

Table Header Detection and Classification

Jing Fang1,2, Prasenjit Mitra2, Zhi Tang1, C. Lee Giles2
1Institute of Computer Science & Technology, Peking University, Beijing, China

Email:{fangjing, tangzhi}@pku.edu.cn
2 Coll. of Infor. Scien. & Techn., Depar. of Comp. Scien. & Engin., The Pennsylvania State University, University Park, PA, U.S.A. 16803.

Email:{pmitra, giles}@ist.psu.edu

Abstract
In digital libraries, a table, as a specific document
component as well as a condensed way to present structured
and relational data, contains rich information and often the
only source of .that information. In order to explore, retrieve,
and reuse that data, tables should be identified and the data
extracted. Table recognition is an old field of research.
However, due to the diversity of table styles, the results are
still far from satisfactory, and not a single algorithm
performs well on all different types of tables. In this paper,
we randomly take samples from the CiteSeerX to
investigate diverse table styles for automatic table extraction.
We find that table headers are one of the main characteristics
of complex table styles. We identify a set of features that can
be used to segregate headers from tabular data and build a
classifier to detect table headers. Our empirical evaluation
on PDF documents shows that using a Random Forest
classifier achieves an accuracy of 92%.

 Introduction
Digital libraries usually contain a large collection of

digital documents, many of which contain tables. Tables, as
significant document components, store and present
relational data in a condensed way, i.e. experimental results
in scientific documents, statistical data in financial reports,
etc. In short, tables contain rich sources of information that
can be very useful and are only available in the table.
Automatic table extraction is of great importance to
exploring, retrieval and making full use of this data.

Table extraction and indexing have been popular but
open issues still continue, primarily due to the diversity of
table styles. It is not easy for a single algorithm to perform
well on all the different types of tables. A table processing
survey (Lopresti & Nagy 1999) shows 15 examples for
tables and demonstrates how much tables may be different
from each other in actual documents. The document
medium can be plain text, image, handwritten, or web
pages; from the functional or context aspect, financial,

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

schedule, vote tables, etc. can be found. While the majority
of existing methods explore table layout characteristics for
table recognition, what impacts the extraction performance
most is the diversity of table structures. Just like the
previously mentioned table examples, there are tables with
and without headers, nested tables (whose certain cells are
small tables themselves), and even figure-like tables.

A reasonable assumption is that if tables could be
automatically classified into several categories according to
their structure, then targeted algorithms should work. We
observed that table headers are one of the key factors that
determines the structure of tables and determines the
complexity in tables. We define the lines at the top of a
table (header rows) or at the left of the table (header
columns) as the table headers. Table header detection is
also important for other applications. For example, in the
domain of environmental chemistry, previous surveys
published ground water levels at a location inside tables.
Current surveyors want to extract that data from old
documents and compare with current findings. Identifying
the header accurately allows the end-user to query a
database containing that data.

We first delineate what kinds of tables that exist in actual
documents, and what are their structures, header types, etc;
and, importantly, what kinds of tables can and cannot be
easily recognized. Table headers may be complex. For
example, Figure 1 is a table with both row and column
headers; the header has multiple text lines and multiple
levels. As such, we randomly collect samples from
CiteSeerX – a public scientific search engine and digital
library, to investigate table categories and table header
types. Note that, we focus on PDF documents, which are
widely used in today’s digital libraries.

Figure 1. An example of table with complex header

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

599

We then propose and evaluate algorithms that
automatically detect table row headers and column headers.
First, we apply a forwards weighted average score strategy
to calculate similarity between consecutive table
rows/columns and then find the first local minimum top-
down/left-right to be the separation between header and
data. Second, a similar backwards strategy is applied from
the last row/column to the first to find separations.
Additionally, we treat the problem as header and data
binary classification problem, and apply three classifiers—
support vector machine (SVM), logistic regression, and
random forests. In the experiments, we elaborate on feature
selection, analyze parameter impact, and compare the
performance of these three models, as well as with the rule-
based method.

This research is based on an existing table extraction tool,
which is part of the search engine system TableSeer (Liu et
al. 2007). It automatically identifies tables in PDF digital
documents, detects table boundaries (Liu, Mitra, & Giles
2008) and extracts the contents in the table cells (Liu et al.
2006). The contents are then stored in a queryable table in a
database. It also indexes the tables and provides a novel
ranking function to enable end-user table search. However,
existing work on extracting table structure stops after
finding cells, segmenting rows and columns. This work
extends previous work and in many ways explores
automated methods for topological discovery.

