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Abstract

A probabilistic variant of ATL∗ logic is proposed to
work with multi-player games of incomplete infor-
mation and synchronous perfect recall. The seman-
tics of the logic is settled over probabilistic interpreted
system and partially observed probabilistic concurrent
game structure. While unexpectedly, the model check-
ing problem is in general undecidable even for single-
group fragment, we find a fragment whose complexity
is in 2-EXPTIME. The usefulness of this fragment is
shown over a land search scenario.

Introduction
Alternating-time Temporal Logic (ATL) (Alur, Henzinger,
and Kupferman 2002) offers the ability of reasoning about
strategies over games involving multiple players. The for-
mula 〈〈A〉〉φ expresses the property that a coalition A (or a
set A of players) has a strategy to enforce the fact φ.

The logic of Alur et al. assumes that players always have
complete information of a game state, which is not always
true in real applications. For example, it is impossible for
a player to observe the local state of its opponent in some
games. Notable examples include various card games. The
semantics of ATL asserts that players make decision based
on history. This is sometimes known as perfect recall (Fa-
gin et al. 1995), as players remember all their history obser-
vations. A player assumed to have perfect recall can make
maximal use of its reasoning capabilities. It serves as a suffi-
cient condition for the adversary in designing and verifying
critical systems.

Probabilistic information provides quantitative measures
over the games. At each state of a game, once every player
chooses a local action, a distribution exists about the next
state. Moreover, it allows to specify that a player can achieve
a goal with a certain minimal or maximal probability (Chen
and Lu 2007).
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In this paper, we work with multi-player synchronous
games in which players have perfect recall memory over ob-
servations. To the best of our knowledge, so far there are
no existing works in the literature that address probabilis-
tic variants of ATL with incomplete information and syn-
chronous perfect recall.

The paper makes the following contributions. (1) We
propose a new semantics of the PATL∗ logic based on a
probabilistic action interpreted system, which generalizes
the interpreted system (Fagin et al. 1995) by adding prob-
abilistic information and explicit local actions taken by
players. This probabilistic interpreted system can be ob-
tained from a partially-observed probabilistic concurrent
game structure, in which players have history-dependent
strategies (as per perfect recall semantics). (2) We study
the model checking complexity of PATL∗, which is in gen-
eral undecidable following the result of its nonprobabilistic
variant ATL∗ (Bulling, Dix, and Jamroga 2010; Dima and
Tiplea 2011). Although model checking ATL∗ is EXPTIME-
complete for its single-player fragment with incomplete in-
formation (Alur, Henzinger, and Kupferman 2002), we find
that after probability is introduced into the system, model
checking single-player PATL∗ becomes undecidable. Nev-
ertheless, we prove that a small fragment of PATL∗, the
PATL∗

\U logic in which the until operator is dropped, is de-
cidable in 2-EXPTIME for its single-player (or equivalently,
single-group) fragment.

PATL∗ Logic
Suppose that we are working with a probabilistic system
with a finite set Agt = {1, . . . , n} of players. Let Prop be a set
of propositions. To specify the properties of a probabilistic
system, we present a logic PATL∗ that combines the tempo-
ral operators, the strategy operator and probability measures.
Its syntax is given by

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2 | 〈〈A〉〉./dφ

where p ∈ Prop, A ⊆ Agt, d is a rational constant in
[0, 1], and ./ is a relation symbol in the set {≤, <, >,≥}. In-
tuitively, formula 〈〈A〉〉./dφ expresses that players in A can
collaborately enforce the fact φ with a probability in rela-
tion ./ with constant d, Xφ expresses that φ holds at the
next time, φ1 U φ2 expresses that φ1 holds until φ2 becomes
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true. Other operators can be obtained in the usual way, e.g.,
Fφ ≡ True U φ, Gφ ≡ ¬F¬φ, etc.

Interpreted Systems Semantics
We enrich a probabilistic interpreted system (Halpern 2003;
Huang, Luo, and van der Meyden 2011) by a set of play-
ers Agt and actions performed by the players, and we call
the resulting system a probabilistic action interpreted sys-
tem (PAIS). At all times in a PAIS, each player is assumed
to be in some local state that records all the information that
the player can access at that time. The environment e records
“everything else that is relevant”. Let S be the set of envi-
ronment states and let Li be the set of local states of player
i ∈ Agt. A global state s of a multi-player system is an (n+1)-
tuple (se, s1, . . . , sn) such that se ∈ S and si ∈ Li for all
i ∈ Agt. At a global state, each player independently takes
some local action, which represents the decision it makes.
The environment responds with a deterministic action to up-
date its state. Let Acte be the set of environment actions and
Acti be the set of local actions of player i ∈ Agt. A global ac-
tion of a multi-player system in some global state is a (n+1)-
tuple a = (ae, a1, . . . , an) such that ae ∈ Acte and ai ∈ Acti
for all i ∈ Agt.

