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Abstract

As an emerging machine learning and information re-
trieval technique, the matrix completion has been suc-
cessfully applied to solve many scientific applications,
such as collaborative prediction in information retrieval,
video completion in computer vision, etc. The matrix
completion is to recover a low-rank matrix with a frac-
tion of its entries arbitrarily corrupted. Instead of solv-
ing the popularly used trace norm or nuclear norm based
objective, we directly minimize the original formula-
tions of trace norm and rank norm. We propose a novel
Schatten p-Norm optimization framework that unifies
different norm formulations. An efficient algorithm is
derived to solve the new objective and followed by the
rigorous theoretical proof on the convergence. The pre-
vious main solution strategy for this problem requires
computing singular value decompositions - a task that
requires increasingly cost as matrix sizes and rank in-
crease. Our algorithm has closed form solution in each
iteration, hence it converges fast. As a consequence, our
algorithm has the capacity of solving large-scale matrix
completion problems. Empirical studies on the recom-
mendation system data sets demonstrate the promising
performance of our new optimization framework and ef-
ficient algorithm.

Introduction
In many machine learning applications measured data can
be represented as a matrix M ∈ Rn×m, for which only a
relatively small number of entries are observed. The ma-
trix completion problem is to find a matrix with low rank
or low norm based on the observed entries, and has been ac-
tively studied in statistical learning, optimization, and infor-
mation retrieval areas (Candes and Recht 2008; Candes and
Tao 2009; Cai, Candes, and Shen 2008; Rennie and Srebro
2005). Such formulations occurred in many recent machine
learning applications such as recommender system and col-
laborative prediction (Srebro, Rennie, and Jaakkola 2004;
Rennie and Srebro 2005; Abernethy et al. 2009), multi-
task learning (Abernethy et al. 2006; Pong et al. 2010;
Argyriou, Evgeniou, and Pontil 2008), image/video comple-
tion (Liu et al. 2009), and classification with multiple classes
(Amit et al. 2007).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The matrix completion problem of recovering a low-rank
matrix from a subset of its entries is,

min
X∈Rn×m

rank(X), s.t. Xij = Tij ∀ (i, j) ∈ Ω, (1)

where rank(X) denotes the rank of matrix X, and Tij ∈ R
are observed entries from entries set Ω. Directly solve the
problem (1) is difficult as the rank minimization problem
is known as NP-hard. Recently, (M.Fazel 2002) proved the
trace norm function is the convex envelope of the rank func-
tion over the unit ball of matrices, and thus the trace norm is
the best convex approximation of the rank function. More
recently, it has been shown in (Candes and Recht 2008;
Candes and Tao 2009; Recht, Fazel, and Parrilo 2010) that,
under some conditions, the solution of problem in Eq. (1)
can be found by solving the following convex optimization
problem:

min
X∈Rn×m

‖X‖∗ , s.t. Xij = Tij ∀ (i, j) ∈ Ω, (2)

where ‖X‖∗ is the trace norm of X. Several methods (Toh
and Yun 2009; Ji and Ye 2009; Liu, Sun, and Toh 2009;
Ma, Goldfarb, and Chen 2009; Mazumder, Hastie, and Tib-
shirani 2009) recently have been published to solve this kind
of trace norm minimization problem.

In this paper, we propose a new optimization framework
to discover low-rank matrix with Schatten p-norm, which
can be used to solve problems in both Eq. (1) and Eq. (2).
When p = 1, we have the trace norm formulation as Eq. (2);
when p→ 0, the objective becomes Eq. (1). We introduce an
efficient algorithm to solve the Schatten p-norm minimiza-
tion problem with guaranteed convergence. We rigorously
prove the algorithm monotonically decreases the objective
with 0 < p ≤ 2 that covers the range we are interested in.
Empirical studies demonstrate the promising performance of
our optimization framework.

Recover Low-Rank Matrix with Schatten
p-Norm

The Schatten p-Norm Definitions on Matrices
In this paper, all matrices are written as boldface uppercase
and vectors are written as boldface lowercase. For matrix
M, the i-th column, the i-th row and the ij-th entry of M
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are denoted by mi, mi, and Mij , respectively. For vector v,
the i-th entry of v is denoted by vi.

