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Abstract

The task of automatically determining the correct sense of a
polysemous word has remained a challenge to this day. In
our research, we introduce Concept-Based Disambiguation
(CBD), a novel framework that utilizes recent semantic anal-
ysis techniques to represent both the context of the word and
its senses in a high-dimensional space of natural concepts.
The concepts are retrieved from a vast encyclopedic resource,
thus enriching the disambiguation process with large amounts
of domain-specific knowledge. In such concept-based spaces,
more comprehensive measures can be applied in order to pick
the right sense. Additionally, we introduce a novel represen-
tation scheme, denoted anchored representation, that builds a
more specific text representation associated with an anchor-
ing word. We evaluate our framework and show that the an-
chored representation is more suitable to the task of word-
sense disambiguation (WSD). Additionally, we show that our
system is superior to state-of-the-art methods when evalu-
ated on domain-specific corpora, and competitive with recent
methods when evaluated on a general corpus.

1 Introduction
Since computers do not have the benefit of a human’s vast
experience of the world and language, the task of automat-
ically determining the correct sense of a polysemous word
becomes a difficult problem. It is crucial in many natural lan-
guage processing (NLP) applications such as speech recog-
nition, information retrieval, machine translation and com-
putational advertising. Word-sense disambiguation (WSD)
methods can be classified into two types: knowledge-based
and machine learning. The machine learning approach usu-
ally includes building a classifier with collocation and co-
occurrence features and using it to assign senses to unseen
examples (Chklovski and Mihalcea 2002; Ng, Wang, and
Chan 2003). To perform well, it needs large training anno-
tated sets that are extremely expensive to create (Edmonds
2000). Furthermore, the training set will always lack full
coverage of all senses for all the words in the lexicon, lead-
ing to inaccurate results.

The knowledge-based approach, on the other hand, does
not rely on sense-annotated corpora, but takes advantage of
the information contained in large lexical resources, such as
WordNet (Banerjee and Pedersen 2003; Navigli and Velardi
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2005). This approach usually picks the sense whose defini-
tion is most similar to the context of the ambiguous word,
by means of textual overlap or using graph-based measures
(Agirre, De Lacalle, and Soroa 2009). Consequently, most
dictionary-based methods are sensitive to the exact word-
ing of the definitions, as they have not realized the poten-
tial of combining the limited information in such definitions
with the abundant information extractable from text corpora
(Cuadros and Rigau 2006).

In the last decade, many methods for enrichment of
existing resources have been developed in order to deal
with this problem (Girju, Badulescu, and Moldovan 2006;
Pennacchiotti and Pantel 2006) yet none of them made use
of world knowledge, which is necessary for WSD. Recently,
Wikipedia has become an external source of knowledge
for WSD tasks, as it supplies vast amounts of common-
sense world knowledge. Wikipedia is used both by machine
learning algorithms (Bunescu and Pasca 2006; Cucerzan
2007) and similarity models (Strube and Ponzetto 2006;
Milne 2007; Turdakov and Velikhov 2008). Additionally, re-
cent enrichment methods utilize Wikipedia and map senses
to corresponding articles (Mihalcea 2007; Ponzetto and
Navigli 2010).

While these methods incorporate the limited dictionary
definitions with vast common-sense knowledge, most are
restricted to words that appear in titles of articles, or rely
on textual overlap, causing the process to become brittle.
Moreover, methods that rely on mapping procedures are less
suitable where named entities and domain-specific terms are
involved, as common in domain-specific corpora. As these
entities do not appear in the dictionary to begin with, crucial
knowledge regarding them can be ignored during the enrich-
ment process. Domain-specific corpora also pose much dif-
ficulty for learning-based methods. As opposed to a general
corpus, in a domain-specific corpus the distributions of the
senses of words are often highly skewed, causing their per-
formance to decline (Agirre, De Lacalle, and Soroa 2009).

