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Abstract

Virtual Power Plants (VPPs) are fast emerging as a suitable
means of integrating small and distributed energy resources
(DERs), like wind and solar, into the electricity supply net-
work (Grid). VPPs are formed via the aggregation of a large
number of such DERs, so that they exhibit the characteristics
of a traditional generator in terms of predictability and robust-
ness. In this work, we promote the formation of such “cooper-
ative” VPPs (CVPPs) using multi-agent technology. In partic-
ular, we design a payment mechanism that encourages DERs
to join CVPPs with large overall production. Our method is
based on strictly proper scoring rules and incentivises the pro-
vision of accurate predictions from the CVPPs—and in turn,
the member DERs—which aids in the planning of the supply
schedule at the Grid. We empirically evaluate our approach
using the real-world setting of 16 commercial wind farms in
the UK. We show that our mechanism incentivises real DERs
to form CVPPs, and outperforms the current state of the art
payment mechanism developed for this problem.

1 Introduction
In recent years, a number of strands in intelligent and multi-
agent systems research have taken up the challenge of creat-
ing smart and robust electricity supply networks, which can
make efficient use of all available energy resources, thereby
reducing dependence on carbon-intensive conventional gen-
erators (Ramchurn et al. (2012), Dimeas et al. (2007), Kok et
al. (2009), Gerding et al. (2011)). While environmental con-
cerns are becoming increasingly important, the overriding
concern of national electricity transmission network opera-
tors (termed the Grid herein) remains the reliability of sup-
ply. In particular, the Grid is responsible for ensuring that
energy demand is met without interruptions, by dispatching
power plants to produce and supply energy whenever it is
needed.

Although reliability is easily addressed when energy is
produced solely by conventional power plants (which can
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usually adjust their power output at short notice), the prob-
lem becomes pressing when plants utilizing renewable en-
ergy sources are involved. In the last decade, distributed en-
ergy resources (DERs)—essentially small to medium capac-
ity (2kW-2MW) renewable energy generators—have begun
to appear in greater numbers in the network. Though their
deployment could in principle reduce reliance on conven-
tional power plants significantly (Pudjianto, Ramsay, and
Strbac 2007), their integration into the Grid is problematic
since the DERs, given their small size, are largely “invisi-
ble” to the Grid. This means they cannot readily be taken
into account while planning production schedules, even if
their total energy production represents a significant amount.
Even if visible, the uncertainty and uncontrollability of re-
newable energy sources inhibits individual DERs from prof-
itably dealing with the Grid directly, or participating in the
wholesale electricity market because they are often unable
to meet the set generation targets. Nevertheless, the need to
incorporate renewable energy resources in the existing Grid
is a pressing one.

The remedy adopted by many countries is to encourage
small-scale renewable energy producers with payments ac-
cording to specific feed-in tariffs, typically set at signifi-
cantly higher levels than market prices (an approach adopted
in many EU countries, among others). However, with DER
numbers projected to be in the range of hundreds of thou-
sands in a single country, the use of feed-in tariffs is increas-
ingly seen as an unsustainable long-term policy.

If individual DERs could be aggregated together to form
larger energy generating entities, such entities would then
have the opportunity to become economically sustainable by
overcoming the invisibility and unreliability problems iden-
tified above. This has led several researchers to propose the
creation of Virtual Power Plants (VPPs), which consist of
large numbers of DERs, and thus have the potential to be
viewed as the virtual equivalents of conventional power sta-
tions (Dimeas et al. (2007),Kok et al. (2009),Pudjianto et
al. (2007)). Recently, Chalkiadakis et al. (2011) proposed a
pricing mechanism that can be used by the Grid to promote
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the creation of cooperatives of DERs, and constitutes an al-
ternative to feed-in tariffs. In that work, the term coopera-
tive VPP (CVPP) reflects the fact that economically rational
agents, representing the individual DERs, are incentivised
to work together in their mutual interest. However, a critical
limitation of that approach is that a CVPP only presents the
Grid with point (mean) estimates of its production.