The extended Schatten p-norm (0 < p < ∞) of a matrix
M ∈ Rn×m was defined as

‖M‖Sp
=

min{n,m}∑
i=1

σp
i

 1
p

=
(
Tr((MTM)

p
2 )
) 1

p

, (3)

where σi is the i-th singular value of M. A widely used
Schatten norm is the Schatten 1-norm:

‖M‖S1
=

min{n,m}∑
i=1

σi = Tr((MTM)
1
2 ), (4)

which is also called trace norm or nuclear norm, and is also
denoted by ‖M‖∗ or ‖M‖Σ in literature.

For consistence, the Schatten 0-norm of a matrix M ∈
Rn×m is defined as

‖M‖S0
=

min{n,m}∑
i=1

σ0
i , (5)

where 00 = 0. Under this definition, The Schatten 0-norm
of a matrix M is exactly the rank of M, i.e., ‖M‖S0

=

rank(M).

Low-Rank Matrix Completion Objectives via
Schatten p-Norm
As mentioned before, many practical problems focus on the
recovery of an unknown matrix from a sampling of its en-
tries, which can be formulated as a matrix completion prob-
lem. It is commonly believed that only a few factors con-
tribute to generate the matrix. That is to say, the unknown
matrix is naturally of low rank. Therefore, the matrix com-
pletion problem can be cast as the following rank minimiza-
tion problem:

min
X∈Rn×m

‖X‖S0
s.t. Xij = Tij (i, j) ∈ Ω, (6)

where Tij((i, j) ∈ Ω) are the known data sampled from en-
tries set Ω.

The problem (6) is difficult to solve as the rank mini-
mization problem is known as NP-hard. Recently, (M.Fazel
2002) proved the Schatten 1-norm (trace norm) function is
the convex envelope of the Schatten 0-norm (rank) function
over the unit ball of matrices, and thus the NP-hard problem
(6) can be relaxed to the following convex problem:

min
X∈Rn×m

‖X‖S1
s.t. Xij = Tij (i, j) ∈ Ω. (7)

In this paper, we propose to solve the general Schatten
p-norm minimization problem as follows:

min
X∈Rn×m

‖X‖pSp
s.t. Xij = Tij (i, j) ∈ Ω. (8)

We will derive an efficient algorithm to solve this problem
when 0 < p ≤ 2, and prove the algorithm convergence.
When 0 < p < 1, the problem (8) is a better approximation
to the problem (6) than that of problem (7). More close the

value p to 0, more better approximation the problem to the
low rank problem.

Suppose X ∈ Rn×m(n ≥ m). Using matrix form, prob-
lem (8) can be concisely written as:

min
X∈Rn×m

‖X‖pSp
s.t. X ◦H = M, (9)

where ◦ is the Hadamard product, M ∈ Rn×m, Mij = Tij
for (i, j) ∈ Ω and Mij = 0 for other (i, j), H ∈ Rn×m,
Hij = 1 for (i, j) ∈ Ω and Hij = 0 for other (i, j).

Schatten p-Norm Minimization Algorithm
Following the work in (Nie et al. 2010), we derive the op-
timization algorithm from the Lagrangian function. The La-
grangian function of the problem in Eq. (9) is

L(X,Λ) = Tr(XTX)
p
2 − TrΛT (X ◦H−M). (10)

By taking the derivative of L(X,Λ) w.r.t X, and setting the
derivative to zero, we have:

∂L(X,Λ)

∂X
= 2XD−H ◦Λ = 0, (11)

where D is defined as D = p
2 (XTX)

p−2
2 .

Using Eq. (11), we obtain that:

X =
1

2
(H ◦Λ)D−1. (12)

According to Eq. (12) and the constraint X ◦H = M, we
have ((H ◦Λ)D−1) ◦H = 2M. Then for each i we have∑

k

ΛikHikD
−1
kj Hij = (Λi(HiD−1Hi))j = 2Mij , (13)

where Hi is a diagonal matrix defined as Hi = diag(hi).
Then Eq. (13) becomes Λi(HiD−1Hi) = 2mi. Thus we
have

Λi = 2mi(HiD−1Hi)−1. (14)

Note that D is dependent on X. If D is a known constant
matrix, then each row of Λ can be calculated by Eq. (14),
and then we can obtain the solution X by Eq. (11). Inspired
by this fact, we propose an iterative algorithm to obtain the
solution X. The algorithm is described in Algorithm 1. In
each iteration, X is calculated with the current D, and then
D is updated based on the current calculated X. We will
prove in the next subsection that the proposed iterative algo-
rithm will converge when 0 < p ≤ 2.