Time is represented discretely by using natural numbers.
A run is a function r : N→ S×L1×. . .×Ln×Acte×Act1×. . .×
Actn from time to global states and actions. A pair (r,m) con-
sisting of a run r and time m is called a point, which may also
be written as r(m). If r(m) = (se, s1, . . . , sn, ae, a1, . . . , an)
then we define se(r,m) = se, ae(r,m) = ae and si(r,m) = si
and ai(r,m) = ai for i ∈ Agt. If r is a run and m a time,
we write se(r, 0..m) for the sequence se(r, 0) . . . se(r,m), and
a(r, 0..m) for a(r, 0) . . . a(r,m). Let a system R be a set of
runs, and we call R × N the set of points of R. Relative
to a system R, we define the set Ki(r,m) = {(r′,m′) ∈
R × N | si(r′,m′) = si(r,m)} to be the set of points that are,
for player i, indistinguishable from the point (r,m).

We introduce some preliminary notions for probabilistic
systems. A probability space is a triple (W, F, µ) such that W
is a set, called the carrier, F ⊆ P(W) is a set of measur-
able sets in P(W), closed under countable union and com-
plementation, and µ : F → [0, 1] is a probability mea-
sure, such that µ(W) = 1 and µ(U ∪ V) = µ(U) + µ(V) if
U ∩ V = ∅. As usual, we define the conditional probability
µ(U |V) = µ(U ∩ V)/µ(V) when µ(V) , 0.

The work of Halpern and Tuttle introduces a general no-
tion of adversary to handle nondeterminism in probabilistic
systems (Halpern and Tuttle 1993). It is especially the case
in a game of incomplete information, where the moves of
the opponents are hidden. As runs of a system are not mea-
surable unless all the nondeterministic choices are sorted
out, one needs to define adversaries to “settle” the nondeter-
minism. We follow the common choice by fixing the strate-
gies of players in a game. For a system R of runs, we de-
fine a cell c = (Rc, Fc, µc) to be a probability space such
that Rc ⊆ R and Fc ⊆ P(Rc). (In the game structure se-
mantics presented in the following section, Rc will be made
concrete as the set of runs compatible with the strategies
that define c.) A point (r,m) is in c if r ∈ Rc. The set
of indistinguishable points for player i in (r,m) assuming

c is K c
i (r,m) = Ki(r,m) ∩ {(r,m) | r ∈ Rc,m ∈ N}. The

probability information over c is Pc = {PRc
i | i ∈ Agt},

where PRc
i is a function mapping each point (r,m) in c to

a probability space PRc
i (r,m) = (K c

i (r,m), Fc
i (r,m), µc

r,m,i)
such that Fc

i (r,m) ⊆ P(K c
i (r,m)). Intuitively, at each point,

each player has a probability space in which the carrier is
the set of points K c

i (r,m).
Two cells c1 and c2 are strategic equivalent for player i,

denoted as c1 'i c2, if for any two points (r,m), (r′,m′) in
c1 or c2, si(r,m) = si(r′,m′) implies ai(r,m) = ai(r′,m′).
Note that, the relation 'i is an equivalence relation, i.e., it is
reflexive, symmetric, and transitive. We use [c]'i

C
to denote

the equivalence class of c in C with respect to the relation
'i and ['i]C to denote the set of all equivalence classes in C
with respect to the relation 'i.

A probabilistic action interpreted system (PAIS) is a tuple
(R,C, {Pc}c∈C, {'i}i∈Agt, π), where R is a system of runs, C is
a set of cells in R such that R =

⋃
{Rc | c ∈ C}, {Pc}c∈C is a

set of probability information for all cells in C, {'i}i∈Agt is a
set of strategic equivalences over cells for all players in Agt,
and π : R × N→ P(Prop) is an interpretation.

Let A ⊆ Agt be a set of players. We define KA(r,m) =⋂
i∈AKi(r,m), K c

A(r,m) =
⋂

i∈AK
c
i (r,m). Moreover, we let

'A=
⋂

i∈A 'i and aA(r,m) = {ai(r,m) | i ∈ A} be the collec-
tive action of players in A at point (r,m). Likewise, we can
define [c]'A

C
and ['A]C.

The semantics of the language in a PAIS I =
(R,C, {Pc}c∈C, {'i}i∈Agt, π) is given by interpreting formulas φ
at points (r,m) of I, using a satisfaction relation I, (r,m) |=
φ, which is defined inductively as follows.

