[PROP] and ABD[PROP]≤/= are DP-
complete for |H| = 0, even if |M | = 1.

In order to motivate a parameterized complexity analy-
sis, the remainder of this section is dedicated to showing
that the problems ABD[HORN]≤/=, ABD[DEFHORN]≤/=,
and ABD[KROM]≤/= are intractable in the classical setting.
According to Definition 1, our reductions must ensure both
consistency and entailment.

Theorem 5. ABD[HORN]≤/= and ABD[DEFHORN]≤/=
are NP-complete, even if |M | = 1.

Proof. Membership is trivial. We show hardness by re-
duction from VERTEX COVER. Given a graph (N,E) and
integer k. Does (N,E) have a vertex cover of size ≤
(resp. =) k? We construct an instance (〈V,H,M, T 〉, k) of
ABD[DEFHORN]≤/= as follows. Let V := N ∪ E ∪ {m},
where m is a new variable, H := N , M := {m}, and
T :=

(
m∨

∨
e∈E ¬e

)
∧
∧
{x,y}=e∈E

(
(x→ e)∧ (y → e)

)
.

Note that T ∪ S is satisfiable for every S ⊆ H . The first
clause of T ensures that m is entailed if and only if each
e ∈ E is entailed. This in turn is the case if and only if S
contains an endpoint of each edge and therefore is a vertex
cover of (N,E).

Corollary 6. ABD[KROM]≤ is NP-complete.

Proof. This can be shown similarly to the proof of The-
orem 5. Thereby the first clause of theory T is removed,
all edges are used as manifestations M := E, and we set
V := N ∪ E.

Theorem 7. ABD[KROM]= is NP-complete even if |M |=1.

Proof sketch. Membership holds trivially and hardness can
be shown by a reduction from INDEPENDENT SET.
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Parameterized Complexity
In this section we study the parameterized complexity of ab-
duction. The first part is mainly dedicated to the HORN and
DEFHORN fragments, whereas the second part deals with
the KROM fragment. Unless otherwise specified, V , H , M ,
and T refer to the components of an abduction instance (see
Definition 1). Additionally, k denotes the bound on the so-
lution size. When parameterizing by the cardinality of some
set, we omit the vertical bars, e.g. “parameterized by M”
means parameterized by |M |. Two parameters together are
denoted by a tuple, e.g. (k,M) instead of k + |M |.

We start by showing that the HORN fragments are in-
tractable when parameterized by the solution size k.
Theorem 8. ABD[HORN]≤/= and ABD[DEFHORN]≤/=
parameterized by (k,M) are W[P]-complete even if |M |=1.

Proof. For the W[P]-membership, note that the problem can
be solved by nondeterministically guessing k times a (not
necessarily distinct in case of ≤) hypothesis, each of which
can be described by log n bits, and then deterministically
verifying consistency and entailment. This checking part can
be done in polynomial time for HORN as well as DEFHORN
theories.

We show hardness by reduction from WEIGHTED
MONOTONE CIRCUIT SAT, where an instance is given by
a monotone circuit C (i.e. without NOT-gates) and an in-
teger k. The questions is whether there exists an assign-
ment setting at most/exactly k many input gates to true
s.t. the output gate is true as well. This problem is W[P]-
complete, when parameterized by k, even when every AND-
gate and every OR-gate is binary. We construct an instance
(〈V,H,M, T 〉, k) for the abduction problem. First, we intro-
duce a new variable for each gate of C and call the resulting
set V . Let H be the set of input gates and let M := {m},
wherem represents the output gate. Theory T is constructed
as follows: For each AND-gate a with input i1 and i2, we
add (i1 ∧ i2 → a) to T . For each OR-gate o with input i1
and i2, we add (i1 → o) ∧ (i2 → o) to T . By construc-
tion, for each set S ⊆ H , T ∪ S is consistent. Furthermore,
T ∪ S |= M if and only if activating only the input gates in
S satisfies C.

Since the membership result above only uses parameter k,
we immediately get the following corollary.
Corollary 9. ABD[HORN]≤/= and ABD[DEFHORN]≤/=
parameterized by k are W[P]-complete.

On the other hand, the parameterization by the number of
hypotheses is trivially FPT.
Proposition 10. ABD[HORN] and ABD[HORN]≤/= pa-
rameterized by H are FPT, solvable in time O∗(2|H|).

