
Improving Hybrid Vehicle Fuel Efficiency
Using Inverse Reinforcement Learning

Adam Vogel
Stanford University
av@cs.stanford.edu

Deepak Ramachandran, Rakesh Gupta, Antoine Raux
Honda Research Institute (USA) Inc.
{dramachandran,rgupta,araux}@hra.com

Abstract

Deciding what mix of engine and battery power to use is crit-
ical to hybrid vehicles’ fuel efficiency. Current solutions con-
sider several factors such as the charge of the battery and how
efficient the engine operates at a given speed. Previous re-
search has shown that by taking into account the future power
requirements of the vehicle, a more efficient balance of en-
gine vs. battery power can be attained. In this paper, we uti-
lize a probabilistic driving route prediction system, trained
using Inverse Reinforcement Learning, to optimize the hy-
brid control policy. Our approach considers routes that the
driver is likely to be taking, computing an optimal mix of en-
gine and battery power. This approach has the potential to in-
crease vehicle power efficiency while not requiring any hard-
ware modification or change in driver behavior. Our method
outperforms a standard hybrid control policy, yielding an av-
erage of 1.22% fuel savings.

1 Introduction
Hybrid Electric Vehicles (HEVs) reduce fuel usage by us-
ing electric storage systems to save part of the energy pro-
duced by the engine and regenerative braking. At any time,
the proportion of electric and fuel energy can be optimized
to improve fuel efficiency. For example, if it is known that
the upcoming driving route has stop and go traffic with red
lights then there will be opportunities to recharge the batter-
ies from regenerative braking and it is advantageous to use
power from the battery. Similarly, if speed is low and the
engine efficiency is better at higher RPM, it may be advan-
tageous to run the engine at higher RPM and save the extra
energy in the battery.

With an estimated 250 million vehicles in the US, typi-
cally driven 12,000 miles/year at an average fuel economy
of 20.3 miles/gallon, 150 billion gallons of fuel is annually
used in the US (Environmental Protection Agency 2005). If
10% of these vehicles, improved fuel efficiency by 1%, 150
million gallons of fuel worth $500 million could be saved
every year.

Current powertrain control solutions in HEVs consider
several factors such as the charge of the battery and how
efficiently the engine operates at a given speed (Paganelli

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2001). These approaches do not take into account fu-
ture power requirements. Recent research has shown that
fuel can be saved if the driving route of the vehicle is
known (Brahma, Guezennec, and Rizzoni 2000; Deguchi et
al. 2004; Johannesson, Asbogard, and Egardt 2007). How-
ever, most of the time the destination of the vehicle is un-
known a priori. To solve this problem, we use past driver
history to predict the future driving route, and use this data
to probabilistically optimize fuel usage. Our system predicts
the future path of the vehicle, computes the optimal power
split between engine and battery and uses it for a short pe-
riod of time, repeating the computation periodically.

We are able to predict the path a driver is taking be-
cause people often repeatedly drive along the same routes.
For example, they commute to work, go to the same gro-
cery stores and take their children to classes regularly every
week. Froehlich et al. (Froehlich and Krumm 2008) found
that in their in their data set of 250 drivers (restricted to those
observed for at least 40 days) nearly 60% of the trips were
duplicated in the data. We thus aim to optimize vehicle en-
ergy consumption by predicting the route that the driver is
likely to take.

For turn prediction, there is related work (Ziebart et al.
2008b; Simmons et al. 2006; Krumm 2008) all of which
make strong assumptions. Ziebart (Ziebart et al. 2008b)
assumes the destination is given and predicts turns, Sim-
mons (Simmons et al. 2006) uses a database that has 95% of
decision points having a single choice, and Krumm (Krumm
2008) requires an intersection to have been visited in the
training data in order to make a prediction. In contrast, we
learn a model that does not assume that the destination is
known, and our model generalizes to unseen data.

We wish to perform energy savings in the background,
without modifying user route or behavior. Requiring the user
to enter the route they will take ahead of time is unrealistic
and increases driver cognitive load. Other past work sug-
gests fuel efficient driving routes to the user. For example,
Ganti et al.(2010) identify fuel efficient routes using a car’s
internal sensors. A notable exception is Kohut et al.(Kohut,
Hedrick, and Borrelli 2009), who use predicted traffic in-
formation to improve the fuel efficiency of a conventional
vehicle.