In this paper, we will introduce Concept Based Disam-
biguation (CBD), a novel framework which utilizes recent
semantic analysis techniques to represent both the context
of the word and its senses in a space of natural concepts
retrieved from a vast encyclopedic resource. It then picks
the sense that is most similar to the word’s context in that
space. This approach has several advantages: (1) it can dis-
ambiguate any word as long as it exists somewhere in the
knowledge source; (2) it is suitable for named entities and
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domain-specific terms;(3) the process is completely auto-
matic and (4) any knowledge source that connects topics
with texts is suitable. Additionally, as this approach relies
on natural concepts, it should be able to capture the main
gists of each sense as perceived by humans and therefore
will better agree with human annotators.

2 Concept-Based WSD
Given a word in a text, WSD addresses the task of associat-
ing that word with an appropriate definition or meaning that
is distinguishable from other meanings attributable to that
word. We will now describe in detail how our approach han-
dles this task. We will present a general framework for WSD
that is entirely concept based and elaborate on the semantic
components and data sources it requires.
2.1 The CBD Algorithm
Our algorithm follows the traditional Lesk algorithm (Lesk
1986) in the way that it chooses the sense most similar to the
context, but whereas Lesk relies on simple word overlap, our
algorithm computes the semantic relatedness of texts in a
high-dimensional space of concepts. It relies on the notation
of a concept space, denoted C, of size n, where each con-
cept ci ∈ C is associated with a natural concept or topic in
the given knowledge source. In addition, it relies on a given
dictionary, denoted D = {〈wi, Si〉}, where for each word
wi there exists a list of senses Si = {〈si〉 |j = 1, . . . , ni}.

The algorithm’s input consists of the word to disam-
biguate, denoted w, its context, denoted Ctx, and a list of
dictionary senses, S. Additionally, it requires 3 components:
(1) a sense retriever, denoted SR, that is responsible for as-
sociating each sense with a textual fragment; (2) a semantic
interpreter, denoted SEM , which is able to represent text
fragments in a high-dimensional space of natural concepts
and (3) a similarity estimator, denoted SIM , that given a
pair of representations outputs their semantic distance.

The algorithm uses SR to associate each sense si ∈ S
with a textual fragment ti. Then it uses SEM to con-
vert both the context, Ctx, and sense’s associated texts,
ti, to their concept-based representation. The result is a
weighted vector of concepts, denoted 〈w1

c, . . . , wn
c〉 and〈

w1
i, . . . , wn

i
〉

respectively. Finally, the algorithm employs
SIM to chooses the sense whose representation maximizes
the similarity measure. Figure 1 illustrates the system in gen-
eral while Figure 2 describes the main procedure.
2.2 The Sense Retriever
The sense retriever is responsible for associating each sense
with text that will later serve as input to the semantic inter-
preter. Naturally, a basic implementation of a sense retriever
will associate each sense with its gloss in the dictionary.
But the limited fragments of natural text in these glosses are
inadequate for high-performance WSD (Banerjee and Ped-
ersen 2003). If, however, the dictionary has an intra-linked
hierarchical structure, such as WordNet, a more extensive
sense retriever can be used, to the benefit of our algorithm.
In our implementation, we used textual data that originates
from several sources in WordNet: the sense’s gloss, its syn-
onyms, its hypernyms and its hyponyms.
2.3 The Semantic Interpreter
The main part of our algorithm consists of utilizing a se-
mantic interpreter. In this paper, we experimented with two

Figure 1: General illustration of the framework

Procedure CBD(w,Ctx, S)
〈w1

c, . . . wn
c〉 ← SEM(Ctx)

maxSim← 0
pickedSense← nil
Foreach si ∈ S:
ti ← SR(si)〈
w1

i, . . . , wn
i
〉
← SEM(ti)

