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Abstract 
In digital libraries, a table, as a specific document 
component as well as a condensed way to present structured 
and relational data, contains rich information and often the 
only source of .that information.  In order to explore, retrieve, 
and reuse that data, tables should be identified and the data 
extracted. Table recognition is an old field of research. 
However, due to the diversity of table styles, the results are 
still far from satisfactory, and not a single algorithm 
performs well on all different types of tables. In this paper, 
we randomly take samples from the CiteSeerX to 
investigate diverse table styles for automatic table extraction. 
We find that table headers are one of the main characteristics 
of complex table styles. We identify a set of features that can 
be used to segregate headers from tabular data and build a 
classifier to detect table headers. Our empirical evaluation 
on PDF documents shows that using a Random Forest 
classifier achieves an accuracy of 92%. 

 Introduction    
Digital libraries usually contain a large collection of 

digital documents, many of which contain tables. Tables, as 
significant document components, store and present 
relational data in a condensed way, i.e. experimental results 
in scientific documents, statistical data in financial reports, 
etc. In short, tables contain rich sources of information that 
can be very useful and are only available in the table. 
Automatic table extraction is of great importance to 
exploring, retrieval and making full use of this data. 

Table extraction and indexing have been popular but 
open issues still continue, primarily due to the diversity of 
table styles. It is not easy for a single algorithm to perform 
well on all the different types of tables. A table processing 
survey (Lopresti & Nagy 1999) shows 15 examples for 
tables and demonstrates how much tables may be different 
from each other in actual documents. The document 
medium can be plain text, image, handwritten, or web 
pages; from the functional or context aspect, financial, 
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schedule, vote tables, etc. can be found. While the majority 
of existing methods explore table layout characteristics for 
table recognition, what impacts the extraction performance 
most is the diversity of table structures. Just like the 
previously mentioned table examples, there are tables with 
and without headers, nested tables (whose certain cells are 
small tables themselves), and even figure-like tables.  

A reasonable assumption is that if tables could be 
automatically classified into several categories according to 
their structure, then targeted algorithms should work. We 
observed that table headers are one of the key factors that 
determines the structure of tables and determines the 
complexity in tables. We define the lines at the top of a 
table (header rows) or at the left of the table (header 
columns) as the table headers. Table header detection is 
also important for other applications. For example, in the 
domain of environmental chemistry, previous surveys 
published ground water levels at a location inside tables. 
Current surveyors want to extract that data from old 
documents and compare with current findings. Identifying 
the header accurately allows the end-user to query a 
database containing that data. 

We first delineate what kinds of tables that exist in actual 
documents, and what are their structures, header types, etc; 
and, importantly, what kinds of tables can and cannot be 
easily recognized. Table headers may be complex. For 
example, Figure 1 is a table with both row and column 
headers; the header has multiple text lines and multiple 
levels. As such, we randomly collect samples from 
CiteSeerX – a public scientific search engine and digital 
library, to investigate table categories and table header 
types. Note that, we focus on PDF documents, which are 
widely used in today’s digital libraries. 

 
Figure 1. An example of table with complex header 
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We then propose and evaluate algorithms that 
automatically detect table row headers and column headers. 
First, we apply a forwards weighted average score strategy 
to calculate similarity between consecutive table 
rows/columns and then find the first local minimum top-
down/left-right to be the separation between header and 
data. Second, a similar backwards strategy is applied from 
the last row/column to the first to find separations. 
Additionally, we treat the problem as header and data 
binary classification problem, and apply three classifiers—
support vector machine (SVM), logistic regression, and 
random forests. In the experiments, we elaborate on feature 
selection, analyze parameter impact, and compare the 
performance of these three models, as well as with the rule-
based method. 

This research is based on an existing table extraction tool, 
which is part of the search engine system TableSeer (Liu et 
al. 2007). It automatically identifies tables in PDF digital 
documents, detects table boundaries (Liu, Mitra, & Giles 
2008) and extracts the contents in the table cells (Liu et al. 
2006). The contents are then stored in a queryable table in a 
database. It also indexes the tables and provides a novel 
ranking function to enable end-user table search. However, 
existing work on extracting table structure stops after 
finding cells, segmenting rows and columns. This work 
extends previous work and in many ways explores 
automated methods for topological discovery. 

Related Work 
Previous surveys (Zanibbi, Blostein, & Cordy 2004) and 
(Silva, Jorge,& Torgo 2006) summarized approaches for 
table recognition, which can be divided into physical and 
logical structure analysis. The former refers to segmenting 
table cells, rows, and columns, while the latter aims at 
finding out about table headers, extraction of header 
hierarchy, and analysis of index relations  (Hirayama 1995) 
- (Seth et al 2010).  