In the remainder of the paper, we first describe how we
learn models of driver behavior using Inverse Reinforcement

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

384

Learning. We next define our vehicle simulator which we
use to evaluate fuel usage for different control policies. Sec-
tion 4 describes a dynamic programming algorithm for com-
puting the optimal fuel policy given the driver model and ve-
hicle simulator. Lastly, in Section 5 we present experimen-
tal results which show that we successfully learn to predict
driver behavior, and that by utilizing this driver model we
can reduce overall fuel usage.

2 Driver Modeling using Inverse
Reinforcement Learning

In this paper we describe our model of driver behavior
learned using the Maximum Entropy Inverse Reinforcement
Learning approach. The general MaxEnt IRL algorithm was
first presented in (Ziebart et al. 2008a) and an extended ap-
plication to modeling taxicab driver behavior called PRO-
CAB was described in (Ziebart et al. 2008b). Our method
follows the PROCAB system closely.

In PROCAB, the driver’s route choice is modeled as a
Markov Decision process. States sj in the MDP correspond
to road segments in the network. The actions available at a
given state are all the possible turns aj the driver could make
at the intersection at the end of sj .

Each driver is assumed to have an implicit cost function
that expresses his preferences over trip segments and routes.
As usual, we represent this function as a linear combination
of action features faj with a weight vector θ:

cost(aj) = θᵀfaj

Our features faj capture salient aspects of the driving
route, where aj is a transition from road segment sj to sj+1.
These features include
• The identity of the outgoing road segment sj+1. These

features model driver preferences for specific roads.
• The type of road sj+1 is, such as residential, highway, etc.

These model driver preferences like taking the highway
versus a service road.

• The angle of turn between sj and sj+1, discretized into
left, straight, right, and U-turn. Using these features we
can learn that U-turns are uncommon, and that drivers fre-
quently go straight through an intersection.

We conjoin each of these feature with a time of day feature,
which can capture daily routines. For instance, in the morn-
ing drivers are likely heading to work and perhaps in the
afternoon they drive to pick their child up from school.

Given a route ς = (s0, a0, s1, a1, . . . , an−1, sn), let f ς
be the sum of the features for each action along the route:
f ς =

∑
j faj . The driver is assumed to choose a route ς

that minimizes the cost function:

cost(f ς) = θᵀf ς =
∑
aj∈ς

θᵀfaj

Our problem is to recover the parameters of this func-
tion given the demonstrated behavior of the driver in the
form of a collection of trajectories ςi. This problem is known
as Inverse Reinforcement Learning in the RL literature and

has been intensively studied recently (Abbeel and Ng 2004;
Ramachandran and Amir 2007). The key challenge in IRL
is that it is under-constrained: multiple viable cost functions
are possible (in particular uniform zero costs can explain any
action). Additional assumptions or constraints are needed to
choose among the cost functions. In (Ziebart et al. 2008b),
the principle of maximum entropy (Jaynes 1957) is used to
identify a distribution over paths given θ that exhibits no ad-
ditional preferences beyond matching observed behavior:

P (ςi|θ) =
1

Z(θ)
e−θ

ᵀfςi =
1

Z(θ)
e
−

∑
aj∈ςi

θᵀfaj

whereZ(θ) is a normalization factor. This yields a stochastic
policy where the probability of action a is weighted by the
expected exponentiated rewards of all paths that begin with
a:

P (a|θ) ∝
∑

ς:a∈ςi=0

P (ς|θ)

As discussed in (Ziebart et al. 2008a), this approach over-
comes the label bias problem (Lafferty, McCallum, and
Pereira 2001) that affects IRL methods using local action po-
tentials to define the distribution (Neu and Szepesvári 2007;
Ramachandran and Amir 2007).

We now maximize the likelihood of the observed data
max-entropy distribution defined above w.r.t parameters θ,
obtaining:

θ∗ = argmaxθL(θ) = argmaxθ
∑

examples

logP (ς|θ)

For our deterministic MDP, this function is convex and its
maximum can be found using an online exponentiated gra-
dient ascent algorithm. The gradient of the log likelihood
has an elegant representation as the difference between the
empirical feature counts and the model’s expected feature
counts:

∇L(θ) = f̃ −
∑
ς

P (ς|θ)f ς = f̃ −
∑
aj

Dajfaj

where Daj is the expected number of times we take turn-
ing action aj and f̃ are the empirical feature counts. A
straightforward computation of Daj would require enumer-
ating all paths from aj . Instead, we use an efficient forward-
backward dynamic programming algorithm presented in
(Ziebart et al. 2008a) to perform the inference.