• I, (r,m) |= p if p ∈ π(r,m),
• I, (r,m) |= ¬φ if not I, (r,m) |= φ

• I, (r,m) |= φ ∧ ψ if I, (r,m) |= φ and I, (r,m) |= ψ

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ.
• I, (r,m) |= φU ψ if there exists a time m′ ≥ m such that
I, (r,m′) |= ψ and I, (r,m′′) |= φ for all m′′ with m ≤
m′′ < m′

• I, (r,m) |= 〈〈A〉〉./dψ if there exists an equivalence class
[c]'A
C
∈ ['A]C such that for all c′ ∈ [c]'A

C
and for all

(r′,m′) ∈ K c′
A (r,m),

where ./ ∈ {≤, <, >,≥}. Intuitively [c]'A
C

represents a joint
winning strategy of A such that for all joint opponent
strategies, [c]'A

C
enforces a win on every compatible state.

Naturally we have the following (Zhang and Pang 2010).
Proposition 1 I, (r,m) |= 〈〈A〉〉./ dψ iff I, (r,m) |=
〈〈A〉〉./ 1−d¬ψ, where ./ ∈ {≤, <, >,≥}, and we write ≤ for >,
< for ≥, ≥ for <, > for ≤.

The above definitions leave open two probabilistic mea-
sures: µc and µc

r,m,i. We make µc concrete in the next section,
by mapping from the concurrent game structure semantics.
In the remaining part of this section, we present a way of ob-
taining µc

r,m,i from µc, depending on a player’s perfect recall
memory.

µc′
r′,m′,A({(r′′,m′′) | (r′′,m′′) ∈ K c′

A (r′,m′)∧I, (r′′,m′′) |= ψ}) ./ d
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Synchronous Perfect Recall A player i has synchronous
perfect recall, denoted as spr, in system R if there exists
a set O (of observations) such that for each point (r,m) of
R, the local state si(r,m) is a sequence of exactly (m + 1)
elements of O and m elements of Acti. Formally, let Oi : R×
N → O be an observation function that maps each point to
an observation of player i. Then the local state of i is defined
by si(r, 0) = Oi(r, 0), and si(r,m + 1) = si(r,m) · a(r,m) ·
Oi(r,m + 1) for all m ∈ N, where a is some action in Acti.

Let R(U) = {r ∈ R | ∃m : (r,m) ∈ U} be the set of runs in
R going through some point in the set U ⊆ R×N. We define
the measure µc

r,m,i by µc as

µc
r,m,i(U) = µc(R(U) | R(K c

i (r,m))). (1)

Similarly, we let µr,m,A(U) = µc(R(U) | R(K c
A(r,m))). The

function PRc
i (r,m) is related to the prior on c by a type of

temporal conditioning. The following theorem clarifies a re-
lationship between µr,m+1,i and µr,m,i. It can be generalized to
have a relationship between µr,m+1,A and µr,m,A.

Theorem 1 Let c ∈ C be a cell. Then we have

µc
r,m+1,i(U) = µc

r,m,i(Ur,m,i | K
c
i (r,m + 1)),

where Ur,m,i = {(r′,m′) ∈ K c
i (r,m) | ∃m′′ : (r′,m′′) ∈ U}.

Proof: We first establish that R(U) ∩ R(K c
i (r,m + 1)) =

R(Ur,m,i) ∩ R(K c
i (r,m + 1)).

(⊆) Let r′ ∈ R(U)∩R(K c
i (r,m+1)), then there exists m′,m′′ ∈

N such that (r′,m′) ∈ K c
i (r,m + 1) and (r′,m′′) ∈ U. By

Lemma 1, we have (r′,m′ − 1) ∈ K c
i (r,m). Then (r′,m′ −

1) ∈ Ur,m,i and r′ ∈ R(Ur,m,i) follow from the definition.
Therefore r′ ∈ R(Ur,m,i) ∩ R(K c

i (r,m + 1)).
(⊇) Since R(Ur,m,i) ⊆ R(U) by definition, R(Ur,m,i) ∩
R(K c

i (r,m + 1)) ⊆ R(U) ∩ R(K c
i (r,m + 1)).

By (1), we have µc
r,m+1,i(U) = µc(R(U) | R(K c

i (r,m + 1))),
which then gives

µc
r,m+1,i(U) =

µc(R(U) ∩ R(K c
i (r,m + 1)))

µc(R(K c
i (r,m + 1)))

As R(U) ∩ R(K c
i (r,m + 1)) = R(Ur,m,i) ∩ R(K c

i (r,m + 1)),

µc
r,m+1,i(U) =

µc(R(Ur,m,i) ∩ R(K c
i (r,m + 1)))

µc(R(K c
i (r,m + 1)))

Then we get µc
r,m+1,i(U) = µc

r,m,i(Ur,m,i | K
c
i (r,m + 1)). �

Lemma 1 Let c ∈ C and r ∈ R, then (r,m) ∈ K c
i (r′,m′)

implies (r,m − 1) ∈ K c
i (r′,m′ − 1).