Proof. Let 〈V,H,M, T 〉 be an abduction instance with the-
ory T ∈ HORN. There exist 2|H| many subsets of H . Given
S ⊆ H , checking if S ∈ Sol(P) can be done in polynomial
time for HORN-theories (Eiter and Gottlob 1995).

Despite the problems being trivially FPT, it turns out that
they do not admit a polynomial kernel, even when adding
the solution size as a parameter. This follows from the more
general result below.

Theorem 11. ABD[DEFHORN]≤ and ABD[DEFHORN]=
parameterized by H do not admit a polynomial kernel un-
less the Polynomial Hierarchy collapses, even if |M | = 1.

Proof. We show the result for ABD[DEFHORN]≤ by a PPT
reduction from SMALL UNIVERSE HITTING SET, where an
instance is given by a family of sets F = {F1, . . . , Fl} over
an universe U =

⋃l
i=1 Fi with |U | = d, and an integer k.

The question is to find a set U ′ ⊆ U of cardinality ≤ k
s.t. each set in the family has a non-empty intersection with
U ′. This problem, parameterized by k and d does not ad-
mit a polynomial kernel unless the Polynomial Hierarchy
collapses (Dom, Lokshtanov, and Saurabh 2009). We con-
struct an ABD[DEFHORN]≤ instance (〈V,H,M, T 〉, k) as
follows. Let X = {x1, . . . , xl} be a set of new variables
representing elements of F . Let H := U , M := {m},
where m is a new variable, V := H ∪ X ∪ M , and
T := (x1 ∧ · · · ∧ xl → m) ∧

∧
i∈[l]

∧
e∈Fi

(e→ xi). Mani-
festationm is entailed if and only if all variables inX are en-
tailed. Variable xi ∈ X is entailed if and only if at least one
of the elements in the set Fi is selected. Therefore, a solution
S ⊆ H corresponds to a hitting set of the same size. We can
reduce ABD[DEFHORN]≤ to ABD[DEFHORN]=, due to the
monotonicity of DEFHORN formulas. To be more precise, if
there is a solution S ⊆ H of an ABD[DEFHORN]≤ instance,
then also all S′ ⊃ S are solutions as well.

A similar reduction can be used to show that even the ag-
gregate parameterization with both τ and H does not yield a
polynomial kernel. Since tw(G) ≤ τ(G) for every graph G,
we immediately obtain the same result for parameter tw .
Corollary 12. ABD[DEFHORN]≤ and ABD[DEFHORN]=
parameterized by (τ,H) do not admit a polynomial kernel
unless the Polynomial Hierarchy collapses.

Proof. This can be shown by using the same reduction as
in the proof of Theorem 11, but without the restriction to a
single manifestation. That means, the conjunct (x1 ∧ · · · ∧
xl → m) is removed from T and M := X . Observe that
U = H is a vertex cover of the abduction instance.

For parameter V , even ABD[PROP] is trivially FPT.
Proposition 13. ABD[PROP] parameterized by V is FPT,
solvable in time O∗(22|V |).

Proof. There are at most 2|H| ≤ 2|V | possible solution can-
didates. For each of them we need to test consistency and en-
tailment, which can be done in timeO(2|H|(n+2|V |n)).

Again we show that this parameterization is not sufficient
for a polynomial kernel.
Theorem 14. ABD[HORN] parameterized by V does not
admit a polynomial kernel unless the Polynomial Hierarchy
collapses.

Proof. We show that the problem parameterized by (V,H)
is compositional. Parameter H does not change the problem
since H ⊆ V , but allows us to assume in the composition
that all instances have the same number of hypotheses. Let
P1, . . . ,Pt be a given sequence of instances of ABD[HORN]
where Pi = 〈Vi, Hi,Mi, Ti〉, 1 ≤ i ≤ t, with |Vi| = d and
|Hi| = e. We assume without loss of generality that Vi = Vj
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andHi = Hj for all 1 ≤ i < j ≤ t since otherwise we could
rename the variables. We distinguish two cases.

Case 1: t > 22d. Let n := maxt
i=1 ‖Pi‖. Whether Pi

has a solution can be decided in time O(22dn) by the FPT
algorithm from Proposition 13. We can check whether at
least one of P1, . . . ,Pt has a solution in time O(t22dn) ≤
O(t2n) which is polynomial in

∑t
i=1 ‖Pi‖. If some Pi has

a solution, we output Pi; otherwise we output P1, which
has no solution. Hence, we have a composition algorithm in
Case 1.