Unfortunately, single point estimates do not provide any
indication of how uncertain these estimates may be and tak-
ing them at face value runs the risk that predictions can be
widely off. An alternative that is more useful to the Grid is
that production estimates are provided in the form of proba-
bility distributions, specifying the confidence individual en-
tities place in their estimates. This additional information
enables the Grid to optimise the scheduling of all available
generators; since it would now be aware of the probability
of renewables not meeting the targets, necessitating the dis-
patch of conventional generators. Depending on the confi-
dence placed on the estimates, the Grid is able to choose the
appropriate number of conventional generators needed on
standby. Naturally, the more accurate the provided estimates,
and the higher the confidence placed in those estimates, the
better for the Grid scheduling activities. In contrast, if in-
formation is provided only in the form of single point esti-
mates, and these estimates prove to be erroneous, the Grid
would be forced to either dispatch conventional generators
at short notice, or purchase the required energy in the bal-
ancing market at the last minute—both of which come at a
high cost (Kirschen and Strbac 2004).

Scoring rules with specific properties, have long been
used to design payment mechanisms that incentivise agents
to report private probabilistic predictions truthfully and to
the best of their forecasting abilities (Savage 1971; Gneit-
ing and Raftery 2007; Papakonstantinou et al. 2011). More
specifically, scoring rules that are strictly proper can be em-
ployed by a mechanism designer to ascertain that agents ac-
curately declare their privately calculated distributions, re-
flecting their confidence in their own forecast. Without such
a mechanism in place, agents may either lie about their es-
timates to secure higher returns or not bother to provide
the most accurate estimates. To counter such trends, strictly
proper scoring rules are used here to guarantee the incentive
compatibility of their estimates. This means that, for agents
participating in such a mechanism, the best strategy is to de-
clare truthfully the distributions reflecting the uncertainty in
their predictions. Any other strategy only results in lower
returns. Additionally, it incentivises them to provide as ac-
curate estimates as possible.

Taking inspiration from this, we provide the first appli-
cation of a scoring rules-based mechanism in the renew-
able energy domain. Specifically, we put forward a payment
mechanism that uses a strictly proper scoring rule to incen-
tivise CVPPs, and in turn, DERs to provide the Grid with
their true expected production and the true estimated proba-
bility distribution representing their confidence. The mecha-
nism guarantees that DERs are rewarded for providing esti-
mates that are both accurate and have a high confidence (en-
suring that agents are given credit for high probability esti-
mates that are close to the realised ones). Another important

contribution of this paper lies in the experimental analysis of
the proposed mechanism. We base our experimental setting
on 16 real-world wind farms, that are distributed around the
UK. For these farms, we collect a 3-month dataset of both
wind speed predictions and actual wind speeds, for each half
hourly settlement period. We used these in conjunction with
a model of the characteristics of the wind turbines employed
in order to create both predictions and measurements of the
production at these sites. Thus, our experimental conclu-
sions are based on real data.

The rest of this paper is organised as follows. Section 2
presents the formal model of our setting and the role of
CVPPs. Section 3 discusses scoring rules and their proper-
ties, and presents our payment mechanism. Section 4 details
our experimental study and Section 5 concludes.

2 Energy Cooperatives and the Grid
We consider a setting where several independent, distributed
energy producers (DERs) that can sell their energy directly
to the Grid or opt to join an agent cooperative (CVPP). The
main CVPP function is to represent its DER members in in-
teracting with the Grid; the CVPP can provide the aggre-
gate estimate of the members’ production, receive the cor-
responding payment, and distributes it amongst members in
some fair manner. The model also assumes that the day is
divided into settlement periods corresponding to electricity
trading intervals (in most countries, 48 half-hour slots).

Formally, for any time period t, each DER i produces a
certain amount of energy prodi,t ∈ R+ (in kWh). It can also
estimate in advance an expected production value p̃rodi,t ∈
R+. The way a DER obtains this estimate (and its accu-
racy) depends on the type of generation capacity it has at
its disposal. For instance, for DERs composed of (one or
more) wind turbines - such as the ones considered in this pa-
per’s analysis - estimate their production p̃rodi,t based on an
hourly wind prediction obtained for their area from the UK
meteorological office (as described in detail in Section 4).

For each of the past settlement periods for which it has
historical data (over some time horizon T ), each DER can
compute a relative prediction error as:

ei,t =
prodi,t − p̃rodi,t

p̃rodi,t

,∀t ∈ T (1)

Note that in Equation 1 the normalisation (given by the de-
nominator) is done with respect to p̃rodi,t . This is because,
from the perspective of the DER, it is the actual production
prodi,t which is the random variable to be predicted (un-
known in advance), while p̃rodi,t is the average prediction
for this variable.