For logical structure analysis, (Nagy et al 2010) 
presented a grammatical framework for parsing a linear 
string representation of column headers of tables in a range 
of specified formats for web pages. They focused on 
grammar-based header hierarchy extraction using already 
known column headers, but didn’t mention how the headers 
were detected.  Wong (Wong, Martinez, & Cavedon 2009) 
classified tabular information for the task of named entity 
detection for genetic mutations. HTML documents and 
tables were broken up into row headers, column headers 
and data cells by making use of the hr tags. Then, a 
machine learning method and simple bag-of-word features 
were used to extract mutation classes.  They focused on the 
extraction task rather than the actual detection of 
row/column headers. Moreover, the processed dataset is 
also an HTML format instead of a PDF format, which is 
harder since there is no tag information. 

There are numerous methods proposed for table 
detection and table structure extraction. However, very few 
have  addressed table classification or related topics. (Wang 

& Hu 2002) classified web tables into genuine tables and 
non-genuine tables. The former refers to real tables, while 
the latter means those using table tags only to organize and 
arrange content. This kind of classification is special for 
web tables, where <Table> </Table> tags do not 
necessarily mean that there is a table. Kim and Liu 
proposed a function-based table categories detection 
method (Kim & Liu 2011). They classified scientific 
document tables into three topical categories: background, 
system/method, and experiments, and two functional 
categories: commentary and comparison. This function-
based table classification is beneficial to table interpretation. 
But it is not designed for improving table recognition 
accuracy.  

More importantly, to the best of our knowledge, our 
work is the first to detect how frequent different styles of 
headers are used in computer and information science 
academic documents, which is a topological investigation. 

The main contributions of our work are: i) we investigate 
document samples in a digital library to identify the 
frequency of different styles of headers and categorize them; 
ii) we design table header detection methods and compare 
their performances empirically to demonstrate their 
efficacy. 

Dataset  
We randomly collect two dataset samples from CiteSeerX 

document repository; both contain 200 PDF scientific 
documents. TableSeer (Liu et al. 2007) is used to extract 
tables from these files. The distribution of the number of 
tables in each file (shown in Figure 2) is similar across both 
samples. Overall, 76 documents in dataset sample1 and 87 
documents in sample2 contain tables. The total numbers of 
detected tables are 151 and 130 respectively. Through 
manual judgment, we find that some document components 
such as algorithms, code and, figures are mistakenly 
detected as tables; some tables with image cells are 
detected as empty, and some do not contain any text 
content due to the errors made by the PDFBOX 1  parse 
engine used in TableSeer. These cases are treated as invalid 
and are not counted when doing header detection 
evaluation. Finally, we get 135 valid tables from the first 
sample, and 120 from the second. 

 
Figure 2. Table distribution in two dataset samples 

                                                   
1 http://pdfbox.apache.org/  
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We look at table header types and layout complexity. 
During this process, only valid tables are counted. If only a 
row header or a column header exists, the table is called a 
one-dimensional table (1-D); if both headers exist, a two-
dimensional table (2-D). Some tables do not contain either 
kind of header. Multi-dimensional tables (M-D) contain 
multi-dimensional data flattened into a two-dimensional 
form, e.g., in Figure 3 the table contains data related to: i) 
different states, ii) different sexes, iii) different age 
categories, and iv) different years. The columns represent 
different years, but the other three dimensions are flattened 
out into the rows. 

 
Figure 3. An example of multi-dimensional table 

Figure 4 shows the proportion of different header types 
in our samples.  

 
Figure 4. Proportion of different header types 

We also classify tables into complex and simple types 
based on our observations of table layout characteristics. 
The complexity is caused by the following: multi-line cells, 
multi-level headers, multi-dimension, long and folded table, 
and other irregular cases.  Some examples are shown in 
Figure 5. Tables without such complexity will be referred 
to as simple tables. The sub classes of complex tables are 
not mutually exclusive. For instance, Figure 5 (b) shows a 
long, folded table with a multi-level header. 