Algorithm Analysis
The Algorithm 1 will monotonically decrease the objective
of the problem in Eq. (9) in each iteration. To prove it, we
need the following lemmas:
Lemma 1 (Araki-Lieb-Thirring (Lieb and Thirring
1976; Araki 1990; Audenaert 2008)). For any positive
semi-definite matrices A,B ∈ Rm×m, q > 0, the follow-
ing inequality holds when 0 ≤ r ≤ 1:

Tr(ArBrAr)q ≤ Tr(ABA)rq. (15)

While for r ≥ 1, the inequality is reversed.
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Algorithm 1 An efficient iterative algorithm to solve the op-
timization problem in Eq. (9).

Input: The data Tij are given for (i, j) ∈ Ω.
0 ≤ p ≤ 2.
Output: X ∈ Rn×m.
1. Define M ∈ Rn×m(n ≥ m) where Mij = Tij for
(i, j) ∈ Ω and Mij = 0 for other (i, j).
2. Define H ∈ Rn×m where Hij = 1 for (i, j) ∈ Ω and
Hij = 0 for other (i, j).
3. Set t = 0. Initialize Dt ∈ Rm×m as

Dt = p
2 (MTM)

p−2
2 .

repeat
4. Calculate Xt+1 = 1

2 (H ◦ Λt)D
−1
t , where the i-th

row of Λt is calculated by Λi
t = 2mi(HiD−1

t Hi)−1.
5. Calculate Dt+1 = p

2 (XT
t+1Xt+1)

p−2
2 .

6. t = t+ 1.
until Converges

Lemma 2. For any positive definite matrices A,At ∈
Rm×m, the following inequality holds when 0 < p ≤ 2:

Tr(A
p
2 )− p

2
Tr(AA

p−2
2

t ) ≤ Tr(A
p
2
t )− p

2
Tr(AtA

p−2
2

t ).

Proof. Because A,At are positive definite, A
− 1

2
t AA

− 1
2

t
is positive definite. Suppose the i-th eigenvalues of
A
− 1

2
t AA

− 1
2

t is σi > 0, then the i-th eigenval-

ues of (A
− 1

2
t AA

− 1
2

t )
p
2 is σ

p
2
i , and the i-th eigenvalues

of pA−
1
2

t AA
− 1

2
t − 2(A

− 1
2

t AA
− 1

2
t )

p
2 + (2− p)I is pσi −

2σ
p
2
i + 2− p.
Denote f(σi) = pσi − 2σ

p
2
i + 2− p, then we have

f ′(σi) = p(1− σ
p−2
2

i ), and f ′′(σi) =
p(2− p)

2
σ

p−4
2

i .

Obviously, when σi > 0 and 0 < p ≤ 2, then f ′′(σi) ≥ 0
and σi = 1 is the only point that f ′(σi) = 0. Note that
f(1) = 0, thus when σi > 0 and 0 < p ≤ 2, then f(σi) ≥ 0.

Therefore, pA−
1
2

t AA
− 1

2
t − 2(A

− 1
2

t AA
− 1

2
t )

p
2 + (2− p)I is

positive semi-definite. As a result, we have

Tr
(
A

p
4
t (pA

− 1
2

t AA
− 1

2
t − 2(A

− 1
2

t AA
− 1

2
t )

p
2 +(2− p)I)A

p
4
t

)
≥ 0

⇒ Tr
(
A

p
4
t (pA

− 1
2

t AA
− 1

2
t − 2A

− p
4

t A
p
2 A
− p

4
t +(2− p)I)A

p
4
t

)
≥ 0

⇒ Tr
(
pA

p−2
4

t AA
p−2
4

t − 2A
p
2 + (2− p)A

p
2
t

)
≥ 0

⇒ Tr(A
p
2 )− p

2
Tr(AA

p−2
2

t ) ≤ 2− p
2

Tr(A
p
2
t )

⇒ Tr(A
p
2 )− p

2
Tr(AA

p−2
2

t ) ≤ Tr(A
p
2
t )− p

2
Tr(AtA

p−2
2

t ),

where the second inequality holds according to the first in-
equality and Lemma 1.