In practice, there may be wide variances, because some
DERs may be able to better estimate their future produc-
tion than others. For example, DERs that use tidal energy
are much more predictable than those that use wind. Even
among wind-based DERs, there may be substantial differ-
ences in prediction, because wind in some areas may be eas-
ier to predict than in others (or, simply, it may be that the me-
teorological office provides more accurate and timely pre-
dictions for some areas). However, if each DER takes care
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to account for these errors, over a large enough period of
time, the long-term average error will be around 0.

Formally, using a typical statistical model of random er-
rors, for any DER i we capture its uncertainty over the er-
rors it expects to make in its prediction through a normal
distribution N (µ = 0,σ2

i ).
1 The standard deviation of this

distribution σi then reflects how confident a DER is in the
predictions it makes. Note these are standard deviations of
the relative errors (as defined in Equation 1), the absolute
standard deviation (in Kwh) at time t being σi ∗ p̃rodi,t .

Each DER determines its confidence in its prediction σ2
i

at different times, using its own private information. For ex-
ample, it can collect and use historical data of its past pre-
diction errors ei,t , and compute the statistical variance over
these (for instance in case of wind turbines, this data is based
on wind speeds and their predictions). But, more generally,
it can also take into account other factors that are private in-
formation to the DER, and not known to the Grid or other
parties. The challenge we address is designing a mechanism
that elicits the uncertainty over these estimates truthfully.

Following the notation for individual DER production,
the actual and estimated production of a cooperative C at
t are denoted by prodC,t and p̃rodC,t respectively. Now, if
we denote by I the set of the participating members of the
CVPP, the total CVPP production at t can be computed as
the sum total of its members’ production—i.e., prodC,t =
∑i∈I prodi,t . Further, the estimate of the CVPPs production
at time t is the sum of the estimates of the individual DERs
participating at time t, i.e. p̃rodC,t = ∑i∈I p̃rodi,t .

The joint relative error in prediction of the CVPP is then:

σ
2
C,t =

∑i∈I

(
p̃rodi,t ∗σi

)2

(
∑i∈I p̃rodi,t

)2 (2)

Recall that σC,t values are defined for the relative (or propor-
tional) errors. So, Eq. 2 is obtained from the standard sta-
tistical formula relating the absolute variances of a sum of
Gaussian distributions: (p̃rodC,tσC,t)

2 = ∑i∈I(p̃rodi,tσi,t)
2,

using p̃rodC,t = ∑i∈I p̃rodi,t .

3 The Payment Mechanism
In order to reward agents for accurate reports of their un-
certainty, we design a payment mechanism which employs
scoring rules. A scoring rule is a real-valued function
S(P̂,x), specifying the reward that a forecaster agent i should
receive if it reports a predicted distribution P̂ over the prob-
ability of some future event, and the event x occurs (in our
case, x ∈ R).

Scoring rules with certain properties can be of significant
value to a mechanism designer. In particular, strict propri-
ety is one such important property. A scoring rule S(P̂,x) is
strictly proper if it is such that agent i has the incentive to de-
clare only his true belief P, as this is the only prediction that

1This does not mean, of course, that we assume the actual power
outputs at different times are normally distributed, just that random
relative errors, over a long enough time range, will be normally
distributed around a mean of 0.

maximises its expected reward. Formally, if P is the true un-
derlying distribution of the random variable x, scoring rule S
is strictly proper if S(P,x)≥ S(P̂,x), with the equality hold-
ing if and only if P̂ = P. The scoring rule is said to be proper
if S(P,x) ≥ S(P̂,x), but the the prediction P̂ = P is not the
only one that maximises S(P̂,x). In our case, the use of a
strictly proper scoring rule would mean that energy suppli-
ers can expect to maximize their payments if and only if they
accurately report their expectation over the prediction error
they can potentially make.