 
(a) Table with multi line cells 

 
(b) Long and folded table with a multi level header 

 
(c) Irregular layout  table 

Figure 5. Examples of complex tables 
Table 1 presents the distributions of complex and simple 

tables.  
Table 1. Table layout complexity 

Layout complexity Sample1 Sample2 
Complex 81 (60%) 76 (63.3%) 

Multi line cell 42 41 
Multi level header 36 33 
Multi dimensional 3 9 
Long and folded 2 4 
Other irregular layout 11 6 

Simple 54 (40%) 44 (36.7%) 
The data presented in this section demonstrates that, 

sample1 and sample2 are similar in document attributes and 
different kinds of fractions. This suggests that these two 
samples are stable and representative of the digital library. 
Otherwise, more samples should be collected to make sure 
the samples have no bias. 

Heuristic Methods  
In this section, we propose two heuristic strategies to detect 
the separation between the header and data part of a table. 
We use the first row and first column as default headers to 
be the baseline method, and compare their performance. 

Local Minimum Methods 
Table headers are often set in bold or italic fonts or have a 
larger font size. Ruling lines and special background color 
may also be applied to separate table headers from the data. 
In this paper, only text and their coordinate information are 
utilized; graphic lines and colors require image processing 
techniques and are hence not considered.  

Data rows normally share similar data type, cell 
alignment, character overlap, number of cells, etc. For a 
multi-line header, header rows also share similar font style 
and data type.  A header row and a data row usually differ 
with respect to these features. We apply a weighted average 
score to calculate the similarities between each pair of 
consecutive rows. Considering that headers usually exist in 
the beginning one or a few rows by default and some 
irregular data rows layout may also cause low similarity, 
we choose the first local minimum, i.e. the first valley to be 
the separation.  Alternatively, we use a backward local 
minimum strategy that chooses the first local minimum 
while making an upward pass from the end of the table.  

First, we define two cells from consecutive rows as 
corresponding cells if their bounding boxes overlap 
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horizontally. The top row cell is denoted as CT, and the cell 
down in the next row is CD. The following attribute scores 
are calculated between two corresponding cells: 
• Font size score: S1 = minimum font size of CT and CD, 

divided by the maximum font size of this cell pair. 
• Character number score: S2 = min( Num chars of CT, CD) 

/ maximum number of characters of this cell pair. 
• Overlap score: S3 = the width of bounding box overlap 

(as the arrow range shown below) divided by their 
minimum cell bounding box width.  

 
• Data type score: if CT and CD have the same data type 

(numeric or alphabetic), set S4 to 1, otherwise to 0.  
• Alignment score: if the two cells are found to be aligned 

(left, right, or center), S5 is set to be 1, otherwise 0. 
Each pair of corresponding cells gets a weighted score 

and the rows’ CellScore is the average of the scores of all 
its cells as follows: 

CellScore = 1
n

u*S1i+v*S2i+w*S3i+x*S4i+y*S5i
u+v+w+x+y

n
i 1     

where S1-S5 respectively represent the scores obtained 
from the above attributes, and u, v, w, x and y are their 
corresponding weights. 

We calculate similarity on the row level as follows: 
• RowScore: the minimum number of cells divided by the 

maximum number of cells among the two rows.  
The final score is computed as follows: 

FinalScore = α*CellScore+β*RowScore
α+β

          

Similarly, the same mechanism is applied to table 
columns to find the local minimum as the separation 
between header columns and data columns. Since columns 
do not possess the repetition characteristic as rows, only 
data type, font style, font size, and number of cells are 
explored.  

Results and Analysis 
The heuristic methods are executed on dataset sample1 and 
sample2 respectively. The results are shown in Figure 6. 
Errors can be classified into three types: false positive (the 
detected header is not a header), partial (for multi-line 
headers, only part of them have been detected), and 
expanded (some data are mistakenly detected as header). 
We evaluated table boundary detection manually to avoid 
table boundary detection errors. The data presented in 
Figure 6 are all based on correctly detected tables or 
partially detected tables but with complete headers.  

In order to improve the accuracy of the header and data 
separation task, we cannot rely on a simple single heuristic 
as stated above. We propose supervised learning algorithms 
in the next section for classifying table content into header 
and data classes. 

 
(a) Row header detection results on both samples 

 
(a) Column header detection results on both samples  

Figure 6. Heuristic header detection methods evaluation 

Machine Learning Techniques  
In this section, we first define the feature set for classifying 
header and data row/column, and then use a SVM based 
classifier and an ensemble classifier, a Random Forest.   

Feature Sets 
First, we list the features used for table row classification. 
We classify our features into two categories: single row 
features and neighboring row features.   

Single row features 
• Number of cells. Typically, data rows have the same 

number of cells, while header rows often have missing 
cells, especially for multi-level or hierarchical headers, 
where one cell in the first row expands into multiple cells 
in the next. 