3 Driving Simulator
To test our predictive energy optimization strategy, we uti-
lize a standard simulation model of a parallel hybrid electric
vehicle. The model comes in three components. The energy
model calculates how the battery and fuel levels change as a
function of power output. The vehicle dynamics model cal-
culates the forces acting on the vehicle to calculate the power
required to reach a desired acceleration. Lastly, the driver
model computes the desired acceleration from the driver.

385

Figure 1: Hybrid vehicle powertrain.

3.1 Energy Model
In a parallel hybrid powertrain (most common at present e.g.
Honda Insight), the internal combustion engine and battery
are coupled through a differential gear (see Figure 1). The
instantaneous power requirement (determined from velocity
and acceleration) is supplied by the engine and battery:

Preq(t) = Peng(t) + Pbatt(t)

Pbatt < 0 corresponds to the case where the engine is charg-
ing the battery as well as driving the wheels. The evolution
of the battery dynamics can be found by modeling it as a
simple circuit (Figure 2). The variation in the State of Charge
(SOC) x is proportional to current at the battery terminals:

ẋ(t) = − 1

Qnom
I(t)

where I(t) is the current (positive during discharge) and
Qnom is the nominal charge capacitance, measured in joules.
Further,

Pbatt(t) = Voc(x)I(t)−Ro(x)I2(t)

where Voc(x) andRo(x) are the open-circuit voltage and in-
ternal resistance respectively of the battery. Following (Ser-
rao, Onori, and Rizzoni 2011), we set R0(x) = 0.01 ohms,
and

Voc(x) = 1.4x+ 3.18

where x ∈ [0, 1] is the relative charge of the battery and Voc
is measured in volts. Combining these equations, the deriva-
tive of the SOC is:

ẋ(t) = − 1

Qnom

Voc(x) +
√
V 2
oc(x)− 4R0(x)Pbatt(t)

2R0(x)
(1)

We can now solve for x(t) to update the battery state.

x(t+ 1) = x(t) + ẋ(t)

We simulate at a rate of 1Hz and use Euler integration to
track the SOC over time.

3.2 Vehicle Dynamics Model
Four forces act on the car: the powertrain, rolling friction,
air resistance, and gravitational force.

Fcar = Feng − Ffriction − Fair − Fg

Figure 2: The circuit diagram for the battery.

Constant Interpretation Value
m mass of car 1000 kg
A surface area of car front 2 m2

ρ density of air 1.225 kg/m3

cw drag coeff. of wind resistance 0.42
crr coeff. of rolling resistance 0.01

Table 1: The values of physical constants used in our simu-
lation

where

Fcar = ma

Ffriction = crrmg cos(θ)

Fair =
1

2
cwAρv

2

Fg = mg sin(θ)

The interpretation and values of the constants used above
are shown in Table 1. To compute the power required by the
engine, we use the approximation P = F v̄ which gives:

Peng = mav̄ + crrmg cos(θ)v̄ +
1

2
cwAρv̄

3 +mg sin(θ)v̄

To model the fuel consumption as a function of required
power, we assume that the engine speed is operated at the
Optimal Operating Line (OOL). This gives a linear mapping
from required power to fuel consumption, given by

∆fuel = αPeng (2)

Where Peng is measured in kW and fuel consumption is
measured in gallons per second. We use α = 0.1, follow-
ing (Serrao, Onori, and Rizzoni 2011).