Related Work
Previous surveys (Zanibbi, Blostein, & Cordy 2004) and
(Silva, Jorge,& Torgo 2006) summarized approaches for
table recognition, which can be divided into physical and
logical structure analysis. The former refers to segmenting
table cells, rows, and columns, while the latter aims at
finding out about table headers, extraction of header
hierarchy, and analysis of index relations (Hirayama 1995)
- (Seth et al 2010).

For logical structure analysis, (Nagy et al 2010)
presented a grammatical framework for parsing a linear
string representation of column headers of tables in a range
of specified formats for web pages. They focused on
grammar-based header hierarchy extraction using already
known column headers, but didn’t mention how the headers
were detected. Wong (Wong, Martinez, & Cavedon 2009)
classified tabular information for the task of named entity
detection for genetic mutations. HTML documents and
tables were broken up into row headers, column headers
and data cells by making use of the hr tags. Then, a
machine learning method and simple bag-of-word features
were used to extract mutation classes. They focused on the
extraction task rather than the actual detection of
row/column headers. Moreover, the processed dataset is
also an HTML format instead of a PDF format, which is
harder since there is no tag information.

There are numerous methods proposed for table
detection and table structure extraction. However, very few
have addressed table classification or related topics. (Wang

& Hu 2002) classified web tables into genuine tables and
non-genuine tables. The former refers to real tables, while
the latter means those using table tags only to organize and
arrange content. This kind of classification is special for
web tables, where <Table> </Table> tags do not
necessarily mean that there is a table. Kim and Liu
proposed a function-based table categories detection
method (Kim & Liu 2011). They classified scientific
document tables into three topical categories: background,
system/method, and experiments, and two functional
categories: commentary and comparison. This function-
based table classification is beneficial to table interpretation.
But it is not designed for improving table recognition
accuracy.

More importantly, to the best of our knowledge, our
work is the first to detect how frequent different styles of
headers are used in computer and information science
academic documents, which is a topological investigation.

The main contributions of our work are: i) we investigate
document samples in a digital library to identify the
frequency of different styles of headers and categorize them;
ii) we design table header detection methods and compare
their performances empirically to demonstrate their
efficacy.

Dataset
We randomly collect two dataset samples from CiteSeerX

document repository; both contain 200 PDF scientific
documents. TableSeer (Liu et al. 2007) is used to extract
tables from these files. The distribution of the number of
tables in each file (shown in Figure 2) is similar across both
samples. Overall, 76 documents in dataset sample1 and 87
documents in sample2 contain tables. The total numbers of
detected tables are 151 and 130 respectively. Through
manual judgment, we find that some document components
such as algorithms, code and, figures are mistakenly
detected as tables; some tables with image cells are
detected as empty, and some do not contain any text
content due to the errors made by the PDFBOX 1 parse
engine used in TableSeer. These cases are treated as invalid
and are not counted when doing header detection
evaluation. Finally, we get 135 valid tables from the first
sample, and 120 from the second.

Figure 2. Table distribution in two dataset samples

1 http://pdfbox.apache.org/

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f f
ile

Number of tables in a file

Sample1 Sample2

600

We look at table header types and layout complexity.
During this process, only valid tables are counted. If only a
row header or a column header exists, the table is called a
one-dimensional table (1-D); if both headers exist, a two-
dimensional table (2-D). Some tables do not contain either
kind of header. Multi-dimensional tables (M-D) contain
multi-dimensional data flattened into a two-dimensional
form, e.g., in Figure 3 the table contains data related to: i)
different states, ii) different sexes, iii) different age
categories, and iv) different years. The columns represent
different years, but the other three dimensions are flattened
out into the rows.

Figure 3. An example of multi-dimensional table

Figure 4 shows the proportion of different header types
in our samples.

Figure 4. Proportion of different header types

We also classify tables into complex and simple types
based on our observations of table layout characteristics.
The complexity is caused by the following: multi-line cells,
multi-level headers, multi-dimension, long and folded table,
and other irregular cases. Some examples are shown in
Figure 5. Tables without such complexity will be referred
to as simple tables. The sub classes of complex tables are
not mutually exclusive. For instance, Figure 5 (b) shows a
long, folded table with a multi-level header.