If SIM(〈w1
c, . . . , wn

c〉 ,
〈
w1

i, . . . , wn
i
〉
) > maxSim:

maxSim← SIM(〈w1
c, . . . , wn

c〉 ,
〈
w1

i, . . . , wn
i
〉
)

pickedSense← si
Return pickedSense

Figure 2: Procedure for finding the most appropriate sense

methods for semantic representation of text, Explicit Seman-
tic Analysis (ESA) (Gabrilovich and Markovitch 2009) and
Compact Hierarchical Explicit Semantic Analysis (CHESA)
(Liberman and Markovitch 2009). ESA was introduced as
a method for semantic representation of natural language
texts. In Wikipedia-based ESA, the semantics of a given
word is described by a vector storing the word’s associa-
tion strengths to Wikipedia-derived concepts. A concept is
generated from a single Wikipedia article and is represented
as a vector of words that occur in this article, weighted by
their TFIDF score. While ESA supplies a flat representation,
CHESA produces a hierarchical one. It leverages the con-
ceptual hierarchy inferred from Wikipedia’s category sys-
tem to represent text semantics. Namely, it draws a virtual
separating curve on top of the global hierarchy, omitting re-
dundant and over-specific components. We believe CHESA
is more suitable for WSD as it is in keeping with the innate
human ability to generalize when performing such tasks.
Anchored Explicit Semantic Analysis Sense definitions
often include words that are ambiguous in themselves, with
different meanings that span beyond their role in the given
text. Those meanings, while unrelated to the word in ques-
tion, are still included by the aforementioned representation
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schemes. For example, consider the sentence The Family
Tree of King Alfred the Great shows 37 generations and over
3000 individuals with the word tree to disambiguate. The
word tree has two main meanings according to WordNet:
(1) a tall perennial woody plant having a main trunk and
branches forming a distinct elevated crown and (2) a fig-
ure that branches from a single root. Notice the word crown
that appears in the first gloss and refers to the upper leaves
of a tree. As it usually stands for a symbol of monarchy, it
is highly related to the word king that appears in the con-
text. Accordingly, both ESA vectors of the words crown and
king share many monarchy-related concepts (e.g., BRITISH
MONARCHY, CROWN DEPENDENCY). As a result, the first
sense is considered by ESA to be more related to the context
than the second one, and is wrongly picked.

In order to deal with this problem, we must change the
representation of each sense to remove such ambiguity.
Therefore, we introduce a novel approach to represent the
semantics of a text t in the context of a word, denoted
anchor. The Anchored Representation of a text is achieved
by retaining only concepts that relate to the anchor.

For ESA, we construct an anchored representation for
each of t’s words and combine them, as usual, as a centroid.
The anchored representation of a word w with respect to its
anchor is obtained by eliminating from w’s interpretation
vector concepts that are not included1 in the anchor’s inter-
pretation. Formally,

wanchored
c (w) =

{
wc(w) if wc(anchor) > 0
0 if wc(anchor) = 0

(1)

where wc(w) is the association weight of concept c and
word w obtained by ESA. This process can also be per-
ceived as a projection of w’s interpretation vector onto a
subspace spanned by concepts related to the anchor. As a
result, w’s vector includes only concepts associated with the
anchor, which maintain their original weights, thus still sig-
nify w’s association with each concept. We call this process
Anchored Explicit Semantic Analysis (Anchored-ESA). Re-
ferring to the aforementioned example, after anchoring to
tree, crown’s representation includes only specific, nature-
related concepts, such as EUCALYPTUS and SEQUOIA. As a
result, the similarity score for crown and king is much lower,
as it should be in that context.