3.3 Driver Model
The last component of our vehicle simulator calculates the
desired acceleration of the driver. To generate the driving
cycle from the predicted route of the driver we adapt the
Intelligent Driver Model (IDM) from (Treiber, Hennecke,
and Helbing 2000). The IDM computes car acceleration and
braking by combining the desired velocity of a driver with
the distance to obstacles. Originally developed to model car-
following behavior, we utilize the IDM by treating stop-
signs and lights as cars with zero velocity. Thus typical be-
havior is for a vehicle to accelerate from the beginning of a

386

Figure 3: An overview of our dataset and road network.
Colors more towards blue denote high-velocity routes and
routes which are more red have lower speed.

road segment up to the speed limit and then decelerate as it
approaches the next stopping point.

v̇ = a(1− (
v

v0
)δ)− b v

2

4s2
(3)

where the variables are defined as
• a: maximum acceleration
• v: current velocity
• v0: desired velocity, assumed to be the speed limit
• b: maximum braking deceleration
• s: distance to next stop
• δ: smoothness parameter, set to 4 in (Treiber, Hennecke,

and Helbing 2000).

4 Powertrain Control
Using the probabilistic driver model described in Section 2,
we can find an energy policy using a Markov Decision Pro-
cess for computing an optimal policy combining engine and
battery usage in order to minimize energy consumption.

At a given state si, we are on a road segment ri with bat-
tery SOC xi and fuel level fi. The vehicle simulator reports
the instantaneous power requirement Preq and the power-
train controller must decide how much power comes from
the engine, Peng , and how much from the battery, Pbatt.

Our action space is A = {(Peng, Pbatt) : Peng + Pbatt =
Preq, Peng ≥ 0}. After we choose (Peng, Pbatt), the simu-
lator updates the position of the vehicle, state of charge of
the battery and fuel level, yielding xi+1 and fi+1. Note that
ri, the road segment taken, is chosen by the user and is not
under our policy’s control; it is instead part of the transition
dynamics.

The reward of a state s = (r, x, f), which we denote
R(r, x, f), is the sum of residual fuel energy and battery en-
ergy for a terminal state (when it has reached its destination),
and zero for all other states.

Algorithm 1 A sample option Πα1,α2 . Here α1 controls
the mixture of battery and engine used and α2 controls the
recharging rate of the battery. Pcharging is the maximum
charging power capacity.
Input: Power Required Preq, State of charge xi,
1. If xi > Capacity

(a) Peng = α1 · Preq
(b) Pbatt = (1− α1) · Preq

2. else
(a) Peng = Preq + α2 · Pcharging
(b) Pbatt = −α2 · Pcharging

Algorithm 2 The Powertrain Controller invoked on state si.
The current option Πα1,α2

is a mapping from vehicle state
to a powertrain controller action. This option is recomputed
every TΠ time steps.
Input: Road segment ri, position pi, velocity ṗi, State of
charge xi, Fuel level fi, Option Πα1,α2 , integer OptionCntr
1. Compute desired acceleration p̈i from IDM(ri, pi, ṗi).
2. Compute desired power Preq from p̈i using force model.
3. Apply current option Π(Preq, xi) to get (Peng, Pbatt).
4. Update pi, ṗi and ri from p̈i using the vehicle kinematics

and road network simulator.
5. Update battery charge xi using Equation (1)
6. Update fuel level using Equation (2)
7. OptionCntr + +
8. If OptionCntr > TΠ

(a) Πα1,α2 = FindBestOption(ri,pi, ṗi, xi,fi)
(b) Reset OptionCntr to 0.

Observe that we have not included a cost term for work
done in moving to the destination. Destinations closer to the
origin will have higher value than those further away. How-
ever, since our powertrain controller cannot affect the choice
of destination or the vehicle motion in any way, this cost
will be “marginalized out” of the expected value function
comparison. Thus we do not account for it in our objective
function.

We use our driver model to predict future road segments
ri+1, which impact the future required power. We compute
the probability of the next road segment ri+1 by

P (ri+1|ri) ∝ exp(θᵀf (ri,ri+1))

where θ are the weights learned by our IRL algorithm.
Our goal is to maximize the value function, the expected

sum of rewards for all future states. By Bellman’s equations,
this is given by:

V (ri, xi, fi) = R(ri, xi, fi) +
∑
ri

P (ri+1|ri)V (ri+1, xi+1, fi+1)

(4)
Computation of the value function by dynamic program-
ming is inefficient as this would involve updates for all pos-
sible states. Since we only care about states reachable from
the current initial state, we use a forward search algorithm
with a receding time horizon T , to find an approximately
optimal control for the current state.