Proof: By spr we have m = m′, r ∈ Rc, and si(r,m) =
si(r′,m′). By definition of si in spr we have si(r,m − 1) =
si(r′,m′−1). Therefore (r′,m′−1) ∈ Ki(r,m−1), and more-
over, (r′,m′ − 1) ∈ K c

i (r,m − 1) by r′ ∈ Rc. �

Game Structure Semantics
Although PAIS provide a coherent semantic framework
for PATL∗, they are infinite structures which are im-
possible for model checking algorithms. In this section
we propose a finite model called partially observed

probabilistic concurrent game structure (PO-PCGS). A
finite PO-PCGS for a set Agt of players is a tuple M =
(S , Acte, Act1, ..., Actn,Ne,N1, ...,Nn,O1, ...,On, PI, PT, π),
where S is a finite set of states, Acte is the set of local
actions of the environment, Acti is the set of local actions
of player i ∈ Agt, Ni : S → P(Acti) indicates the set of
actions that are available to player i at a specific state, com-
ponent PI : S → [0..1] is an initial distribution such that∑

s∈S PI(s) = 1, PT : S × Act × S → [0, 1] is a probability
transition matrix, such that Act = Acte × Act1 × ... × Actn
and
∑

s′∈S PT (s, a, s′) = 1 for all s ∈ S and a ∈ Act, and
for each player i ∈ Agt, we have an observation function
Oi : S → O. Finally, π : S → P(Prop) is an interpretation
of the atomic propositions Prop at the states. Similar to the
settings in PAIS, we suppose that the environment reacts
deterministically. For consistency, we further require that
for all states s1, s2 ∈ S and i ∈ Agt, Oi(s1) = Oi(s2) implies
Ni(s1) = Ni(s2).

We treat the set of states S as the states of the environ-
ment rather than as the set of global states, and player i’s
local states are derived from the observation function Oi and
the actions in Acti that i performs. We write ki(s) = {s′ ∈
S | Oi(s′) = Oi(s)} for the set of states that are observation-
ally indistinguishable to player i from state s.

Executions to Runs Let s, s′ ∈ S and a ∈ Act. A path ρ
from a state s is a finite or infinite sequence of states and
actions s0a0s1a1 . . . such that s0 = s and PT (sk, ak, sk+1) > 0
for all k such that k < |ρ| − 1, where |ρ| is the total number
of states on ρ. Given a path ρ, we use s(ρ,m) to denote its
(m + 1)-th state, a(ρ,m) to denote its m-th action, in which
ae(ρ,m) is its m-th environment action and ai(ρ,m) is its m-th
local action of agent i. A fullpath from a state s is an infinite
path from s. A path ρ is initialized if PI(s(ρ, 0)) > 0.

From each initialized fullpath ρ, one may define a run that
corresponds to a run in a PAIS satisfying spr for all players.
Recall that we interpret the states of the PO-PCGS as states
of the environment, and the global actions of the PO-PCGS
as actions of the players as well as the environment. Given an
initialized fullpath ρ, we obtain a run ρspr by defining each
point (ρspr,m) with m ∈ N as follows. The environment state
at time m is se(ρspr,m) = s(ρ,m). The environment action
and local action are ae(ρspr,m) = ae(ρ,m) and ai(ρspr,m) =
ai(ρ,m), respectively. The local state of player i at time m is
si(ρspr,m) = Oi(s(ρ, 0))·ai(ρ, 1)·. . .·Oi(s(ρ,m)), representing
that the player remembers all its observations and past local
actions, according to spr.

Complete Coalition Strategies to Cells A strategy σi of
a player i is a function that maps each finite path ρ =
s0a0s1a1 . . . sn to an action in Ni(sn). A (finite or infinite)
path ρ is compatible with σi if ak(i) = σi(s0a0 . . . sk) for all
k ≤ |ρ| where |ρ| is the number of transitions in ρ. Given
a PO-PCGS M and an i strategy σi, write Path(M, σi) for
the set of infinite paths in M that are compatible with σi.
A strategy σi is uniform if for all paths ρ, ρ′ ∈ Path(M, σi)
and m ∈ N, we have si(ρ,m) = si(ρ′,m) implies ai(ρ,m) =
ai(ρ′,m), i.e., i’s reactions following σi respect its history
observations.

Let A be a set of players. A coalition strategy σA fixes a
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strategy σi for each player i ∈ A. We call σA a complete
coalition strategy if A = Agt, or an incomplete coalition
strategy if A ⊂ Agt. Given a complete coalition strategy
σAgt = {σi | i ∈ Agt}, we define a cell c, and obtain a subset
of runs Rc =

⋂
i∈Agt Path(M, σi). Note the strategies of play-

ers in Agt \ A are not required to be uniform, so that they are
allowed to perform arbitrary behaviors.