Similarly, Anchored-CHESA initially identifies concepts
and categories that are not included in CHESA’s representa-
tion of the anchoring word, and deletes them from the full
Wikipedia hierarchy. Then it builds the anchored represen-
tation, top down, in the regular manner. Its benefits are eas-
ily demonstrated. The different meanings of a word will of-
ten be represented by different branches of the CHESA rep-
resentation tree. So, for example, the category tree of the
word apple includes both nature related categories, derived
from one meaning, and technology related categories, de-
rived from the other. We can see that anchoring the repre-
sentation to the word fruit retains only the nature related
branches, while anchoring it to the word computer retains
only the technological ones, as illustrated in Figure 3. A
similar method was explored by Reddy et al. (2011) to rep-
resent the semantics of noun-noun compounds. Yet, while

1More precisely, we eliminate concepts that have a weight of 0
(or below some predefined threshold) in the anchor’s vector.

Figure 3: CHESA representation for the word apple. The
results of anchoring by fruit and by computer are highlighted
in light and dark gray, respectively.

they used a BOW approach, we prune unrelated concepts,
rather than words, and we do so in a structured manner.
2.4 The Similarity Estimator
Our algorithm employs a similarity estimator to compute the
semantic relatedness of a pair of text fragments represented
in a high-dimensional space of concepts. In this paper, we
used the cosine metric to calculate similarity for both ESA
and CHESA representations, where for CHESA-based rep-
resentations, we used the linearized representations as Liber-
man and Markovitch (2009). Formally,

SIM(t1, t2) =

∑
c∈C wc(t1)wc(t2))√∑

c∈C w2
c (t1)

√∑
c∈C w2

c (t2)
(2)

where C is the set of all the concepts in the global hierarchy,
and wc(ti) is the association weight of concept c and text ti.

3 Empirical Evaluation
We evaluated our CBD algorithm on a common benchmark
for WSD. We now present the performance of our various
algorithms, then compare to several state-of-the-art systems.

3.1 Experimental Setup
We implemented our algorithms using a Wikipedia snap-
shot as of October 18, 2007, which includes over 2 million
Wikipedia articles. We follow the footsteps of Gabrilovich
and Markovitch (2009) and discard overly-small or iso-
lated articles. We also disregard over-specific categories,
lists, and stubs. At the end of this process our knowl-
edge base contained 497,153 articles. Similarly, we im-
plemented our algorithms using the parameters proposed
in the original papers (Gabrilovich and Markovitch 2009;
Liberman and Markovitch 2009).

Our system was evaluated on the well-known SemEval-
2007 coarse-grained all-words WSD task (Navigli,
Litkowski, and Hargraves 2007). We chose coarse-grained
word- sense disambiguation over fine-grained, since the
latter often suffers from low inter-annotator agreement. This
is mainly because WordNet senses are full of distinctions
which are difficult even for humans to judge. Coarse word
senses allow for higher inter-annotator agreement (Snyder
and Palmer 2004), and better reflect the average person’s
perceptions of the different word senses. Overall, 2,269
content words constituted the test data set, where the
average polysemy with the coarse-grained sense inventory
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System P R F1
MFS BL 77.40 77.40 77.40
Random BL 63.50 63.50 63.50
ESA 90.32 63.99 74.91
Anchored-ESA 89.06 69.04 77.78
CHESA 87.16 69.22 77.16
Anchored-CHESA 91.92 69.86 79.38

Table 1: Performance on Semeval-2007 coarse grained all-
words WSD (nouns only subset).

was 3.06. The inner-annotator agreement was 93.80%, a
much higher number than of previous fine-grained tasks.

3.2 The Performance of the CBD Algorithm
First, we evaluated our CBD algorithm with four different
semantic interpreters: ESA-based, CHESA-based and their
anchored versions. We use here the nouns-only subset of the
test corpus, containing 1108 instances, since the Wikipedia
articles are mainly focused on nouns. The context we used
was the sentence in which the ambiguous word appears.

Traditionally, the performance of disambiguation systems
is evaluated by the F1 measure. The evaluated algorithm ei-
ther returns a sense, or returns “don’t know.” The precision,
recall and F1 are computed from these answers. In our sys-
tem, the decision to reply “don’t know” is determined by
a threshold on the similarity scores. The optimal threshold
for each algorithm was empirically estimated by maximiz-
ing the F1-measure on a development set of 1,000 randomly
chosen noun instances from the SemCor corpus.