3.1 Continuous Ranked Probability Score
The traditional forms of proper and strictly proper scoring
rules that appear in the literature (Savage 1971) do not sat-
isfy our current requirements because most were not de-
signed to work for continuous variables (like the Gaussian
distribution in our case). Also, some of them are not sensi-
tive to distance—i.e., no credit is given to agents for pre-
dictions assigning high probabilities to values that are close,
but not identical, to the realised value. This is a necessary
requirement for us because being far off the predicted pro-
duction amount is much more detrimental than being only
slightly off. However, these characteristics are possessed by
the Continuous Ranked Probability Score (CRPS) (Mathe-
son and Winkler 1976), which is a strictly proper scoring
rule used for continuous variables. It has lately attracted re-
newed interest in the scoring rules literature, and has been
used extensively to help qualify weather predictions (Hers-
bach 2000). This is the scoring rule that forms the basis of
our payment mechanism. Since, as we showed in Section
2, the relative errors in predictions made by a DER i over
the long term can be approximated by a Gaussian distribu-
tion centered at 0, we can use the CRPS form put forward
by Gneiting and Raftery (2007) as follows. Consider a DER
i (where i can also be the CVPP C itself), which reports an
uncertainty over its relative prediction error of N (0,σ2

i ). Let
the actual relative error observed at time t be denoted by
ei,t (as defined in Eq. 1). Then, the CRPS score obtained by
DER i at time t is:

CRPS(N (µ = 0,σ2
i ),ei,t) =

= σi

[
1√
π
−2ϕ

(
ei,t

σi

)
−

ei,t

σi

(
2Φ

(
ei,t

σi

)
−1
)] (3)

where ϕ and Φ denote the probability density and the cumu-
lative distribution function of a standard Gaussian variable,
respectively. Since µ = 0, the only report affecting the CRPS
value is σ2

i and ei,t . Therefore, we can simplify the notation
of CRPS(N (0,σ2

i ),ei,t) to CRPS(σi,ei,t). Interested read-
ers can consult (Gneiting and Raftery 2007) for the proof of
strict propriety and the intuition behind this function form.

3.2 Payment Mechanism from the Grid to CVPP
We now present our payment mechanism. We first define
the “Grid-to-CVPP” pricing function providing payments
for the energy supplied by a CVPP to the Grid (or, in fact,
by any DER i that chooses to sell directly to the Grid). We
then present the “CVPP-to-DER” pricing function, which is
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used by the CVPP to distribute the received payments in-
ternally among its members. First, we denote the electricity
base price per kWh produced by πB. This can be either un-
der the direct control of the Grid, or determined directly by
the electricity market. Recall that, for each settlement period
t, each producer C supplies to the Grid an estimate of the en-
ergy it is going to produce p̃rodC,t , as well as the relative av-
erage prediction error σC, that encodes how (un)certain the
producer is on the accuracy of its predictions. The Grid will
also observe the actual amount of energy prodC,t which is
produced by C in settlement period t. As discussed in Sec-
tion 2, it then computes the actual relative prediction error

made by producer C in period t as eC,t =
prodC,t−p̃rodC,t

p̃rodC,t
. The

payment from the Grid G to the CVPP C for settlement pe-
riod t is then given by the function:

V G,C
t = CRPS(σC,eC,t)×πB× log(prodC,t)×prodC,t (4)

The function is composed of four factors, multiplied to-
gether to determine the amount of payment received for a
realised production prodC. The “accuracy factor” (repre-
sented by the CRPS function, scaled between 0 and 1) is
the part which incentivises the CVPP to provide as accurate
description as possible for its relative prediction error. Note
that this is the only part of the function that uses the reports
σC and p̃rodC,t made by the agent (through the relative er-
ror eC,t ). The value prodC,t is the actual production of C in
settlement period t, which is independently observed by the
Grid, not a report. As shown above, the CRPS part of func-
tion is a strictly proper scoring rule w.r.t. σC and eC,t , and
the entire payment function in Eq. 4 is an affine transforma-
tion of this rule (since it only involves a multiplication with
other factors which do not depend on the reports made by
the agent). Hence, Eq. 4 is also strictly proper (c.f. (Gneit-
ing and Raftery 2007)).

Fig. 1 illustrates this accuracy factor for different values
of σi vs. actual proportional error ei,t , i.e. the proportional
difference between the actual and predicted productions of
DER i. What is interesting to observe here, however, is how
this error varies for different values of reported standard de-
viation σi. If DER i is highly confident in its predictions
(reporting σi = 0), the maximum reward for accuracy can
be achieved, but only if the actual error is also close to 0.
However, if the actual relative error is high, then reporting a
higher σi (i.e. less confidence) provides a better reward.