We now define a probability space on Rc, using a well-
known construction (e.g., that of (Vardi 1985)). Given a fi-
nite initialized path ρ of m + 1 states and m actions, write
Rc(ρ) = {r ∈ Rc | se(r, 0..m) = se(ρ, 0..m), a(r, 0..m − 1) =
a(ρ, 0..m − 1)} for the set of runs with prefix ρ. (One may
view this as a cone of runs sharing the same prefix ρ.)
Let Fc be the minimal algebra with basis the sets {Rc(ρ) |
ρ prefixes some ρ′ ∈ Rc}, i.e., FR is the set of all sets of in-
finite runs that can be constructed from the basis by using
countable union and complement. We define the measure µc

on the basis sets by µc(Rc(ρ)) = PI(s(ρ, 0))×
∏m−1

i=0 pi where
PT (s(ρ, i), a(ρ, i), s(ρ, i+1)) = pi for all 0 ≤ i ≤ m−1. There
is a unique extension of µc that satisfies the constraints on
probability measures (i.e., countable additivity and univer-
sality), and we also denote this extension by µc. The mea-
surability of µc is guaranteed by the following theorem.

Proposition 2 Each complete coalition strategy σAgt de-
rives a subset of runs Rc ⊆ R, from which a probability
space (Rc, Fc, µc) can be uniquely defined.

Incomplete Coalition Strategies to Equivalence Classes
over Cells Let Ā = Agt \ A be the complement set of play-
ers of A. For each incomplete coalition strategy σA, there
may exist more than one incomplete coalition strategy σĀ.
As a complete coalition strategy σA∪σĀ maps the system R
into a cell, an incomplete coalition strategy σA may map R
into a set of cells, each of which corresponds with an incom-
plete coalition strategy of σĀ of players Ā. The following
theorem ascertains that these cells are strategic equivalent.

Proposition 3 Let σA be an incomplete uniform strategy of
A and σ1

Ā
and σ2

Ā
be two incomplete strategies of Ā. Let c1

and c2 be the cells for complete strategyσA∪σ
1
Ā

andσA∪σ
2
Ā

respectively. Then we have c1 'A c2.

Here we remark that, a single run r ∈ R may belong to
different cells or even different equivalence classes. Also,
there might exist more than one strategy of coalition A that
are mapped to the same equivalence class over cells. Plainly,
such strategies may disagree only on incompatible runs.

PO-PCGS to PAIS The system M gives us an interpreta-
tion π on its states, and we may lift this to an interpretation
on the points (r,m) of R by defining π(r,m) = π(se(r,m)).
Using the construction above, we then obtain the probabilis-
tic interpreted system I(M) = I(R,C, {Pc}c∈C, {'i}i∈Agt, π).
We will be interested in the problem of model checking for-
mulas in this system. A formula φ is said to hold in M, writ-
ten M |= φ, if I(M), (r, 0) |= φ for all r ∈ R. The model
checking problem is then to determine, given a PO-PCGS
M and a formula φ, whether M |= φ.

Figure 1: Example

An Example
Let M = (S , Acti,Ni,Oi, PI, PT, π) be a system of a single
player i, where S = {s0, s1, s2, s3, s4, s5} and Acti = {h, t}.
Player i can distinguish every two states except for s2 and
s3. s4 is the only state in which proposition p holds. PI(s0) =
1 and Ni(s) = {h, t} for all states s. The transition matrix PT
is shown in Figure 1, where states si and s j are connected by
an arrow labeled with (act, pk) if PT (si, act, s j) = pk , 0.

In the following we discuss three strategies σ1, σ2 and
σ3, by discarding incompatible (finite) runs and omitting ir-
relevant choices. The strategies are defined as follows. (1)
σ1(s0) = t; (2) σ2(s0) = h, σ2(s0hs2) = σ2(s0hs3) = t;
(3) σ3(s0) = h, σ3(s0hs2) = σ3(s0hs3) = h. Note that
σ(s0hs2) = σ(s0hs3) for all uniform strategies σ.

Initially, player a does not have a strategy to eventually
reach state s4 in a probability more than 1/2.

M |= ¬〈〈i〉〉>1/2(F p) (2)

The probabilities of satisfying F p by taking the three strate-
gies are 0, 1/3 and 7/18, respectively. However, the player
has a strategy to enforce the formula F p in a probability
more than 1/3 and by following that strategy at the next
state, it has a strategy to reach state s4 in a probability more
than 1/2, as expressed in the following expression.