(a) Table with multi line cells

(b) Long and folded table with a multi level header

(c) Irregular layout table

Figure 5. Examples of complex tables
Table 1 presents the distributions of complex and simple

tables.
Table 1. Table layout complexity

Layout complexity Sample1 Sample2
Complex 81 (60%) 76 (63.3%)

Multi line cell 42 41
Multi level header 36 33
Multi dimensional 3 9
Long and folded 2 4
Other irregular layout 11 6

Simple 54 (40%) 44 (36.7%)
The data presented in this section demonstrates that,

sample1 and sample2 are similar in document attributes and
different kinds of fractions. This suggests that these two
samples are stable and representative of the digital library.
Otherwise, more samples should be collected to make sure
the samples have no bias.

Heuristic Methods
In this section, we propose two heuristic strategies to detect
the separation between the header and data part of a table.
We use the first row and first column as default headers to
be the baseline method, and compare their performance.

Local Minimum Methods
Table headers are often set in bold or italic fonts or have a
larger font size. Ruling lines and special background color
may also be applied to separate table headers from the data.
In this paper, only text and their coordinate information are
utilized; graphic lines and colors require image processing
techniques and are hence not considered.

Data rows normally share similar data type, cell
alignment, character overlap, number of cells, etc. For a
multi-line header, header rows also share similar font style
and data type. A header row and a data row usually differ
with respect to these features. We apply a weighted average
score to calculate the similarities between each pair of
consecutive rows. Considering that headers usually exist in
the beginning one or a few rows by default and some
irregular data rows layout may also cause low similarity,
we choose the first local minimum, i.e. the first valley to be
the separation. Alternatively, we use a backward local
minimum strategy that chooses the first local minimum
while making an upward pass from the end of the table.

First, we define two cells from consecutive rows as
corresponding cells if their bounding boxes overlap

0

20

40

60

80

1 D 2 D M D None

N
um

be
r o

f t
ab

le

Header type

Sample1
Sample2

601

horizontally. The top row cell is denoted as CT, and the cell
down in the next row is CD. The following attribute scores
are calculated between two corresponding cells:
• Font size score: S1 = minimum font size of CT and CD,

divided by the maximum font size of this cell pair.
• Character number score: S2 = min(Num chars of CT, CD)

/ maximum number of characters of this cell pair.
• Overlap score: S3 = the width of bounding box overlap

(as the arrow range shown below) divided by their
minimum cell bounding box width.

• Data type score: if CT and CD have the same data type

(numeric or alphabetic), set S4 to 1, otherwise to 0.
• Alignment score: if the two cells are found to be aligned

(left, right, or center), S5 is set to be 1, otherwise 0.
Each pair of corresponding cells gets a weighted score

and the rows’ CellScore is the average of the scores of all
its cells as follows:

CellScore = 1
n

u*S1i+v*S2i+w*S3i+x*S4i+y*S5i
u+v+w+x+y

n
i 1

where S1-S5 respectively represent the scores obtained
from the above attributes, and u, v, w, x and y are their
corresponding weights.

We calculate similarity on the row level as follows:
• RowScore: the minimum number of cells divided by the

maximum number of cells among the two rows.
The final score is computed as follows:

FinalScore = α*CellScore+β*RowScore
α+β

Similarly, the same mechanism is applied to table
columns to find the local minimum as the separation
between header columns and data columns. Since columns
do not possess the repetition characteristic as rows, only
data type, font style, font size, and number of cells are
explored.

Results and Analysis
The heuristic methods are executed on dataset sample1 and
sample2 respectively. The results are shown in Figure 6.
Errors can be classified into three types: false positive (the
detected header is not a header), partial (for multi-line
headers, only part of them have been detected), and
expanded (some data are mistakenly detected as header).
We evaluated table boundary detection manually to avoid
table boundary detection errors. The data presented in
Figure 6 are all based on correctly detected tables or
partially detected tables but with complete headers.

In order to improve the accuracy of the header and data
separation task, we cannot rely on a simple single heuristic
as stated above. We propose supervised learning algorithms
in the next section for classifying table content into header
and data classes.