The results are presented in Table 1. Two baselines were
calculated: a random baseline, in which senses are chosen
at random, and the most frequent sense baseline (MFS), ac-
cording to the frequencies in the SemCor corpus (Miller et
al. 1993). The results strongly imply that the anchored ver-
sions of ESA and CHESA yield a consistent improvement
against the unanchored versions, with +2.87% and +2.22%
F1 respectively. This outcome verifies that the anchored rep-
resentation is more suited for WSD tasks, as the texts of each
of the senses are compared in the context of the ambiguous
word at hand, rather than a general one.

Additionally, we can see that the CHESA-based algo-
rithms perform better than their ESA counterparts, with
+2.25% and +1.6% F1 for the unanchored and anchored ver-
sion respectively. The superiority of CHESA over ESA in
this task fits our prior assumptions that weighted hierarchical
representation, which allows varying abstraction levels, is
more suited to the human perception of different meanings.
Moreover, the results clearly indicate that the anchored-
CHESA algorithm outperforms the MFS baseline, which is
notable for being a difficult competitor for unsupervised and
knowledge-based systems.

To further exhibit the strengths of our algorithm , let us
review an example from the dataset. Consider the sentence:
However most PC desktop applications such as word pro-
cessors or image manipulation programs are written in more
runtime and memory efficient languages like C, C++ and
Delphi, with the word programs to disambiguate. According
to WordNet, there are 8 meanings to the lemma Program.
The right sense obviously relates to a computer program: a

Figure 4: ESA and Anchored-Esa representations for the
context of the word program (top) and its correct sense (bot-
tom). The anchored versions are highlighted in gray.

sequence of instructions that a computer can interpret and
execute. However, there is no word overlap between the con-
text and the right sense. In order to pick the right sense,
one must possess prior knowledge about computers, real-
izing runtime and memory are computer related terms, and
that C, C++ and Delphi are indeed computer programming
languages. This is a classic example where CBD succeeds
while simpler algorithms, with no world knowledge, fail.
Here are some of the top concepts that are shared between
the context and the right sense, according to the algorithm:
1. COMPUTER LANGUAGE 2. APPLICATION SOFTWARE 3.
COMPUTER PROGRAM 4. VIRTUAL MEMORY. As can be
easily seen, CBD is able to identify connections between
words that stem from their semantics rather than syntax.

This example also illustrates the benefits of anchoring.
Figure 4 provides a partial view of the ESA representation
of the context and of the correct sense, before and after an-
choring. The context’s original vector includes concepts trig-
gered by a mixture of meanings of the words in the text.
For instance, the word Delphi triggers both the non-relevant
concept DELPHI, which refers to a town in Greece, and the
relevant concept OBJECT PASCAL, which refers to a pro-
gramming language that is also known as Delphi. However,
the anchored-ESA vector is much more definite, retaining
only the relevant concepts. A similar effect is achieved with
each of the senses. The ESA vector of the correct sense also
includes a mixture of meanings. We can see that the word
execute triggers non-relevant concepts, such as EXECUTIVE
PRODUCER and EXECUTIVE CAR. Again, these are omit-
ted in the Anchored-ESA vector. Consequently, the correct
sense’s representation is very similar to the context’s repre-
sentation, making it an easy pick.