M |= 〈〈i〉〉≥1/3X〈〈i〉〉≥1/2F p (3)

One may find that the first 〈〈i〉〉 can be enforced by either
σ2 or σ3, and the second is enforced by σ3. To show this,
we show that I(M), (r, 1) |= 〈〈i〉〉≥1/2Xp for all infinite runs
r with se(r, 1) ∈ {s2, s3}. By fixing strategy σ3 that decides
a unique cell c, we have µc

r,1,i({(r
′,m) | (r′,m) ∈ K c

i
(r, 1) ∧

I, (r′,m) |= F p}) = 7/12 ≥ 1/2, where µc
r,1,i assigns 1/4

to the set of all runs r′ such that I(M), (r′, 1) |= F p and
se(r′, 1) = s2, and assigns 1/3 to the set of all runs r′′ such
that I(M), (r′′, 1) |= F p and se(r′′, 1) = s3. Note that given
incomplete information, si(r, 1) = si(r′, 1) = si(r′′, 1) for
all such runs r′ and r′′.

Complexity results on Model Checking PATL∗
In this section, we present several complexity results on
model checking the PATL∗ logic. It is widely-believed that
model checking ATL* with incomplete information and syn-
chronous perfect recall is undecidable (Alur, Henzinger,
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and Kupferman 2002; Bulling, Dix, and Jamroga 2010;
Dima and Tiplea 2011). Straightforwardly, we have the fol-
lowing statement.

Theorem 2 Model checking PATL∗ is undecidable for in-
complete information and synchronous perfect recall seman-
tics.

The next result is somewhat surprising.

Theorem 3 Model checking single-player PATL∗ is unde-
cidable for incomplete information and synchronous perfect
recall semantics.

Single-player PATL∗ is the fragment of PATL∗ which al-
lows only a fixed player to be quantified in a formula. Note
that model checking (non-probabilistic) single-player ATL*
is complete (thus decidable) in EXPTIME for incomplete
information (Alur, Henzinger, and Kupferman 2002). The
undecidability proof of Theorem 3 presented here is by a
reduction from the emptiness problem and strict emptiness
problem of probabilistic automata, both known as undecid-
able problems (Rabin 1963; Paz 1971; Madani, Hanks, and
Condon 2003). Here we follow the notations of Gimbert et
al. (Gimbert and Oualhadj 2010). A probabilistic automaton
PA is a tuple 〈Q, A, (Ma)a∈A, q0,F 〉, where

• Q is a finite set of states and q0 is the initial state,

• F ⊆ Q is a set of accepting states,

• A is the finite input alphabet, and

• (Ma)a∈A is the set of transition matrix.

For each a ∈ A, Ma ∈ [0, 1]Q×Q defines transition probabil-
ities, such that given q, q′ ∈ Q, Ma(q, q′) is the probability
that q makes a transition to q′ when a is the input. For ev-
ery q ∈ Q and a ∈ A, we have

∑
q′∈Q Ma(q, q′) = 1. Plainly,

given a state q, an input a makes a transition to a distribution
on Q, and we further extend Ma to be a transformer from dis-
tributions to distributions. Given ∆ ∈ D(Q), we write Ma(∆)
for the distribution transformed from ∆ by a, such that for
all q′ ∈ Q, Ma(∆)(q′) =

∑
q∈S upp(∆) ∆(q) · Ma(q, q′). Given

w = a1 · a2 · . . . · an ∈ A∗, we write Mw for the function
Man ◦ Man−1 ◦ · · · ◦ Ma1 (we assume function application is
right associative). The following problems are undecidable.

Problem 1 Given a probabilistic automaton PA =
〈Q, A, (Ma)a∈A, q0,F 〉 and λ ∈ [0, 1], decide whether there
exists a word w such that Mw(q0)(F ) ≥ λ. This is known as
the emptiness problem of a probabilistic automaton, where
λ is called a cut-point. Replacing ‘≥’ by a strict inequality
‘>’ yields the strict emptiness problem.

In the following we define a translation F mapping prob-
abilistic automata to single player PO-PCGS. Let PA =
〈Q, A, (Ma)a∈A, q0,F 〉, define M = F(PA) = (Q ∪
{s>, s⊥}, ∅, A,N,O, PI, PT, π) with a singleton set of propo-
sition Prop = {p}, where

• The environment has an empty set of actions,

• The player’s action set is A ∪ {win},

• N(q) = A ∪ {win} for all q ∈ Q ∪ {s>, s⊥},

• O(q) = ⊥ for all q ∈ Q ∪ {s⊥} and O(s>) = >,

• PI(q0) = 1 and PI(q) = 0 for all q ∈ Q ∪ {s>, s⊥} \ {q0},
• PT is extended from (Ma)a∈A as follows

– PT (q, a, q′) = Ma(q, q′) for all q, q′ ∈ Q and a ∈ A,
– If q ∈ F , PT (q,win, s>) = 1 and PT (q, a, q′) = 0 for

all q′ ∈ Q ∪ {s⊥}; otherwise, PT (q,win, s⊥) = 1 and
PT (q, a, q′) = 0 for all q′ ∈ Q ∪ {s>},

– PT (s>, a, s>) = 1 and PT (s>, a, q′) = 0 for all a ∈
A ∪ {win} and q′ ∈ Q ∪ {s⊥}; and PT (s⊥, a, s⊥) = 1 and
PT (s⊥, a, q′) = 0 for all a ∈ A∪{win} and q′ ∈ Q∪{s>}.