(a) Row header detection results on both samples

(a) Column header detection results on both samples

Figure 6. Heuristic header detection methods evaluation

Machine Learning Techniques
In this section, we first define the feature set for classifying
header and data row/column, and then use a SVM based
classifier and an ensemble classifier, a Random Forest.

Feature Sets
First, we list the features used for table row classification.
We classify our features into two categories: single row
features and neighboring row features.

Single row features
• Number of cells. Typically, data rows have the same

number of cells, while header rows often have missing
cells, especially for multi-level or hierarchical headers,
where one cell in the first row expands into multiple cells
in the next.

• Average cell length. For numeric tables, data rows
usually have shorter average cell length than header rows.
Therefore the cell length could be applied to differentiate
the header and data.

• Number of characters.
• Percentage of numeric characters.
• Percentage of alphabetical characters.
• Percentage of symbolic characters (characters other than

"A" to "Z', "a" to "z', and "0" to "9").
• Percentage of numeric cells. We define a cell containing

only "0" to "9", "." and "%" a numeric cell.
• Average font size. Typically, the header row has a

slightly larger font size.
• Percentage of bold cells.
• Percentage of italic cells. Bold and italic font styles are

often used to highlight table headers.
• Row number. Headers appear before data.

602

Neighboring row features
• Percentage of spanning cells. We define a cell spanning

over multiple cells in the lower row a spanning cell.
• Number of cells difference = fabs (number of cells upper

– number of cells lower) / (number of cells upper +
number of cells lower). Header rows often have missing
cells, similar to the “number of cells” for single rows.

• Average alignment. (left 1, right 2, center 3, other 4).
This is a category feature instead of value feature.

• Average overlap proportion. The average overlaps
proportion of corresponding cells (calculated the same
way as the overlap score described in section4) between
two rows. Data-data rows often have larger value than
header-data rows.

• Percentage of same cell data type. Here data type refers
to alphabetical, digit and symbol.

• Percentage of same cell font style. Here font style refers
to bold and italic. It calculates the proportion of the same
font style between the corresponding cells.

• Overall content repetition of corresponding cells.
• Average content repetition of corresponding cells. As a

pre-processing, we replace all number characters with
“#”, so that numeric strings with the same length are
treated as with equal content. Then the Levenshtein
distance is used to calculate similarity of two cell strings.
The above features are selected for header and data row

classification. In terms of header and data column, some
characteristics change. For instance, the repetition or
consistency property does not apply for neighboring
columns. Hence, features are adjusted as follows: Number
of cells, Number of characters, Percentage of digital
characters, Percentage of alphabetical characters,
Percentage of symbol characters, Percentage of numeric
cells, Average font size, Percentage of bold cells,
Percentage of italic cells, Column number.

Classification Models
In our paper, we use i) an SVM (Burges 1998) based
classifier with the popular RBF kernel, and the popular
“grid-search” and cross validation to find the optimal soft
margin parameter C, ii) a logistic regression (Balakrishnan
1991) based classifier, and iii) a random forest based
classifier (Breiman 2011) to separate the header from the
data.

Experimental Results and Analysis

Data Set
The two dataset samples described in section 3 were
utilized. We show the number of tables (with correct labels
for header and data), number of rows and columns, and
number of header rows and header columns for the dataset
sample1 (D1) and sample2 (D2) in Table 2.

Table 2. Machine learning training set

 Numbers D1 D2
Row Table 94 81
 Row 1382 1108
 Header row 240 195
Column Table 99 90
 Column 758 704
 Header column 139 126

Impact of Learning Models
We use Libsvm2 for SVM, a popular library for support

vector machines. For logistic regression, we use the
statistical computing tool R3, with its generalized linear
regression function. For random forest, we use the Weka
(Witten and Frank, 2005) toolkit, which contains a wide
selection of in-built algorithms. For this experiment, it is
built with 100 trees, and m = int (log2 (20 + 1)) = 4 as
suggested by Breiman.