• Average cell length. For numeric tables, data rows 
usually have shorter average cell length than header rows. 
Therefore the cell length could be applied to differentiate 
the header and data. 

• Number of characters.  
• Percentage of numeric characters. 
• Percentage of alphabetical characters. 
• Percentage of symbolic characters (characters other than 

"A" to "Z', "a" to "z', and "0" to "9").  
• Percentage of numeric cells. We define a cell containing 

only "0" to "9", "." and "%" a numeric cell.  
• Average font size. Typically, the header row has a 

slightly larger font size. 
• Percentage of bold cells. 
• Percentage of italic cells. Bold and italic font styles are 

often used to highlight table headers. 
• Row number.  Headers appear before data.  

602



Neighboring row features 
• Percentage of spanning cells. We define a cell spanning 

over multiple cells in the lower row a spanning cell. 
• Number of cells difference = fabs (number of cells upper 

– number of cells lower) / (number of cells upper + 
number of cells lower). Header rows often have missing 
cells, similar to the “number of cells” for single rows. 

• Average alignment. (left 1, right 2, center 3, other 4). 
This is a category feature instead of value feature. 

• Average overlap proportion. The average overlaps 
proportion of corresponding cells (calculated the same 
way as the overlap score described in section4) between 
two rows. Data-data rows often have larger value than 
header-data rows. 

• Percentage of same cell data type. Here data type refers 
to alphabetical, digit and symbol.  

• Percentage of same cell font style. Here font style refers 
to bold and italic. It calculates the proportion of the same 
font style between the corresponding cells. 

• Overall content repetition of corresponding cells.  
• Average content repetition of corresponding cells.  As a 

pre-processing, we replace all number characters with 
“#”, so that numeric strings with the same length are 
treated as with equal content. Then the Levenshtein 
distance is used to calculate similarity of two cell strings. 
The above features are selected for header and data row 

classification. In terms of header and data column, some 
characteristics change. For instance, the repetition or 
consistency property does not apply for neighboring 
columns. Hence, features are adjusted as follows: Number 
of cells, Number of characters, Percentage of digital 
characters, Percentage of alphabetical characters, 
Percentage of symbol characters, Percentage of numeric 
cells, Average font size, Percentage of bold cells, 
Percentage of italic cells, Column number. 

Classification Models 
In our paper, we use i) an SVM (Burges 1998) based 
classifier with the popular RBF kernel, and the popular 
“grid-search” and cross validation to find the optimal soft 
margin parameter C, ii) a logistic regression (Balakrishnan 
1991) based classifier, and iii) a random forest based 
classifier (Breiman 2011) to separate the header from the 
data. 

Experimental Results and Analysis 

Data Set 
The two dataset samples described in section 3 were 
utilized. We show the number of tables (with correct labels 
for header and data), number of rows and columns, and 
number of header rows and header columns for the dataset 
sample1 (D1) and sample2 (D2) in Table 2.  
 
 

Table  2. Machine learning training set 

 Numbers D1 D2 
Row  Table 94 81 
 Row 1382 1108 
 Header row 240 195 
Column Table 99 90 
 Column 758 704 
 Header column 139 126 

Impact of Learning Models 
We use Libsvm2 for SVM, a popular library for support 

vector machines. For logistic regression, we use the 
statistical computing tool R3, with its generalized linear 
regression function. For random forest, we use the Weka 
(Witten and Frank, 2005) toolkit, which contains a wide 
selection of in-built algorithms. For this experiment, it is 
built with 100 trees, and m = int (log2 (20 + 1)) = 4 as 
suggested by Breiman. 

We use a 10-fold cross-validation method to evaluate our 
algorithms. Since both D1 and D2 are random samples 
selected from the same set, and share similar number of 
tables, rows/columns and headers, we simply combine them 
together to do classification. The experimental results of 
table row and column type classification are listed in Table 
3. The evaluation metrics are precision, recall, and F-
measure. Given the number of the correctly-labeled true 
table rows A, the number of true positive header rows B, 
and the number of true negative data rows C, the precision 
is A

A+C
, the recall is A

A+B
, and the F-measure is 2*precision*recall

precision+recall
. 

The metrics also apply to table column type classification 
evaluation. 

Table 3.  Results of header and data row / column 
classification on all features and all training set. 