• π(q) = ∅ for all q ∈ Q ∪ {s⊥} and π(s>) = {p}.
In the above translation, we have defined two additional
states s> and s⊥. While in a state in Q, the player is allowed
to follow the transition rules as defined in the original proba-
bilistic automaton, or to perform a special action win which
has the following effect. If at the time win is performed, the
system is in an accepting state, it will make a transition to s>
with probability one; otherwise, it will make a transition to
s⊥. Both s> and s⊥ are absorbing states, and the player has
only one chance to perform a guess in each run. The only ob-
servation of the player is to distinguish whether the current
state is s>.

Given a probabilistic automaton PA, we study whether
F(PA) satisfies 〈〈i〉〉≥λtrue U p, where λ ∈ [0, 1] and i is the
single player. Since the player cannot distinguish any states
in Q, his strategy can only be a finite sequence of actions in
A followed by the win action (if he wait for ever he will never
get p either). Such a strategy pattern corresponds to a finite
word in PA. We present such a correspondence as follows.

Lemma 2 Given a probabilistic automaton PA and λ ∈
[0, 1], there exists a word w such that Mw(q0)(F ) ≥ (>)λ
in PA iff 〈〈i〉〉≥(>)λtrue U p in F(PA).

A Decidability Result without Until Operator
Lemma 2 reduces undecidable problems in probabilistic au-
tomata to model checking finite PO-PCGS with a single until
operator. Next we show that we can achieve decidability in
model checking PATL∗

\Uafter dropping the until operator.

Theorem 4 Model checking single-player PATL∗
\U is in 2-

EXPTIME for incomplete information and synchronous per-
fect recall semantics.

Proof: (sketch) We present an algorithm for model check-
ing M |= φ, where M is a finite PO-PCGS and φ is a PATL∗

\U
formula. Let h be the depth of nesting of X in φ and i be
the player. Our algorithm works on a set of initialized paths
of length h, i.e., Rh = {se(r, 0)a(r, 0)...se(r, h) | r ∈ R}. Note
that the set Rh is of size O(|M||φ|) by letting |M| be the num-
ber of states.

The satisfiability of an expression Rh, (r, k), v |= φ is com-
puted recursively as the following procedure, where (r, k) is
a point in Rh and v is a sequence of observations and actions.
Intuitively, this expression states that the formula φ holds in
the point (r, k) of Rh under the observation history v.

• φ = Xφ′. Then Rh, (r, k), v |= φ if Rh, (r, k + 1), v · a(r, k) ·
Oi(se(r, k + 1)) |= φ′

• φ = ¬φ′. Then Rh, (r, k), v |= φ if not Rh, (r, k), v |= φ′
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• φ = 〈〈i〉〉./dφ′. Then Rh, (r, k), v |= φ if we can

– existentially choose an equivalence class [c]'A
C
∈ ['A]C,

in which at least a run r′ with r′
i
(k) = v exists, and then

– universally verify the following expression for all runs
r′ such that r′ ∈ Rc′ , c′ ∈ [c]'A

C
and r′

i
(k) = v

µc′
r′,k,i({(r

′′, k) | r′′i (k) = v ∧ I, (r′′, k) |= φ′}) ./ d

Now, to verify M |= φ is equivalent to universally verify-
ing Rh, (r, 0),Oi(se(r, 0)) |= φ for all r ∈ Rh.

A memory of O(|φ| log |M|) bits is allocated to store the
observation history v. The computation of µc′

r′,k,i by Theo-
rem 1 needs O(|φ|2|M||φ|) bits, in which there is a recursion of
depth O(|φ|) levels and each level needs O(|M||φ||φ| log |M|) =
O(|φ||M||φ|) bits to store a set of points. The whole recursive
procedure needs O(|φ|) alternations. Therefore, the complex-
ity is in AEXPSPACE (that is, it can be solved by an alternat-
ing Turing machine in exponential space), which is equiva-
lent to 2-EXPTIME. �

The decidability result can be generalized to single-group
PATL∗

\U , which allows only a fixed group of players to be
quantified in a formula. Instead of Theorem 1, we need the
recursive relationship between µr,m+1,A and µr,m,A, where A
is a coalition. We have an MTBDD-based symbolic model
checking algorithm for single-group PATL∗

\U . It is omitted
due to space limit.