Factor log(prodC) is a “production factor”, which pro-
motes the formation of large cooperatives as the Grid
requires—combined with prodC, it makes the payment to C
super-linear. The “accuracy” and “production” factors, along
with πB, constitute the actual price paid by the Grid to C.
The overall Grid-to-CVPP payment is then calculated by
multiplying this with the realised production prodC,t .

3.3 Payment mechanism within CVPP
If a set of DERs decide to join together in a virtual power
plant C, this CVPP will first aggregate all their reports and
productions based on the formulas presented in Section 2,
and get rewarded by the Grid, for each period t with payment

Figure 1: Accuracy factor function diagram

V G,C
t . This is then distributed by the CVPP to each member

i ∈ I (where I is the set of members) as:

VC,i
t =

CRPS
(
σi,ei,t

)
∗ prodi,t

∑∀ j∈I CRPS
(
σ j,e j,t

)
∗ prod j,t

· V G,C
t (5)

Eq. 5 ensures that each member is paid a weighted fraction
of the total payment received by the CVPP in settlement pe-
riod t, with a weight proportional to its contribution. Contri-
butions are measured not just with respect to the actual en-
ergy outputs prodi,t , but also to each DER’s individual CRPS
score, which reflects how beneficial their estimates were in
terms of obtaining a better price via the CVPP wide accu-
racy factor in Eq. 4. Moreover, the normalization ensures
the entire received payment is distributed.

4 Experimental Analysis
We study the performance of the proposed pricing func-
tions in a real-life, renewable electricity generation scenario.
Specifically, we consider the setting of Ecotricity, one of the
largest renewable generation and distribution companies in
the UK2. Ecotricity owns 16 wind farms distributed across
the UK, with installed nominal capacities ranging from 0.5
MW to 16 MW. These farms differ not only in their nomi-
nal capacities, but also by the amount of wind they receive
at their geographical locations and, crucially, their ability to
use good wind speed predictions in those areas.

The overall question we consider in these experiments is:
If these farms were independent producers working with the
Grid, would the pricing functions we propose incentivise
them to cooperate by forming a CVPP? Moreover, we study
how the incentives provided by our scoring-rule based pay-
ment functions compare to a benchmark payment function
which does not use probabilistic estimates.

4.1 Real-World Data Collection
Both the actual and predicted electricity generation for each
wind farm, for each half hourly settlement period, depends
primarily on the wind speeds. For our experiments, we col-
lected half-hourly wind speed data for a 10-week period

2www.ecotricity.com

373



Figure 2: Average payment made to each individual farm (DER) for the entire 10 week period (in £ /kWh), for the setting where all DERs
are asked to predict their production 4 hours in advance. The x-axis is ordered in two ways: (a) DERs are ordered ascendingly, in the order of
their prediction accuracy (from the poorest to the best predictor), (b) DERs are ordered based on their standard prediction accuracy error σ.
(hence, the order is from the best to the poorest predictor)

from 15 February to 30 April 2011. The data was col-
lected from the website uk.weather.com, which essentially
records the latest predictions made available by the UK Met
Office. Both the actual and predicted wind data for each half
hour were collected using the geographical locations of the
16 wind farms of Ecotricity. For each data point, we consider
different prediction horizons, ranging from 1 to 24 hours.

Given the predicted and actual wind speeds for any given
time, the predicted and actual energy produced depends on
the so-called power curve of each turbine. Power curves
follow a sigmoid shape function. At low wind speeds, the
power generated is low, then it increases rapidly as wind
speed increases and it levels off for high wind speeds. Note
that wind turbines also have a safe operating limit for the
wind speed they can use, above which the turbine temporar-
ily shuts down to protect itself from damage. However, such
high speeds were not recorded in the data set we used, so
this does not influence our results. Formally, the energy gen-
erated by producer i at period t is:

prodi,t(wHH
t ) =

NomCapacityi

1+ eα∗(β−wHH
t )