Case 2: t ≤ 22d. We construct a new instance P :=
〈V,H,M, T 〉 of ABD[HORN] as follows. Let s := dlog2 te.
Let V := V1∪X∪X ′∪Y ∪{m}, whereX := {x1, . . . , xs},
X ′ := {x′1, . . . , x′s}, Y := {y1, . . . , ys}, and m are 3s + 1
new variables. LetH := H1∪X∪X ′ and letM := Y ∪{m}.
For each theory Ti we create a new one T ′i := Ti ∪ {{¬m′ |
m′ ∈ Mi} ∪ {m}}. Let C1, . . . , C2s be a sequence of all
2s possible clauses {l1, . . . , ls} where lj is either ¬xj or
¬x′j , 1 ≤ j ≤ s. For each theory T ′i we create a new one
T ′′i := {C ∪ Ci | C ∈ Ti}. Finally, let T :=

⋃t
i=1 T

′′
i ∪⋃s

j=1

{
{¬xj , yj}, {¬x′j , yj}, {¬xj ,¬x′j}

}
. Since the yj’s

are manifestations, the clauses {¬xj , yj}, {¬x′j , yj}, and
{¬xj ,¬x′j}, 1 ≤ j ≤ s, ensure the equivalence ¬xj ≡ x′j
which is not directly expressible in HORN. Because of this
equivalence, a solution S of P has to contain exactly one of
xj or x′j for each 1 ≤ j ≤ s. Therefore, there is exactly
one subclause (in the construction they were merged with
other clauses) Cl, 1 ≤ l ≤ 2s, which is not satisfied by S.
Hence, all theories Ti with i 6= l are trivially satisfied and
cannot entail the manifestation m. Thus, P has a solution if
and only if Pl has one. Since |V | and |H| is polynomial in
d respectively e, we have also a composition algorithm in
Case 2.

Applying Theorem 3, the result follows.

Since ABD[HORN] has a solution if and only if there is a
solution for ABD[HORN]≤ of size ≤ |H|, we immediately
get the following corollary.
Corollary 15. ABD[HORN]≤ parameterized by V does not
admit a polynomial kernel unless the Polynomial Hierarchy
collapses.
Corollary 16. ABD[HORN]= parameterized by V does not
admit a polynomial kernel unless the Polynomial Hierarchy
collapses.

Proof. We present a PPT reduction from ABD[HORN] pa-
rameterized by V . Let P = 〈V,H,M, T 〉 be an instance of
ABD[HORN] with H = {h1, . . . , he}. We construct a new
instance P ′ := (〈V ∪ H ′ ∪M ′, H ∪ H ′,M ∪M ′, T ′〉, k)
for ABD[HORN]= as follows. Let H ′ := {h′1, . . . , h′e} and
M ′ := {m1, . . . ,me} be new variables. Let k := e and
let T ′ := T ∪

⋃e
i=1{{¬hi,¬h′i}, {¬hi,mi}, {¬h′i,mi}}.

Then P has a solution if and only if P ′ has a solu-
tion of size k. The reason for this is that the clauses
{¬hi,¬h′i}, {¬hi,mi}, {¬h′i,mi} enforce that a solution S
contains exactly one of the two hypotheses hi, h′i for each
1 ≤ i ≤ e. Selecting h′i in P ′ is equivalent to not selecting
hi in P , since the variables h′i occur nowhere in T .

Next we study the KROM fragment. Thereby the follow-
ing preprocessing function will be very useful.

Definition 17. Given an abduction instance for
KROM theories 〈V,H,M, T 〉. We define the function
TrimRes(T,H,M) := {C ∈ Res(T ) | C ⊆ X}, with
X = H ∪M ∪ {¬x | x ∈ (H ∪M)}.

In other words, the function TrimRes(T,H,M) first
computes the closure under resolution Res(T ) and then
keeps only those clauses which solely consist of hypotheses
and manifestations.