3.3 Comparison with State-of-the-Art Methods
We compared our anchored-CHESA algorithm with sev-
eral supervised and unsupervised state-of-the-art competi-
tors. The supervised group consisted of NUS-PT (Chan,
Ng, and Zhong 2007), NUS-ML (Cai, Lee, and Teh
2007), LCC-WSD (Novischi, Srikanth, and Bennett 2007),
GPLSI (Izquierdo, Suárez, and Rigau 2007), UPV-WSD
(Buscaldi and Rosso 2007). The unsupervised group con-
sisted of SUSSX-FR (Koeling and McCarthy 2007), UOR-
SSI (Navigli and Velardi 2005), Degree and ExtLesk
(Ponzetto and Navigli 2010). Three of the above competi-
tors, NUS-PT, NUS-ML and LCC-WSD, were the top sys-
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System Nouns Only All Words
MFS BL 77.44 78.89
NUS-PT 82.31 82.50
NUS-ML 81.41 81.58
LCC-WSD 80.69 81.45
GPLSI 80.05 79.55
UPV-WSD 79.33 78.63
SUSSX-FR 81.10 77.00
UOR-SSI 84.12 83.21
ExtLesk 81.00 79.10
Degree 85.50 81.70
Anchored-CHESA 85.02 82.68

Table 2: System scores (P/R/F1) with MFS adopted as a
back-off strategy

tems in the Semeval-2007 coarse-grained all-words Task.
One competitor–SUSSX-FR–was the best unsupervised sys-
tem that participated in that task and two, more recent un-
supervised systems, Degree and ExtLesk, achieved the best
performance in the literature. For a further discussion of
these methods see Section 4.

Since most WSD methods, especially knowledge-based
ones, resort to the MFS strategy when the confidence re-
garding the correct sense is low, we added such a back-off
strategy to our anchored-CHESA algorithm. We evaluated
our system against the aforementioned methods both on the
complete test set and also on a nouns-only subset. The re-
sults are detailed in Table 2 as reported in Ponzetto and Nav-
igli (2010).

The results indicate that on the nouns-only subset, our
system’s performance is comparable with state-of-the-art
unsupervised systems, namely Degree and UOR-SSI, and
is much better than the best supervised and unsupervised
systems, NUS-PT and SUSSX-FR respectively, which par-
ticipated in SemEval-2007 (+2.71% and +3.92% F1 respec-
tively). On the entire dataset, it is proven to be competitive
with state-of-the-art supervised and unsupervised systems 2.
3.4 Domain-Specific Word-Sense Disambiguation
As described earlier, our system employs vast amounts of
knowledge. In particular, it utilizes domain-specific infor-
mation, such as named entities and domain-specific terms,
which makes it naturally suitable for domain WSD. We used
the evaluation dataset published by Koeling, McCarthy, and
Carroll (2005). The dataset consists of examples retrieved
from the Sports and Finance sections of the Reuters corpus.
Overall, each domain consists of nearly 3500 examples man-
ually annotated with fine-grained senses from WordNet. The
average polysemy of the senses is 6.7, and the inter-tagger
agreement is 65%.

We used here the best configuration of our system that was
found in the general settings, namely Anchored-CHESA.
Since the distributions of the senses of words are highly
skewed in each domain, the thresholds that were previously
used to decide when to resort to the MFS back-off strategy
are no longer applicable. Therefore, we avoided using MFS

2The difference between the top result in each column and non-
bold results is statistically significant at p < 0.05, while for other
results in bold it is not (using the one-sided hypothesis).

System Sports Finance
MFS BL 19.6 37.1
Random BL 19.5 19.6
k-NN 30.3 43.4
Static PageRank 20.1 39.6
Personalized PageRank 35.6 46.9
ExtLesk 40.1 45.6
Degree 42.0 47.8
Anchored-CHESA 46.5 49.3

Table 3: System scores (P/R/F1) on domain-specific corpora

back-off strategy in domain specific settings. Table 3 details
the results compared to recent systems 3.

The table includes k-NN, a fully supervised system, which
employs SemCor to train a k-nearest-neighbors classifier for
each word in the dictionary. Additionally, it includes two
recent unsupervised systems introduced by Agirre, De La-
calle, and Soroa (2009), namely Static PageRank and Per-
sonalized PageRank. These systems view WordNet as the
Lexical Knowledge Base (LKB), and employ graph-based
methods to perform WSD. Finally, we compare our system’s
performance to recent state-of-the-art unsupervised systems,
namely ExtLesk and Degree (Ponzetto and Navigli 2010).