(6)

where NomCapacityi is the nominal capacity of farm i, wHH
t

represents the wind at the hub height at time t and e is Euler’s
number. The nominal (or installed) capacity is the maximum
energy that a wind turbine can produce, under ideal wind
conditions. In our case, each of the 16 Ecotricity farms has
a different nominal capacity, ranging from 0.5 MW to 16
MW. The hub height wHH

t is a parameter of the wind turbines
and, likewise, it differs for each farm (as larger turbines have
higher hubs). The method of computing the wind speed at
the hub height, given the data (and predictions) of the Met
Office is through the standard industry formula: wHH

t = wt ∗
10
36 (

heighthub
10 )0.2

We use a technical report from Enercon (the main pro-

ducer of the wind turbines used by Ecotricity farms) (Ener-
con 2010) to determine the power curve values of α = 0.625
and β = 9.7. The above power curve function was used for
generating both the actual and predicted energy production
values for each of the 16 wind farms and each of the 70 days
* 48 periods = 3360 half hourly periods. For each period, the
predicted output was computed and logged for 24 prediction
horizons: 1 to 24 hours in advance.3

For the fixed price parameter πB in Equation 4 we as-
sign πB = 0.8. This value enables a realistic comparison,
since the average amount paid per kWh in this setting
matches the range of the feed-in tariffs currently being of-
fered for renewable wind generation by the UK govern-
ment (see www.fitariffs.co.uk/eligible/levels/ ). But, unlike
our payment functions, feed-in tariffs do not reward predic-
tion accuracy, nor do they incentivise formation of CVPPs.

4.2 Experimental Setup
For our experimental analysis, we compare 4 different gen-
eration scenarios. They are as follows.
(1) All the 16 sites (or DERs) interact with the Grid as sin-
gle, independent producers (i.e. as singletons) and are asked
to provide only a single-point production estimate.
(2) All the 16 DERs interact with the Grid as singletons, but
provide the Grid with both a mean production estimate and
an expected standard deviation for their prediction error.
(3) The 16 DERs interact with the Grid grouped together in
a CVPP, and are only asked to jointly provide one CVPP-
wide single-point production estimate.
(4) The 16 DERs interact with the Grid grouped together

3Note that, in real-life, there may be other factors causing a vari-
ation in the actual power being produced besides the ones captured
in Equation 6, such as losses in transformers and transmission lines,
from frequency matching etc. However, these can be expected to be
insignificant, and thus would not alter our conclusions.
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Figure 3: (a) Average revenue across all DERs (in £ /kWh), for different prediction horizons ranging from 1 to 24 hours. (b) Percentage
increase in average (i.e. per kWh) revenue for scoring rules-based versus point-based estimates payment mechanism.

in a CVPP as above, but jointly provide the Grid with both
a CVPP-wide mean production estimate, and an expected
standard deviation for their prediction error.
In the two cases (i.e., scenarios 2 and 4) when the DERs, and
respectively the CVPP, provide both expected production
and standard deviation estimates, they will be paid accord-
ing to the function in Eq. 4 introduced in this paper. In the
other two cases (i.e., scenarios 1 and 3) when the DERs (and
respectively, the CVPP formed by them) only provide single
point estimates, they will be paid according to the pricing
function proposed in (Chalkiadakis et al. 2011) which we
use as the benchmark for comparison:

V G,C
t =

1

1+α|p̃rodC,t −prodC,t |β
· log(prodC,t) ·πB ·prodC,t

(7)
Here prodC and πB represent the actual production and the
base price per kWh respectively, and have the same meaning
as in Eq. 4 from earlier in this paper. However, in the point-
based estimate payment function from Eq. 7, agents report
only a single point estimate p̃rodC, and not an uncertainty
distribution N (0,σ2

C) over the error it expects to make.
A crucial point for ensuring a fair comparison between the

two methods is choosing the way to scale the α and β param-
eters of the payment function from Eq. 7. In order to have a
fair benchmark, we set these parameters such that, when the
DERs participate in the market as singleton producers, they
receive the same payment with both the payment functions
(i.e. the ones in Equations 5 and 7). In this way, we have
an unbiased benchmark for comparing the effects of these
functions towards incentivising CVPP formation.