First we show that while the complexity is lower than in
the HORN fragment when parameterized by k, the problem
remains intractable. Due to space limitations we omit the
proofs of all lemmas.
Lemma 18. Let T be a satisfiable KROM theory and let S be
a set of propositional variables. Then T ∧ S is unsatisfiable
if and only if there exist x, y ∈ S such that T |= ¬x ∨ ¬y.
Lemma 19. Let 〈V,H,M, T 〉 be an abduction instance for
KROM theories and let S ⊆ H . Then T ∧ S is satisfiable if
and only if TrimRes(T,H,M) ∧ S is satisfiable.
Lemma 20. Let 〈V,H,M, T 〉 be an abduction instance for
KROM theories, S ⊆ H , m ∈ M , and T ∧ S be sat-
isfiable. Then T ∧ S |= m implies that either {m} ∈
TrimRes(T,H,M) or there exists some h ∈ S with
{¬h,m} ∈ TrimRes(T,H,M).
Theorem 21. ABD[KROM]≤ and ABD[KROM]= parame-
terized by k are W[2]-complete.

Proof. We show membership by reducing an abduction in-
stance (〈V,H,M, T 〉, k) to an MC[Σ2,1] instance (A, ϕ).
First we check whether the empty set is already a so-
lution. In that case we return a tautology. In the other
case we first ensure that T is satisfiable and compute
TrimRes(T,H,M) as defined in Definition 17. We con-
struct structure A := 〈A, hyp,mani, fact, cl, pos, neg〉 as
follows. Domain A contains an element for each hypoth-
esis in H , each manifestation in M and two distinct ele-
ments denoted by positive and negative. Let the sets hyp
(resp. mani) represent the hypotheses (resp. manifestations).
We use the following notation. Let l be a literal, then
pol(l) denotes the element positive (resp. negative) if l is
a positive (resp. negative) literal. Relation fact contains the
pairs {(pol(l), l) | {l} ∈ TrimRes(T,H,M)}. Relation
cl contains the tuples {(pol(l1), l1, pol(l2), l2) | {l1, l2} ∈
TrimRes(T,H,M), l1 6= l2}. Finally, we have that pos :=
{positive} and that neg := {negative}. We define

ψ := pos(p) ∧ neg(n) ∧
∧
i∈[k]

hyp(hi) ∧

∧
i∈[k]

¬fact(n, hi) ∧
∧

i,j∈[k]

¬cl(n, hi, n, hj),

χ[x] := fact(p, x) ∨
∨
j∈[k]

cl(n, hj , p, x),

ϕ := ∃h1 · · · ∃hk ∃p ∃n ∀m ψ ∧ (mani(m)→ χ[m]).

Since T is satisfiable, we know by Lemma 18 that T ∧ S
is unsatisfiable if and only if there exist (not necessar-
ily distinct) x, y ∈ S such that T ∧ x ∧ y is unsat-
isfiable. Remember that we used TrimRes(T,H,M) to
construct ϕ at the beginning of the reduction. It follows
from Lemma 19 that T ∧ S is satisfiable if and only if
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for all h1, h2 ∈ S, {¬h1} /∈ TrimRes(T,H,M) and
{¬h1,¬h2} /∈ TrimRes(T,H,M). This is encoded in ϕ by
requiring ¬fact(n, hi) and ¬cl(n, hi, n, hj) for all i, j ∈ [k].
Having ensured consistency it remains to check entailment.
From Lemma 20 we know that in this setting it is sufficient
to check whether each manifestation m is either contained
as a fact in TrimRes(T,H,M) or there is a single hypoth-
esis h ∈ S s.t. {¬h,m} ∈ TrimRes(T,H,M). In ϕ this
is ensured by subformula χ. Therefore, ABD[KROM]≤ is in
W[2]. Adding the conjuncts

∧
1≤i<j≤k(hi 6= hj) to ϕ yields

membership for ABD[KROM]=.
We show hardness by reduction from RED-BLUE DOMI-

NATING SET, where an instance is given by a bipartite graph
G = (Nred ∪ Nblue, E) and an integer k. The question is
whether there is a set S ⊆ Nred, |S| ≤ k, s.t. each ver-
tex in Nblue is adjacent to a vertex in S. This problem is
W[2]-complete when parameterized by k (Fernau 2008). We
construct an instance (〈V,H,M, T 〉, k) of ABD[KROM]≤.
Let V := Nred ∪ Nblue, H := Nred, M := Nblue, and
T :=

∧
n∈Nred,b∈N [n](n → b), where N [n] contains n and

all its adjacent vertices. A set S ⊆ H of size ≤ k is a so-
lution for ABD[KROM]≤ if and only if it is a solution for
the dominating set problem. Since each superset of a dom-
inating set is a dominating set as well, there is a solution
of size k if and only if there is a solution of size ≤ k (as-
suming |Nred| is big enough). Thus, hardness also holds for
ABD[KROM]=.