Then we have the following theorem:

Theorem 1. When 0 < p ≤ 2, the Algorithm 1 will mono-
tonically decrease the objective of the problem in Eq.(9) in
each iteration till convergence.

Proof. It can be easily verified that Eq. (12) is the solution
to the following problem:

min
X∈Rn×m

Tr(XTXD) s.t. X ◦H = M (16)

Thus in the t iteration,

Xt+1 = arg
X

min
X◦H=M

Tr(XTXDt), (17)

which indicates that

Tr(XT
t+1Xt+1Dt) ≤ Tr(XT

t XtDt). (18)

That is to say,
p

2
Tr(XT

t+1Xt+1(XT
t Xt)

p−2
2 )

≤ p

2
Tr(XT

t Xt(X
T
t Xt)

p−2
2 ). (19)

On the other hand, according to Lemma 2, when 0 < p ≤ 2,
we have

Tr((XTX)
p
2 )− p

2
Tr(XTX(XT

t Xt)
p−2
2 )

≤ Tr((XT
t Xt)

p
2 )− p

2
Tr(XT

t Xt(X
T
t Xt)

p−2
2 ). (20)

Combining Ineq. (19) and Ineq. (20), we arrive at

Tr((XTX)
p
2 ) ≤ Tr((XT

t Xt)
p
2 ). (21)

That is to say,

‖Xt+1‖pSp
≤ ‖Xt‖pSp

. (22)

Thus the Alg. 1 will not increase the objective of the problem
in Eq. (9) in each iteration t. Note that the equalities in the
above equations hold only when the algorithm converges.
Therefore, the Alg. 1 monotonically decreases the objective
value in each iteration till the convergence.

In the convergence, Xt and Dt will satisfy the Eq. (12),
thus the Alg. 1 will converge to the local optimum of the
problem (9). When 1 ≤ p ≤ 2, the problem in Eq. (9) is a
convex problem, satisfying the Eq. (12) indicates that X is a
global optimum solution to the problem (9).

In each iteration, the time complexity isO(nm2). Empiri-
cal results show that the convergence is fast and only several
iterations are needed to converge. Therefore, the proposed
method scales well in practice.

Extensions to Other Formulations
It is worth to point out that the proposed method can be eas-
ily extended to solve the other Schatten p-norm minimiza-
tion problem. For example, considering a general Schatten
p-norm minimization problem as follows:

min
X∈Rn×m

f(X) + ‖X‖pSp
s.t. X ∈ C (23)
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The problem can be solved by solve the following problem
iteratively:

min
X∈Rn×m

f(X) + Tr(XTXD) s.t. X ∈ C (24)

where D is the same diagonal matrix as in Eq. (11). Similar
theoretical analysis can be used to prove that the iterative
method will converge to a local minimum when 0 < p ≤ 2.
If the problem (23) is a convex problem, i.e., 1 ≤ p ≤ 2,
f(X) is a convex function and C is a convex set, then the
iterative method will converge to the global minimum.

A more general Schatten p-norm minimization problem is
as follows:

min
X∈Rn×m

f(X) + ‖G(X)‖pSp
s.t. X ∈ C (25)

where G(X) is a linear function of X, for example,
G(X) = AX + B. This problem can be equivalently writ-
ten as:

min
X,Y

f(X) + ‖Y‖pSp
s.t. X ∈ C,G(X) = Y, (26)

which can be solved by solve the following problem itera-
tively:

min
X,Y

f(X) + Tr(YTYD) s.t. X ∈ C,G(X) = Y,

(27)
where D = p

2 (YTY)
p−2
2 . The convergence to a local mini-

mum is also guaranteed when 0 < p ≤ 2. When 1 ≤ p ≤ 2,
if f(X) is a convex function and C is a convex set, then it
converges to the global minimum.