We use a 10-fold cross-validation method to evaluate our
algorithms. Since both D1 and D2 are random samples
selected from the same set, and share similar number of
tables, rows/columns and headers, we simply combine them
together to do classification. The experimental results of
table row and column type classification are listed in Table
3. The evaluation metrics are precision, recall, and F-
measure. Given the number of the correctly-labeled true
table rows A, the number of true positive header rows B,
and the number of true negative data rows C, the precision
is A

A+C
, the recall is A

A+B
, and the F-measure is 2*precision*recall

precision+recall
.

The metrics also apply to table column type classification
evaluation.

Table 3. Results of header and data row / column
classification on all features and all training set.

Type Learning model Precision Recall F

Row
SVM 0.921 0.918 0.919
Logistic regression 0.843 0.90 0.871
Random forest 0.974 0.978 0.976

Column
SVM 0.861 0.86 0.84
Logistic regression 0.968 0.967 0.967
Random forest 0.982 0.982 0.982

Within the experiments with the same method, the same
training dataset, and the same features, random forest
outperforms the other two classifiers. This is probably
because given an unrefined feature set, random forest is
able to automatically choose the most useful features.
Besides, random forest has bagging mechanism to select
training samples, which could reduce variance and avoid
overfitting. The SVM may probably be affected by the
unbalanced number of header and data cases. The low
performance of logistic regression may be caused by
relative limited size of datasets and also the non-selected
feature set. Note that, we have also tried other classifiers

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
3 http://www.r-project.org/

603

integrated in Weka, such as NiaveBayes, BayesNet, J48
(C4.5 decision tree algorithm), AdaBoost, etc. Overall,
Random Forest still performs the best.

Impact of Feature Set
We use the best performing random forest classifier to
evaluate the impact of different feature sets. For table
header and data row classification, we design three sets of
experiments: i) random forest model using only single row
feature; ii) experiment using only neighboring feature; iii)
add all features together. The results are shown in Table 4.

Table 4. Results of header and data row classification on
different feature set, but all training set

Features Precision Recall F
Single row feature 0.961 0.962 0.961
Neighbor row feature 0.961 0.962 0.961
Together 0.974 0.978 0.976

Then, we use the ‘InfoGain’ attribute evaluator of the
Weka toolkit to choose the most important features. The
results showed that Number of characters, Percentage of
alphabetical characters, Average font size, Average
alignment, Number of cells difference, Percentage of
consistent cell data type, and Percentage of consistent cell
font style are the most effective features.

Impact of Parameters
The random forest classifier has two effective parameters:
the number of trees to grow, and the number of features to
consider when splitting each node. We have set the second
value to be log2(M +1). Figure 7 shows the increase in
accuracy with an increase in the number of trees.
Increasing the number of trees beyond 100 improves the
result very slightly at the cost of a huge increase in run-time.

Figure 7. Impact of number of trees for random forest

learning

Evaluation on Table Level
Our machine-learning-based methods can classify
individual table rows as headers and table columns as
headers with respectively 97% and 98% accuracy. Table
header detection is not only a classification problem, but
also an information extraction problem of determining
where the header ends and the data begins. In section 4, we
addressed heuristic methods and provided their results at
the table level. Here, we evaluated the accuracy of our

machine learning algorithms at the table level by
comparing the predicted and labeled classes per table, and
make a comparison with the proposed heuristic method
which has better results as well as with the baseline method.

Since the random forest (RF) has the best results for
rows and columns, we use its predicted results for table
level accuracy, including the proportions of tables with
completely correct header, partially detected header,
expanded and false positive header. The results are shown
in Table 5. It is interesting to note that, although the column
classification accuracy has fewer errors, these erroneous
columns are distributed over many tables but the erroneous
rows are distributed over fewer tables. Thus, the table-level
accuracy is better for the rows-case.
Table 5. Comparison of learning method, rule-based method

and baseline on table header row and column detection

 Baseline Heuristic RF
Table header row detection
Correct 0.402 0.609 0.920
Partial 0.587 0.25 0.043
Expanded 0 0.13 0.03
Fake 0.011 0.011 0.007
Table header column detection
Correct 0.735 0.598 0.904
Partial 0.24 0.186 0.053
Expanded 0 0.181 0.025
Fake 0.025 0.025 0.018

Conclusion
We investigate the classification of diverse table styles for
effective table header information extraction using random
samples from CiteSeerX. From the analysis of table
categories and their relationship with table header types, we
propose heuristic methods and machine learning techniques
to address the table header detection problem in order to
better classify table categories. Empirically, a Random
Forest classifier outperforms all the other methods.