The next two theorems show that in KROM, adding M
reduces the complexity by one level in the W-hierarchy.
Theorem 22. ABD[KROM]≤ parameterized by (k,M) is
W[1]-complete.

Proof. We show W[1]-membership by reducing an instance
(〈V,H,M, T 〉, k) to an MC[Σ1] instance (A, ϕ). The re-
duction is similar to the one used in the proof of Theorem 21.
Let A := 〈A, hyp,mani, fact, cl, pos, neg〉, ψ, and χ be de-
fined as before, let |M | = d, and

ϕ := ∃h1 · · · ∃hk ∃p ∃n ∃m1 · · · ∃md ψ ∧∧
1≤i<j≤d

(mi 6= mj) ∧
∧
i∈[d]

(mani(mi) ∧ χ[mi]).

Next, we show hardness by reduction from MULTICOL-
ORED INDEPENDENT SET, where an instance is given by
a graph G = (N,E), a size bound k and a k-coloring of
the vertices c : N → {c1, . . . , ck}. The task is to find
a subset N ′ ⊆ N , |N ′| = k, s.t. for all x, y ⊆ N ′:
{x, y} /∈ E and c(x) 6= c(y). This problem is W[1]-complete
when parameterized by k (Fellows et al. 2009). We con-
struct an abduction instance (〈V,H,M, T 〉, k) as follows.
Let V := N ∪ {c1, . . . , ck}, H := N , M := {c1, . . . , ck},
and T :=

∧
{x,y}∈E(¬x ∨ ¬y) ∧

∧
n∈N (n → c(n)). The k

different manifestations (colors) imply that a solution con-
tains at least k hypotheses. The independent set property is
ensured by the consistency check.

Theorem 23. ABD[KROM]= is W[1]-complete, when pa-
rameterized by (k,M), even when |M | = 1.

Proof. Membership can be shown analogously to the proof
of Theorem 22 by adding

∧
1≤i<j≤k(hi 6= hj) to formula ϕ.

Hardness is shown by reduction from INDEPENDENT
SET. We reduce a graph G = (N,E) and integer k to an
abduction instance (〈V,H,M, T 〉, k). Let V := N ∪ {m},
H := N , M := {m}, and T := m ∧

∧
{x,y}∈E(¬x ∨ ¬y).

By construction, entailment is always fulfilled.

Recall that by Theorem 7, ABD[KROM]= parameterized
by M is para-NP-hard. We show now that interestingly
ABD[KROM]≤ parameterized by M is W[1]-complete.
Lemma 24. If an instance of ABD[KROM] has a solution,
then it has a solution S such that |S| ≤ |M |.
Theorem 25. ABD[KROM]≤ is W[1]-complete, when pa-
rameterized by M .

Proof. Hardness follows immediately from Theorem 22.
For the membership consider the reduction to MC[Σ1]

from the proof of Theorem 22. By Lemma 24 we know
that ABD[KROM] has a solution if and only if there is a so-
lution of size ≤ |M |. Thus, we can replace in formula ϕ
from the proof of Theorem 22 any occurrence of k by b :=
min(k, |M |). The length of this formula can be bounded in
terms of M .

The following theorem generalizes the classical results
of KROM-abduction. It is NP-complete in general and in
P when |M | = 1. In fact, the P-membership for ev-
ery fixed number of manifestations follows from the W[1]-
completeness.
Theorem 26. ABD[KROM] is W[1]-complete, when param-
eterized by M .

Proof. Membership follows from Theorem 25.
We show hardness by reduction from INDEPENDENT

SET. Let (G, k) with graph G = (N,E) and vertices
N = {v1, . . . , vl} be an instance of INDEPENDENT SET.
The construction is inspired by (Lackner and Pfandler 2012).
We construct an instance (〈V,H,M, T 〉, k) for the abduc-
tion problem. Let H := {hji | i ∈ [l], j ∈ [k]}, M :=
{mi | i ∈ [k]}, and V := N ∪ H ∪ M . Next we create
T := TIS∧

∧
i∈[4] Ti, where TIS :=

∧
{x,y}∈E(¬x∨¬y) and

T1 :=
∧

i∈[l],j∈[k]

(hji → mj), T2 :=
∧

i∈[l],j,j′∈[k],j 6=j′

(hji → ¬h
j′

i ),

T3 :=
∧

i,i′∈[l],i6=i′,j∈[k]

(hji → ¬h
j
i′), T4 :=

∧
i∈[l],j∈[k]

(hji → vi).