The results indicate that in domain settings, our system’s
performance is superior to state-of-the-art systems, both su-
pervised and unsupervised. They also strongly imply that
our system is competitive to recent methods in fine-grained
settings. It outperforms by a large margin the best super-
vised system, K-Nearest Neighbors (k-NN) trained on Sem-
Cor, which have been used extensively in public evalua-
tion exercises, and have succeeded in gaining high ranks in
both lexical-sample and all-words tasks (Snyder and Palmer
2004; S. Pradhan and M.Palmer 2007).

Additionally, our system achieves much better results than
Personalized PageRank, on both Sports and Finance corpora
(+10.9% and +2.4% F1 respectively). The large margin in
Sports compared to the one in Finance can be explained by
the frequent usage of named entities, such as teams and play-
ers. These entities, while having vast coverage in Wikipedia,
lack any reference in common dictionaries, thus imper the
performance of dictionary-based methods.

Finally, we can note that our system achieves better results
than recent state-of-the-art unsupervised systems, ExtLesk
and Degree using WordNet++, on both Sports and Finance
corpora (+4.5% and +1.5% F1 respectively). While these
systems performance is competitive to ours in general set-
tings, our system outperforms them in domain-specific set-
tings. A justification of this outcome can also be associ-
ated with the frequent usage of named entities and domain-
specific terms in these corpora, which poses difficulty for
such methods, which rely on a mapping between Word-
Net senses and Wikipedia pages. As these terms are not re-
ferred to in WordNet, the mapping procedure cannot asso-
ciate them with information from Wikipedia. However, our
algorithm, which can be applied to any word in the knowl-
edge source, does not suffer from that limitation.

3We compare with token-based WSD systems, i.e. systems that
disambiguate each instance of a target word separately.
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Let us review an example that illustrate our claims. Con-
sider the sentence Wide receiver Alvin Harper signed with
the Washington Redskins on Wednesday from the Sports do-
main, with the word receiver to disambiguate. According
to WordNet, the word receiver has six meanings that span
across various domains such as technology, law, and sports.
Here, the correct meaning is the one associated with football.
Since the sentence is mainly composed by named entities,
gathering sufficient information regarding them is crucial to
this task. As the terms Alvin, Harper and Redskins, which
relate to a football player and a football team respectively,
are not located nor referred to in WordNet to begin with,
the mapping procedure is unable to enrich the context with
the relevant information from Wikipedia. On the contrary, in
our concept space, these entities are highly correlated with
sports-related concepts and categories, enabling our system
to pick the correct sense.

4 Related Work
In recent years, unsupervised methods have succeeded in
employing vast knowledge sources with domain-specific in-
formation (Chen et al. 2009). Knowledge sources provide
data essential for connecting senses with words. They can
vary from collections of raw texts to libraries of structured
data such as Wikipedia. Raw texts are mainly used in a
graph-based approach (Koeling and McCarthy 2007). For
instance, SSI (Navigli and Velardi 2005) creates structural
specifications of the possible senses for each word in a con-
text and selects the best hypothesis according to a gram-
mar describing relations between sense specifications that
are integrated from several resources manually and automat-
ically. Additionally, Agirre, De Lacalle, and Soroa (2009)
used WordNet to construct a graph of entities and compute
the PageRank of the graph by concentrating the initial prob-
ability mass uniformly over the context nodes, and finally
returning the sense with the highest rank. Their findings also
support the argument that knowledge-based systems exhibit
a more robust performance than their supervised alternatives
when evaluated across different domains.