387

To find a useful powertrain policy, T must be rather large
(comparable to the length of the trip) which means a naive
search would need large search depth. Instead we use op-
tions (Algorithm 1), which are temporally extended actions,
to reduce the complexity of the search space. We consider
options of the form Πα1,α2

, where α1 is the proportion of
Preq supplied by the engine and α2 controls the rate of
recharging of the batteries. This treats the fuel optimization
problem as a semi-Markov Decision Process (Sutton, Pre-
cup, and Singh 1998). The controller (Algorithm 2) applies
the selected option over multiple time steps, updating it by
forward search (Step 8a, Equation (4)) every TΠ = 20 sec-
onds.

5 Experiments
In this section we describe a GPS driving dataset we col-
lected. We use this dataset to evaluate our turn prediction
model and the powertrain control policy we derive from it.

5.1 Dataset
To build models predicting driver behavior, we had 12
drivers carry a GPS logger in their car for four weeks in the
San Francisco Bay Area, yielding approximately 380,000
GPS readings over 9,000 kilometers of driving. Figure 4
shows some overall statistics for each driver. Drivers took
an average of 144.83 trips, visiting 31.25 unique destina-
tions. Using an 80% training / 20% testing split, an average
of 38.66% of the destinations in the testing data were not
observed in the training data. Figure 3 shows a geographic
overview of our dataset. We utilize the Open Street Map
database (OSM 2012) for road network data, a freely avail-
able road map generated by volunteers.

We first segmented each driver’s data into trips, judging a
trip to end if the vehicle does not move for 5 minutes. This
value was set to avoid false positives at stop lights and in
stop-and-go traffic while capturing most actual trip destina-
tions.

Once we have the GPS data segmented into trips, we
then associate each GPS reading with a road segment us-
ing an HMM, modeled after (Letchner, Krumm, and Horvitz
2006). In this HMM, the observations are GPS readings oi
and the hidden variables are locations on road segments si.
We associate each GPS reading oi with a location on a road
segment si, where P (oi|si) is a normal distribution over
the Euclidean distance from oi to si, with mean zero and
a standard deviation of 15 meters. The transition probabil-
ity P (si|si−1) between road segments is proportional to the
straight-line distance from si−1 to si divided by the on-road
distance between si−1 and si. This gives lower probability
to road locations which are close in space but not close by
the road network, which discourages the model from select-
ing circuitous routes.

5.2 Driver Model
We first present results for how accurate our driver model is.
We evaluate our model for each driver independently, using
the first 80% of the data for training and the remaining 20%
for testing.

The main intrinsic evaluation metric we are interested in
is turn accuracy. Our powertrain control strategy is most de-
pendent on being able to accurately predict the near future.
We compare our IRL driver model with a random baseline,
where the driver takes a random turn at each intersection.

Figure 5 shows turn prediction accuracy for different
drivers in our data. Our model gets an average turn pre-
diction accuracy of 0.65, which is better than the baseline,
which gets 0.39 accuracy. Secondly, we evaluate our driver
prediction model for the next 5 turns. At each road segment
in a driver’s route, we use our two models to predict the
next 5 turns. We use a strict evaluation, where an example is
judged correct only if we get the next 5 turns exactly right.
Here the IRL model significantly outperforms the baseline.

Our turn prediction accuracy is below results reported by
(Ziebart et al. 2008b; Simmons et al. 2006; Krumm 2008)
all of which make strong assumptions to get turn prediction
accuracy above 90%. In (Ziebart et al. 2008b) the destina-
tion is already known, and a single model is learned from
all driver data which makes the turn prediction significantly
simpler. In (Simmons et al. 2006), 95% of the data has a sin-
gle option and only the remaining 5% has multiple options
for the driver to turn (i.e. actual intersections). (Krumm
2008) train their Markov model by computing p(xi|xi−1)
using previous trips that went through the same intersection.
Their model would not work on places not seen in the train-
ing data. They also do leave-one-out testing, which means
they most likely have seen the intersection in the training
data.

5.3 Powertrain Controller
To evaluate our powertrain controller, we used the simulator
described in Section 3 on the driving data we collected. Our
overall evaluation metric is the amount of energy consumed
for a driver’s routes. We do this by measuring the amount
of energy in the fuel used by the driver, minus the energy
remaining in the battery at the end of the trial.