Formula TIS encodes the independent set property. In order
to ensures that k many vertices are picked, we introduce k
hypotheses h1i . . . h

k
i for each vertex vi. Selecting hypothe-

sis hji corresponds to selecting vertex i as the j-th pick in
the independent set. Formula T1 ensures that the k manifes-
tations are only entailed if for each j ∈ [k] (the j-th pick) at
least one hypothesis of hj1, . . . , h

j
l is selected. Subformula

T2 ensures that for each vertex at most one hypothesis is
picked; T3 ensures that we select at most one hypothesis as
the same pick. Finally, T4 forces a vertex to true if one of the
corresponding hypotheses was chosen.

The fixed-parameter tractability of KROM-abduction pa-
rameterized by vertex cover number follows from the FPT
result for parameter treewidth (Gottlob, Pichler, and Wei
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2010) and the fact that tw(G) ≤ τ(G) for every graph G.
We show that this parameterization does not lead to a poly-
nomial kernel.
Theorem 27. ABD[KROM] and ABD[KROM]≤/= param-
eterized by τ do not admit a polynomial kernel unless the
Polynomial Hierarchy collapses.

Proof. We show this by PPT-reduction from SAT of ϕ ∈
CNF parameterized by var (ϕ). This problem does not admit
a polynomial kernel unless the Polynomial Hierarchy col-
lapses (Chen, Flum, and Müller 2011). We create an abduc-
tion instance 〈V,H,M, T 〉 as follows. Let V := X∪X ′∪M ,
where X := var (ϕ), X ′ := {x′ | x ∈ X}, and M contains
a manifestation for each clause in ϕ. Let H := X ∪X ′, and

T :=
∧
x∈X

((x ∨ x′) ∧ (¬x ∨ ¬x′))∧

∧
c∈ϕ

( ∧
x∈c

(x→ c) ∧
∧
¬x∈c

(x′ → c)

)
.

For instances of ABD[KROM]≤/=, we additionally set k :=
|X|. Observe that the primal graph of T can be covered by
the set X ∪X ′. Thus, τ can be bounded by 2 · |var (ϕ)|.

Next we will show that ABD[KROM] and
ABD[KROM]≤/= have a polynomial kernel when parame-
terized by (H,M). Thereby TrimRes from Definition 17 is
used as a kernelization function.
Lemma 28. Let 〈V,H,M, T 〉 be an abduction instance for
KROM theories, let S ⊆ H , let m ∈ M , and let T ∧ S be
satisfiable. Then T ∧ S ∧ ¬m is unsatisfiable if and only if
TrimRes(T,H,M) ∧ S ∧ ¬m is unsatisfiable.
Theorem 29. ABD[KROM] and ABD[KROM]≤/= have a
polynomial kernel when parameterized by (H,M).

Proof. Given an instance 〈V,H,M, T 〉 with T ∈ KROM.
We can test T for unsatisfiability in polynomial time
and output a trivial no-instance in case the answer
is yes. Otherwise we compute in polynomial time
TrimRes(T,H,M) which has size O((|H| + |M |)2). In-
deed 〈H ∪ M,H,M,TrimRes(T,H,M)〉 gives a kernel
for our instance. Given a set S ⊆ H , by Lemma 19
testing the satisfiability of T ∧ S is equivalent to testing
TrimRes(T,H,M) ∧ S. Testing whether T ∧ S |= M
is equivalent to testing if T ∧ S |= m for all m ∈
M . By Lemma 28 each of those tests can be done on
TrimRes(T,H,M).

It follows immediately that ABD[KROM] and
ABD[KROM]≤/= have a polynomial kernel when pa-
rameterized by V . Note that these problems are already FPT
when parameterized by H alone.

Conclusion
We have drawn a detailed picture of the parameterized com-
plexity of abduction as depicted in Tables 1 and 2. Although
there are many cases where ABD[HORN] is FPT, it never
admits a polynomial kernel. For ABD[KROM] we were able
to show the existence of a polynomial kernel when parame-
terized by (H,M). The question whether ABD[DEFHORN]

parameterized by V admits a polynomial kernel remains
open. Future work includes the search for further parame-
ters yielding fixed-parameter tractability and the analysis of
other syntactical fragments.
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