Over the past several years the importance of Wikipedia
as an external source of knowledge for WSD tasks has been
increasingly recognized. Wikipedia is mainly used to com-
pute semantic distance between words. These include path-
based measures (Strube and Ponzetto 2006), textual overlap
(Mihalcea and Csomai 2007), and data-driven algorithms
that are based on annotated data (Mihalcea and Csomai
2007; Chen et al. 2009). Still, most of these measures re-
strict a word’s representation to one corresponding article.
Milne (2007), Turdakov and Velikhov (2008) implemented
a richer semantic representation for a word or text, utiliz-
ing Wikipedia’s interlink-structure. However, as most of the
aforementioned methods, they can only be applied to words
that actually occur in titles of Wikipedia articles.

Recently, Ponzetto and Navigli (2010) employed
Wikipedia to create an enriched version of WordNet,
namely WordNet++, by using mapping procedures. Then,
they apply one of two algorithms in order to pick the correct
sense. The first algorithm is ExtLesk, a simplified version of
the extended Lesk algorithm, which, given a target word w,
assigns to w the sense whose gloss has the highest overlap
with the context of w (a sentence). The second algorithm

used is Degree, a graph-based approach that relies on the
notion of vertex degree (Navigli and Lapata 2010).

While these methods resemble our algorithm in their mo-
tivation to augment WSD with vast encyclopedic knowl-
edge, several differences exist. First, since our system an-
alyzes the full contents of the articles rather than just their
titles, links, and category labels, it can succeed where these
components alone lack sufficient semantic information. Sec-
ond, most of these methods rely on bag-of-words (BOW)
similarity, either when mapping senses to articles or upon
measuring relatedness. Words are often excessive, over-
specific and noisy. Furthermore, for humans, words trigger
reasoning at a much deeper level. We measure relatedness
though shared concepts, utilizing categories to represent se-
mantics at varying abstraction levels and to avoid using un-
necessary data. Our representation of textual semantics us-
ing Wikipedia concepts follows the line of research used in
other Wikipedia-based applications, including, among oth-
ers, text categorization (Gabrilovich and Markovitch 2009),
co-reference resolution (Ponzetto and Strube 2007), multi-
document summarization (Nastase and Strube 2008), text
generation (Sauper and Barzilay 2009), and information re-
trieval (Cimiano et al. 2009).

5 Conclusions
We presented a concept-based disambiguation framework
(CBD) that employs large-scale algorithms for automatic
representation of word senses using vast encyclopedic
knowledge. This knowledge is successfully utilized with-
out deep language understanding, specially crafted inference
rules, or additional common-sense knowledge bases. Unlike
other methods, CBD converts both the senses and the word’s
context into a high dimensional space composed of natural
concepts and categories which are grounded in human cog-
nition. This is in contrast to the brittle process employed by
many knowledge-based approaches, which use word overlap
techniques to compute semantic relatedness.

We also introduced a novel Anchored Representation
scheme that, given a text and an anchoring word, builds a se-
mantic representation of the text. The semantics is generated
so that it will be associated with the anchoring word. Mean-
ings unrelated to the anchoring word are omitted, resulting
in much more definite representation of a word or text. This
scheme has shown to be more suitable to the task of WSD,
where the ambiguous word plays a key role in anchoring the
texts of its senses, thus preventing incidental similarities.

Our approach was shown to be competitive with recent
methods when evaluated on a general dataset, and supe-
rior to state-of-the-art methods when evaluated on domain-
specific corpora. We note that more complex algorithms for
generating representations and assessing relatedness could
yield even higher performance, and we intend to research
such algorithms in future work. Moreover, since our CBD
approach does not rely on word overlap, its impact in a mul-
tilingual setting should be examined as well. Indeed, ESA
has been used successfully in the past for cross-lingual tasks
(Hassan and Mihalcea 2009).

Many agree that complex disambiguation problems
should be eventually solved using deep semantic analysis.
We believe that the framework presented in this paper takes
a step in this direction.
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