We compare our predictive policy with a baseline pol-
icy, the Charge-Depleting Charge-Sustaining (CDCS) pol-
icy (Sciarretta and Guzzella 2007). Above a given thresh-
old SOC, the CDCS policy operates in charge-depleting
mode, where it uses the battery as much as possible. Af-
ter the battery charge drops below the threshold, the CDCS
policy switches to charge-sustaining mode, where it only
uses the battery to meet power requirements that the en-
gine alone cannot handle. By tuning on the training data,
a charge threshold of 15% was found to be optimal for en-
ergy efficiency, though it should noted that most production
car models set a higher threshold to maximize battery life
(Markel 2011).

We used the option-based powertrain controller (Algo-
rithm 1) with parametrized options as described in Algo-
rithm 2. The optimization searches for the best sequence of
options chosen from a set of 3-5 options over a horizon time
of T = 30 minutes. The duration of each option was 20
seconds.

Figure 5 shows the energy used for the baseline policy
compared with the predictive powertrain policy. Our method
results in savings for all drivers, with the amount of savings

388

Driver Trips Distance (km) Unique % Unseen
Destinations Test Destinations

1 105 6649 35 64%
2 197 10213 35 29%
3 214 1026 27 22%
4 77 7764 27 50%
5 247 6949 51 42%
6 89 17275 30 33%
7 126 7139 41 38%
8 114 9189 17 60%
9 222 10249 42 33%
10 176 8180 26 38%
11 41 3605 14 33%
12 130 2486 30 22%
Mean 144.8 7560.3 31.3 38.7

Figure 4: Dataset statistics for our GPS dataset. Although drivers frequently repeat driving routes, an average of 38.55% of
destinations in the test set are not seen in the training set. We consider two destinations to be the same if they are within 200m
of each other. This threshold accounts for both GPS sensor noise and the fact that drivers often park in different spots for the
same destination.

Driver IRL Turn Baseline Turn IRL Turn Baseline Turn Energy Used Energy Used Energy Savings
Accuracy Accuracy Accuracy @ 5 Accuracy @5 (Policy) (Baseline) (%age)

1 0.73 0.38 0.31 0.02 2797 2822 0.89
2 0.70 0.39 0.32 0.02 5609 5692 1.47
3 0.32 0.25 0.06 0.02 10023 10036 0.13
4 0.81 0.42 0.49 0.02 6479 6631 2.35
5 0.80 0.43 0.39 0.02 417 424 1.68
6 0.68 0.39 0.34 0.02 1655 1671 0.97
7 0.73 0.41 0.29 0.01 6932 7065 1.92
8 0.63 0.42 0.25 0.02 8407 8500 1.11
9 0.45 0.41 0.06 0.02 12891 12944 0.41
10 0.74 0.40 0.34 0.02 753 762 1.20
11 0.80 0.40 0.35 0.02 7240 7407 2.31
12 0.39 0.34 0.03 0.01 4808 4817 0.19
Mean 0.65 0.39 0.27 0.02 5667 5730 1.22%

Figure 5: This table shows the performance of our driver model and the % of energy saved by using our powertrain controller
compared to the baseline Charge-Depleting Charge-Sustaining (CDCS) policy. The IRL driver model for turn prediction out-
performs the baseline. Energy is measured in megajoules. The quality of the driver model is critical to the fuel savings. We find
a strong correlation between turn prediction accuracy and fuel savings, with a Spearman rank-order correlation coefficient of
.8819 (p-value 1.48e-4).

389

being dependent on the particular routes they took and the
accuracy of the turn prediction. Averaged across all drivers,
our method saves 1.22% on overall energy usage. Though
relatively small, these energy savings present the advantage
of not requiring any change in behavior from the driver and
no hardware modifications to the drive train. A Wilcoxon
signed-rank test shows that our method outperforms the
baseline with p-value 0.0031. Furthermore, we find a strong
correlation between turn prediction accuracy and fuel sav-
ings, with a Spearman rank-order correlation coefficient of
0.8819 (p-value 1.48e-4).

6 Conclusion
In this paper we demonstrated that we can improve the en-
ergy efficiency of hybrid electric vehicles by utilizing pre-
dictive models of future driving requirements. Although the
fuel savings from our model are modest, our method does
not require any change in user behavior. Given the environ-
mental and economic costs associated with fossil fuel power,
any possible energy saving strategy is worth exploring.