Application: Land Search
We model the land search problem (Robe and Frost 2002)
by a discrete-time multi-player concurrent game. The map
is represented by a graph in which players may choose to
move to an adjacent node in each step. They may also stay.
Visibility is limited, and is modeled in the way that the prob-
ability for a player to spot other players decreases in longer
distance, simulating effect of inaccurate sensors. A possible
visibility setting could be that if two players i and j are in
the same position (i.e., distance(i, j) = 0), they can see each
other in 100% probability, and if the distance between them
is 1, they spot each other in a probability of 50%, and so on.

Suppose we have two fixed groups of players, one as
searchers and the other as intruders. Once spotted, an in-
truder stays at the same position for the rest of the game.
A state of the game consists of the positions of players and
their visibility relation vis, where vis(i, j) denotes that i spots
j. During each step the positions of the players may change,
and the new visibility relation on previously unspotted in-
truders is recalculated based on the relative distance be-
tween the players following pre-defined probability values,
in which sense the system transitions are probabilistic.

We propose several ways of minimizing resources us-
age in the land search problem by formulating a number of
strategic properties of the group of searchers in PATL∗

\U . In
particular, we aim to determine the minimal time as well as
minimal number of searchers that are required to spot all in-
truders in high probabilities. We introduce an atomic propo-
sition alsp to denote that all intruders have been spotted and
use a constant d ∈ [0, 1] to represent a probability threshold.
Let AP be a set of searchers.

The first specification says that there exists a coalition
strategy for AP such that after n steps, the probability that
all intruders are spotted is no less than d.

〈〈AP〉〉
≥d(Xn alsp) (4)

Fixing AP, if the above formula is satisfied, the following
formula can be used to check if the time bound n is strict.

¬〈〈AP〉〉
≥d(Xn−1 alsp) (5)

Given a fixed time bound, one may repetitively check if
the search force is more than necessary. For example, let
|AP| = |A′P|+1, the next formula tests if the size of the current
search team can be reduced by 1.

¬〈〈A′P〉〉
≥d(Xn alsp) (6)

Related Work
A notably rich literature has been developed since
ATL (Alur, Henzinger, and Kupferman 2002) was proposed.
Here we only give an overview on the works that are closely
related to the topic of the paper.

To reason about incomplete information games, the pa-
per (Hoek and Wooldridge 2002) combines strategy opera-
tor and knowledge operator (Fagin et al. 1995) into a logic
called ATEL. By utilizing the interpreted system semantics,
(Lomuscio and Raimondi 2006) proposes model checking
algorithms for the logic. Both works assume that players
can observe the environment, but are unable to remember
their observation history. The semantics of ATEL is fur-
ther treated in (Schobbens 2004; Jamroga and van der Hoek
2004).

The paper (Bulling and Jamroga 2009) proposes pATL to
reasoning about probabilistic success over complete infor-
mation games. Their work applies a special prediction oper-
ator to settle nondeterminism from opponents in probabilis-
tic systems. A more recent work is (Schnoor 2010) which
combines knowledge operator and strategic operator to en-
rich the expressiveness of ATL. Their approach is different
from ours. Firstly, the semantics used in (Schnoor 2010) is
observational, and we focus on perfect recall semantics. Sec-
ondly, their semantics of the strategic operator is orthogo-
nal to the indistinguishable relation defined for the knowl-
edge operator. That is, when interpreting strategic operators,
such as in M, σA, s |= 〈〈A〉〉≤dφ, an implicit assumption is
made that coalition A apply the strategy σA at the state s.
This is uncommon in systems with incomplete information,
where players may not have enough information to figure
out which particular states they are in.

Several authors have worked on complexities in non-
probabilistic games of incomplete information (Reif 1984;
Peterson, Reif, and Azhar 2002; Chatterjee et al. 2006). Re-
markably, the seminal work of Reif (Reif 1984) acquires
complexities results on solving two-player games with in-
complete information, which is complete in 2-EXPTIME to
the configuration of the game (equivalent to EXPTIME to
the state space of the game). Model checking ATL* is in
general undecidable by (Alur, Henzinger, and Kupferman
2002; Bulling, Dix, and Jamroga 2010), with a decidable
fragment for two-player games (but complete in EXPTIME,
loosely related to the result of (Reif 1984)).
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Conclusion
We have proposed a new probabilistic interpreted system se-
mantics (PAIS) for PATL∗ with incomplete information and
synchronous perfect recall. A probabilistic interpreted sys-
tem can be generated by mapping from a probabilistic con-
current game structure (PO-PCGS). We have also studied
the complexities of model checking PATL∗.
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