A Relaxation to Handle Data Noise
In practice, the given data Tij((i, j) ∈ Ω) might contain
noise. To handle this case, a variant method is proposed to
solve the following p-norm minimization problem:

min
X∈Rn×m

∑
(i,j)∈Ω

(Xij − Tij)2 + λ ‖X‖pSp
. (28)

Using matrix form, problem (28) can be concisely written
as:

min
X∈Rn×m

Tr(X ◦H−M)T (X ◦H−M) +λ ‖X‖pSp
(29)

where M and H are defined as before. By setting the deriva-
tive w.r.t X to zero, we have

(X ◦H−M) ◦H + λXD = 0

⇒ X ◦H ◦H−M ◦H + λXD = 0

⇒ X ◦H−M ◦H + λXD = 0

⇒ xiHi + λxiD = mi ◦ hi

⇒ xi = (mi ◦ hi)(Hi + λD)−1, (30)

where D is the same as in Eq. (11) and Hi is a diagonal
matrix with the diagonal entries as hi, i.e. Hi = diag(hi).

Similarly, D is dependent on X, and if D is known, then
we can obtain the solution X by Eq. (30). We propose an it-
erative algorithm to obtain the solution X and the algorithm

Algorithm 2 An efficient iterative algorithm to solve the op-
timization problem in Eq. (29).

Input: The data Tij are given for (i, j) ∈ Ω. 0 ≤ p ≤ 2,
regularization parameter λ.
Output: X ∈ Rn×m.
1. Define M ∈ Rn×m(n ≥ m) where Mij = Tij for
(i, j) ∈ Ω and Mij = 0 for other (i, j).
2. Define H ∈ Rn×m where Hij = 1 for (i, j) ∈ Ω and
Hij = 0 for other (i, j).
3. Set t = 0. Initialize Dt ∈ Rm×m as D =
p
2 (MTM)

p−2
2 .

repeat
4. Calculate Xt+1, where the i-th row of Xt+1 is cal-
culated by xi

t+1 = (mi ◦ hi)(Hi + λDt)
−1.

5. Calculate Dt+1 = p
2 (XT

t+1Xt+1)
p−2
2 .

6. t = t+ 1.
until Converges

is described in Algorithm 2. In each iteration, X is calcu-
lated with the current D, and then D is updated based on the
current calculated X. Note that Eq. (30) is the solution to the
following problem

min
X∈Rn×m

Tr(X ◦H−M)T (X ◦H−M) + λTrXTXD.

It can be similarly proved that the iterative algorithm will
converge when 0 < p ≤ 2.

Related Work
In recent sparse learning research, several approaches have
been proposed to solve the matrix completion problem (Toh
and Yun 2009; Ji and Ye 2009). They tried to solve the trace
norm minimization problem. In our work, we target to solve
a more general Schatten p-norm problem and the trace norm
formulation is a special case when p = 1. When p → 0,
our objective becomes Eq. (1) that is the exactly original
problem, hence our solution is a better approximation of the
true solution of low-rank matrix completion problem.

The main content of this work was finished in the begin-
ning of 2010. Just after it was finished, we found another
recent paper (Argyriou et al. 2007) also solved a Schatten p-
norm problem for multi-task learning. This paper (Argyriou
et al. 2007) solved the regularization problem with the regu-
larizer as the squared Schatten p-norm, i.e.

min
X∈Rn×m

f(X) + (‖X‖pSp
)2. (31)

However, in our work, we directly use the Schatten p-norm
(without square) as loss function or regularizer to solve the
matrix completion problem. These two problems are to-
tally different. Although the algorithms seem similar at first
glance, they are essentially different in optimization deriva-
tions as they solve different problems. The algorithm pro-
posed in (Argyriou et al. 2007) cannot be applied to our
problem. Moreover, we further solve a constrained prob-
lem in this paper. The previous paper (Argyriou et al. 2007)
didn’t provide a proof of the algorithm convergence. In this

658



(a) RR vs. p (b) NMAE vs. p (c) RR vs. p (d) NMAE vs. p

Figure 1: Performance with different p between 0.1 and 1 by solving problem (9)(the first two figures) or problem (29) (the last
two figures).

(a) Jester-1 (b) Jester-2 (c) Jester-3 (d) Jester-all

(e) Jester-1 (f) Jester-2 (g) Jester-3 (h) Jester-all

Figure 2: NMAE vs. different p between 0.1 and 2 by solving problem in Eq. (9) (the first row) or problem Eq. (29) (the second
row) on the Jester data.

paper, we provide a rigorous proof on the algorithm con-
vergency and our approaches can be easily extended to the
much more general Schatten p-norm minimization problem.