Future work could focus on header hierarchy extraction
in order to distinguish single-line single-level, multi-line
single-level and multi-line multi-level table headers.
Furthermore, enhanced table header detection could not
only improve table classification and understanding, but
can also improve table search. For instance, given a table,
we could extract the headers and use them as a query
instead of the entire PDF table to search tables with the
same or semantically related headers.

Acknowledgement
We gratefully acknowledge the support of the co-
supervised Ph.D. student scholarship program of the China
Scholarship Council (CSC), the National Basic Research
Program of China (No. 2012CB724108) and the National
Science Foundation under Grant Nos. 0845487.

91
92
93
94
95
96
97

1 5 10 50 100 200 300 400 500

R
ow

 a
cc

ur
ac

y

Number of tree

604

References
Lopresti, D.; and Nagy, G. 1999. A Tabular Survey of Automated
Table Processing. In GREC, 93 120.
Liu, Y.; Bai, K.; Mitra, P.; and Giles, C.L. 2007. TableSeer :
Automatic Table Metadata Extraction and Searching inDigital
Libraries Categories and Subject Descriptors. In JCDL, 91 100.
Liu, Y.; Mitra, P.; and Giles, C.L. 2008. Identifying Table
Boundaries in Digital Documents via Sparse Line Detection. In
CIKM, 1311 1320.
Liu, Y.; Mitra, P.; Giles, C.L.; and Bai, K. 2006. Automatic
Extraction of Table Metadata from PDF Documents. In JCDL, 11
15.
Zanibbi,R.; Blostein, D.; and Cordy, J.R.. 2004. A survey of table
recognition: Models, observations, transformations, and
inferences. In IJDAR, 1 16.
Silva, A.C.e.; Jorge, A.M.; and Torgo, L., 2006. Design of an end
to end method to extract information from tables. In IJDAR, 144
171.
Hirayama, Y. 1995. A method for table structure analysis using
DP matching. In DAR, 583 586.
Kieninger, T.; and Dengel, A. 2001. Applying The T Recs Table
Recognition System To The Business Letter Domain. In ICDAR,
113 120.
Yildiz,B.; Kaiser,K.; and Miksch, S.. 2005. pdf2table: A Method
to Extract Table Information from PDF Files. In IICAI, 1773 1785.
Oro, E.; and Ruffolo, M. 2009. PDF TREX an Approach for
Recognizing and Extracting Tables from PDF Documents. In
ICDAR, 906 910.

Hassan, T.; and Baumgartner, R. 2007. Table Recognition and
Understanding from PDF Files. In ICDAR, 1143 1147.
Hurst, M.; Douglas, S. 1997. Layout and Language: Preliminary
Investigations in Recognizing the Structure of Tables. In ICDAR,
1043 1047.
Seth, S.; Jandhyala, R.; Krishnamoorthy, M.; and Nagy, G. 2010.
Analysis and taxonomy of column header categories for web
tables. In DAS, 81 88.
Nagy, G.; Padmanabhan, R.; Krishnamoorthy, M.; Jandhyala,
R.C.; and Silversmith, W. 2010. Table Metadata Headers,
Augmentations and Aggregates. In DAS, 507 510.
Nagy, G.; Seth, S.; and Jin, D. 2011. Data Extraction from Web
Tables: the Devil is in the Details. In ICDAR, 242 246.
Wong, W.; Martinez, D.; and Cavedon, L. 2009. Extraction of
named entities from tables in gene mutation literature. In BioNLP,
46 54.
Wang, Y.; and Hu, J. 2002. A machine learning based approach
for table detection on the web. In WWW, 242 250.
Kim, S.; and Liu, Y. 2011. Functional Based Table Category
Identification in Digital Library. In ICDAR, 1364 1368.
Burges, CJC. 1998. A tutorial on support vector machines for
pattern recognition. In DMKD, 121 167.
Balakrishnan, N. 1991. Handbook of the Logistic Distribution.
Marcel Dekker, Inc. ISBN 978 0824785871
Breiman, L.. 2011. Random Forests. Machine Learning.
Witten, I.H.; and Frank, E. 2005. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San Francisco,
2nd edition.

605