The main challenge going forward is testing our approach
in a real-world vehicle. Implementing our powertrain pol-
icy in a vehicle computer would required dealing with strict
memory constraints and realtime computing demands. In-
stead of explicitly exploring the future state space, we could
perhaps generate simpler policies which approximate our
powertrain controller.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
ICML ’04. New York, NY, USA: ACM.
Brahma, A.; Guezennec, Y.; and Rizzoni, G. 2000. Opti-
mal energy management in series hybrid electric vehicles.
Proceedings of the American Control Conference 1:60–64.
Deguchi, Y.; Kuroda, K.; Shouji, M.; and Kawabe, T. 2004.
HEV charge/discharge control system based on navigation
information. International Congress and Exposition On
Transportation Electronics 1.
Environmental Protection Agency. 2005.
Epa emission facts: Calculating emissions
of greenhouse gases: Key facts and figures.
http://nepis.epa.gov/Adobe/PDF/P1001YTV.PDF.
Froehlich, J., and Krumm, J. 2008. Route prediction from
trip observations. In Proceedings of SAE World Congress.
Ganti, R. K.; Pham, N.; Ahmadi, H.; Nangia, S.; and Ab-
delzaher, T. F. 2010. Green GPS : A participatory sensing
fuel-efficient maps application. In Proceedings of the 8th in-
ternational conference on Mobile systems, applications, and
services (MobiSys).
Jaynes, E. T. 1957. Information theory and statistical me-
chanics. Phys. Rev. 106(4):620–630.
Johannesson, L.; Asbogard, M.; and Egardt, B. 2007. As-
sessing the potential of predictive control for hybrid vehicle
powertrains using stochastic dynamic programming. IEEE

Transactions on Intelligent Transportation Systems 8(1):71–
83.
Kohut, N.; Hedrick, K.; and Borrelli, F. 2009. Integrat-
ing traffic data and model predictive control to improve fuel
economy. In 12th IFAC Symposium on Control in Trans-
portation Systems.
Krumm, J. 2008. A markov model for driver turn prediction.
In Proceedings of SAE World Congress, volume 2193.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML).
Letchner, J.; Krumm, J.; and Horvitz, E. 2006. Trip router
with individualized preferences (TRIP): Incorporating per-
sonalization into route planning. In AAAI. AAAI Press.
Markel, T. 2011. Plug-In Hev Vehicle Design Options and
Expectations: Zev Technology Symposium, California Air
Resources Board, Sacramento, CA, September 27.
Neu, G., and Szepesvári, C. 2007. Apprenticeship learning
using inverse reinforcement learning and gradient methods.
In Parr, R., and van der Gaag, L. C., eds., UAI, 295–302.
AUAI Press.
OSM. 2012. Open street map project. http://www.
openstreetmap.org/.
Paganelli, G.; Ercole, G.; Brahma, A.; Guezennec, Y.; and
Rizzoni, G. 2001. General supervisory control policy for
the energy optimization of charge-sustaining hybrid electric
vehicles. JSAE Review 22(4):511–518.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse re-
inforcement learning. In Twentieth International Joint Con-
ference on Artificial Intelligence (IJCAI).
Sciarretta, A., and Guzzella, L. 2007. Control of hybrid
electric vehicles. Control Systems, IEEE 60–70.
Serrao, L.; Onori, S.; and Rizzoni, G. 2011. A comparative
analysis of energy management strategies for hybrid electric
vehicles. Journal of Dynamic Systems, Measurement, and
Control 133(3):031012.
Simmons, R.; Browning, B.; Zhang, Y.; and Sadekar, V.
2006. Learning to predict driver route and destination intent.
In Proceedings of IEEE Intelligent Transportation Systems
Conference (ITSC).
Sutton, R. S.; Precup, D.; and Singh, S. 1998. Between
mdps and semi-mdps: Learning, planning, and representing
knowledge at multiple temporal scales.
Treiber, M.; Hennecke, A.; and Helbing, D. 2000. Con-
gested traffic states in empirical observations and micro-
scopic simulations. Physical Review E 62:1805.
Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008a. Maximum entropy inverse reinforcement learning.
In Proceedings of AAAI Conference.
Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008b. Navigate like a cabbie: Probabilistic reasoning from
observed context-aware behavior. In Proc. Ubicomp, 322–
331.

390