Experimental Results
In this section, we present the numerical results for solving
problem (9) and problem (29) with 0 < p ≤ 2, and com-
pare the performance between different values of p. In the
experiments, p is selected between 0.1 and 2 with an inter-
val 0.1. For the problem (29), the regularization parameter λ
is simply set to 1 in the experiments.

Numerical Experiments on Low-Rank Matrix
Recovery Problem
In this experiment, we consider the low-rank matrix recov-
ery problem. A low-rank matrix T ∈ R100×100 is randomly
generated as follows: First, a matrix B ∈ {0, 1}100×20 is
randomly generated. Then let T = BBT . Thus the rank of
T is 20. We randomly sample 5000 entries in T as the en-
tries set Ω, and recover the other 5000 entries in T by solv-
ing problem (9) or problem (29).

We use two metrics to measure the performance of the

recovery. Suppose the i-th singular value of X is σi. One
metric is to measure the rank of recovered matrix X. Due
to the numerical issue, we use the following metric to mea-
sure it instead of calculate the rank of X directly: RR =∑100

i=21 σi/
∑100

i=1 σi. Smaller the value RR indicates lower
the rank of X.

The other metric is to measure the error of recovery. We
use the Normalized Mean Absolute Error (NMAE) as in
(Goldberg et al. 2001). The NMAE is defined as:

1

Tmax − Tmin
· 1

|Γ \ Ω|
·
∑

(i,j)∈Γ\Ω

|Xij − Tij | , (32)

where Tmax = maxij Tij , Tmin = minij Tij , Γ is the entries
set that the ground truth of Tij are known. Smaller the value
NMAE indicates better the recovery of X.

The results are shown in Fig. (1). Interestingly, we can
see from the figures that the rank of the recovered matrix X
monotonically decreases, and the recovery quality simulta-
neously becomes better when p decrease. The results clearly
demonstrate the effectiveness of the recovery algorithm with
Schatten p-norm.
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(a) p = 0.1 (b) p = 0.5 (c) p = 1

(d) p = 0.1 (e) p = 0.5 (f) p = 1

Figure 3: The algorithm convergency results to solve the optimization problem in Eq. (9) (the first three figures) or problem in
Eq. (29) (the last three figures) when p = 0.1, 0.5, 1.

Numerical Experiments on Real Matrix
Completion Problem
In this experiment, we verify the performance on real world
matrix completion problem with Jester joke data set. The
Jester joke data set contains 4.1 million ratings for 100 jokes
from 73421 users The data set consists of three files: Jester-
1, Jester-2 and Jester-3. Jester-1 contains 24983 users who
have rated 36 or more jokes, Jester-2 contains 23500 users
who have rated 36 or more jokes, and Jester-3 contains
24938 users who have rated between 15 and 35 jokes. We
combines all the three data sets and produce a new data set
Jester-all, which contains 73421 users.

For each data set, we only have an incomplete data ma-
trix.Let Γ be the set of entries that the ratings have been pro-
vided by users. In the experiment, we randomly choose half
of entries in Γ to construct the entries set Ω, the NMAE
is used to measure the performance. The results are shown
in Fig. (2). We have consistent conclusion that the recovery
algorithm with Schatten p-norm would further improve the
recovery performance over recent developed recovery algo-
rithm with Schatten 1-norm (i.e., trace norm) when p < 1.

Experiments on Convergency Analysis
When we run the experiments we also record the objective
values after each iteration. Fig. 3 reports the algorithm con-
vergency results to solve the optimization problem in Eq. (9)
or problem in Eq. (29) when p = 0.1, 0.5, 1. In both figures,
we can see that when the value of p decreases, the algo-
rithm convergency speed is also reduced. When p = 1, i.e.
the trace norm problem, our algorithms converge very fast
within ten iterations. Although our algorithm need more it-
erations when p = 0.1, the computational speed is still fast,

because the algorithms have the closed form solution in each
iteration.

Conclusions
In this paper, we studied the approaches of solving a low-
rank factorization model for the matrix completion problem
that recovers a low-rank matrix from a subset of its entries.
A new Schatten p-Norm optimization framework has been
proposed to solve rank norm and trace norm objectives. We
derived an efficient algorithm to minimize Schatten p-Norm
objective and proved that our algorithm monotonically de-
creases the objective till convergence. The time complexity
analysis reveals our method efficiently works for large-scale
matrix completion problems. Experiments on real data sets
validated the performance of our new algorithm.
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