4.3 Results for a Single Prediction Horizon
First, we considered a setting, in which all the DERs are
asked to predict their productions 4 hours in advance. This
prediction horizon is often used in energy markets for short-
term wind energy predictions (Giebel, Brownsword, and

Kariniotakis 2003), and provides a good benchmark value
for our model. Results for the 4-hours-in-advance prediction
setting are shown in Figure 2. In Figure 2(a), the 16 DERs
are ordered from poor predictors (high standard deviation,
i.e., σ) to good predictors (low σ), while in Figure 2(b), the
relationship between the SDs for different DERs and their
revenues are explicitly plotted. For both cases, the predic-
tion error σi of each farm or DER was computed using all
the data from the 3360 half hourly intervals in our 10 week
dataset.

Now, looking at the results in Figure 2, two main trends
can be observed 4. First, it is seen that, when DERs are
interacting with the Grid as singleton producers and their
estimates are reasonably accurate, they receive roughly the
same payment from both the payment mechanisms. This is
expected because of our choice of parameters for the point
estimates-based payment function in Eq. 7. Note that even
then, there are two poor predicting DERs, with σ of 1.5
and 1.8, respectively, for whom the revenues diverge slightly
(Figure 2(b)). These two are actually better off with CRPS
payments, i.e., where they report the mean and the expected
standard deviations. Intuitively, the reason behind this is that
with a scoring rule payment function, poor predictors are
“punished” less as they also report their confidence than
when they just report an inaccurate single point estimate.

The second interesting observation is that, for both types
of payment functions, forming a CVPP is clearly beneficial
for all the agents. However, the incentive to form a CVPP is
considerably stronger with CRPS payments (where agents
report both a predicted mean and an error), than with single-
point estimate payments. Thus, our scoring rules payment
mechanism not only results in gathering more useful infor-
mation for the Grid, it also provides stronger incentives for
individual DERs to group together into cooperatives.

4Error bars in Figure 2 are not visible due to their small size.
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4.4 Results for Different Prediction Horizons
Next, we also investigate whether the incentives for form-

ing CVPPs, and the advantages of our scoring rules-based
payments mechanism over the point estimate payments hold
true over different prediction horizons. To this end, the num-
ber of hours in advance that the agents are asked to predict
their productions is varied from 1 to 24 hours. Moreover,
in contrast to the previous section, we look at the aggregate
revenue, averaged over all the DERs rather than individual
DER revenues; this allows us to summarize each setting of
the prediction-time horizon in a single value. The results and
standard error over the different time points are shown in
Figure 3. As in Section 4.3, for the scenarios when DERs
interact with the Grid as singletons, there is almost no differ-
ence between the revenues made (in £/kWh) for the scoring
rule-based and point estimates-based mechanisms.

This evaluation also shows that, for all prediction hori-
zons, our mechanism performs much better in incentivising
producers to form CVPPs than point-based estimates pay-
ments. In this context, it is especially interesting to observe
that the relative advantage offered by scoring rules actually
increases as the time-horizon of prediction increases (that is,
as DER agents are asked to predict much more in advance).
This relative advantage between the two mechanisms may
seem small in absolute terms from looking at Figure 3(a),
but as Figure 3(b) shows, it actually increases from 14% to
around 37%. Although space in the paper does not allow
for additional graphs, we found that the underlying reason
for this is that, as the CVPP predictions are attempted for
a longer period in advance, they tend to become consider-
ably less accurate. Allowing agents to report the uncertainty
in their estimates allows them to avoid being punished, in
settings with higher uncertainty.

5 Conclusions and Further Work
This paper develops a novel pricing mechanism to encour-

age the integration of renewable DERs in the existing elec-
tricity Grid, through the formation of Cooperative Virtual
Power Plants (CVPPs). Our mechanism provides an alterna-
tive to unsustainable feed-in tariffs, and uses scoring rules
to incentivise DERs to report not only accurate estimates of
their production, but also the uncertainty in these estimates.

In future work, we plan to model CVPPs formed by a
combination of renewables, such as wind, solar and tidal en-
ergy. Also, we plan to study how the widespread availability
of storage would impact the formation of CVPPs. Further-
more, we would like to experimentally measure the finan-
cial and technological benefits to the Grid due to the bet-
ter scheduling given the increased CVPP reliability. In or-
der to have meaningful results, this would have to involve
the use of detailed simulation environments, built based on
real-world business processes and data, but which were not
readily available for this study.

Finally, we intend to enlarge our settings to consider the
formation of cooperatives for demand response and demand-
side management—that is, to investigate ways in which co-
operatives of electricity consumers could form to assist the
effort of achieving demand reduction.
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