Type Learning model Precision Recall F 

Row 
SVM 0.921 0.918 0.919 
Logistic regression 0.843 0.90 0.871 
Random forest 0.974 0.978 0.976 

Column 
SVM 0.861 0.86 0.84 
Logistic regression 0.968 0.967 0.967 
Random forest 0.982 0.982 0.982 

Within the experiments with the same method, the same 
training dataset, and the same features, random forest 
outperforms the other two classifiers. This is probably 
because given an unrefined feature set, random forest is 
able to automatically choose the most useful features. 
Besides, random forest has bagging mechanism to select 
training samples, which could reduce variance and avoid 
overfitting. The SVM may probably be affected by the 
unbalanced number of header and data cases. The low 
performance of logistic regression may be caused by 
relative limited size of datasets and also the non-selected 
feature set. Note that, we have also tried other classifiers 
                                                   
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 
3 http://www.r-project.org/ 
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integrated in Weka, such as NiaveBayes, BayesNet, J48 
(C4.5 decision tree algorithm), AdaBoost, etc. Overall, 
Random Forest still performs the best. 

Impact of Feature Set 
We use the best performing random forest classifier to 
evaluate the impact of different feature sets. For table 
header and data row classification, we design three sets of 
experiments: i) random forest model using only single row 
feature; ii) experiment using only neighboring feature; iii) 
add all features together.  The results are shown in Table 4.  

Table 4. Results of header and data row classification on 
different feature set, but all training set 

Features  Precision Recall F 
Single row feature 0.961 0.962 0.961 
Neighbor row feature 0.961 0.962 0.961 
Together 0.974 0.978 0.976 

Then, we use the ‘InfoGain’ attribute evaluator of the 
Weka toolkit to choose the most important features. The 
results showed that Number of characters, Percentage of 
alphabetical characters, Average font size, Average 
alignment, Number of cells difference, Percentage of 
consistent cell data type, and Percentage of consistent cell 
font style are the most effective features.  

Impact of Parameters 
The random forest classifier has two effective parameters: 
the number of trees to grow, and the number of features to 
consider when splitting each node. We have set the second 
value to be log2(M +1). Figure 7 shows the increase in 
accuracy with an increase in the number of trees.  
Increasing the number of trees beyond 100 improves the 
result very slightly at the cost of a huge increase in run-time. 

 
Figure 7. Impact of number of trees for random forest 

learning 

Evaluation on Table Level 
Our machine-learning-based methods can classify 
individual table rows as headers and table columns as 
headers with respectively 97% and 98% accuracy. Table 
header detection is not only a classification problem, but 
also an information extraction problem of determining 
where the header ends and the data begins.  In section 4, we 
addressed heuristic methods and provided their results at 
the table level. Here, we evaluated the accuracy of our 

machine learning algorithms at the table level by 
comparing the predicted and labeled classes per table, and 
make a comparison with the proposed heuristic method 
which has better results as well as with the baseline method. 

Since the random forest (RF) has the best results for 
rows and columns, we use its predicted results for table 
level accuracy, including the proportions of tables with 
completely correct header, partially detected header, 
expanded and false positive header. The results are shown 
in Table 5. It is interesting to note that, although the column 
classification accuracy has fewer errors, these erroneous 
columns are distributed over many tables but the erroneous 
rows are distributed over fewer tables. Thus, the table-level 
accuracy is better for the rows-case. 
Table 5. Comparison of learning method, rule-based method 

and baseline on table header row and column detection 

 Baseline Heuristic RF 
Table header row detection 
Correct 0.402 0.609 0.920 
Partial 0.587 0.25 0.043 
Expanded 0 0.13 0.03 
Fake  0.011 0.011 0.007 
Table header column detection 
Correct 0.735 0.598 0.904 
Partial 0.24 0.186 0.053 
Expanded 0 0.181 0.025 
Fake  0.025 0.025 0.018 

Conclusion 
We investigate the classification of diverse table styles for 
effective table header information extraction using random 
samples from CiteSeerX. From the analysis of table 
categories and their relationship with table header types, we 
propose heuristic methods and machine learning techniques 
to address the table header detection problem in order to 
better classify table categories. Empirically, a Random 
Forest classifier outperforms all the other methods. 

Future work could focus on header hierarchy extraction 
in order to distinguish single-line single-level, multi-line 
single-level and multi-line multi-level table headers. 
Furthermore, enhanced table header detection could not 
only improve table classification and understanding, but 
can also improve table search. For instance, given a table, 
we could extract the headers and use them as a query 
instead of the entire PDF table to search tables with the 
same or semantically related headers.  
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