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Abstract
Scott Turner's 1993 Minstrel system was a high water mark 
in  story generation, harnessing the concept  of imaginative 
recall to generate creative stories. Using case based 
reasoning and an author level planning system, Minstrel 
models human creative processes. However, the algorithmic 
and representational commitments made in Minstrel were 
never subject  to principled and quantitative analysis. By 
rationally reconstructing Minstrel, we are able to  investigate 
Turner's computational model of creativity and learn new 
lessons about  his architecture. We find that Minstrel's 
original performance was tied to a well groomed case 
library, but by modifying several components of the 
algorithm we can create a more general version which can 
construct stories using a sparser and less structured case 
library. Through a rational  reconstruction of Minstrel, we 
both  learn new architectural and algorithmic lessons about 
Minstrel’s computational  model of creativity as well as 
make his architecture available to the contemporary 
research community for further experimentation.

Introduction

Current work in artificial intelligence draws from key ideas 
dating back to the 1960s. Many seminal papers in AI 
presented systems that used novel algorithms to model 
human cognitive functions or achieve groundbreaking 
results. Modern processing power and experimental 
techniques could be used to gain important insights into 
such foundational systems, but many of these systems are 
not accessible to the AI community. Whether because their 
source code is not available or simply because they run on 
architectures that are now rare, some early AI systems are 
now lost to the community.

Some AI techniques have been extensively studied such 
as Neural Networks and Graphical Models. The details and 
variants of their algorithms are well-understood. In less 
well-explored areas of AI, however, some systems have 
never been thoroughly tested, and the architectures that 

they proposed have not been studied further. The approach 
of rational reconstruction addresses these issues.

By rebuilding systems from their technical descriptions, 
rational reconstruction seeks to gain new insight into 
existing architectures and learn lessons applicable to 
modern research. Rebuilding systems reveals key qualities 
of their architectures, and can differentiate important 
choices from trivial ones. Our work involves the rational 
reconstruction of Scott Turner's 1993 Minstrel system 
(Turner 1993, Turner 1994). Turner's Minstrel  modeled 
human creative processes to generate stories using a 
combination of simple planning and a novel case-based 
reasoning system. Turner drew upon previous case-based 
reasoning and planning research in order to come up with a 
new theory of creativity. He models creativity in 
storytelling as a process of imaginative recall: the 
modification of memories of previous events to invent 
novel scenarios. Although Turner ran a variety of 
experiments to demonstrate its effectiveness, he did not 
perform large-scale quantitative analysis of his system. We 
are interested in imaginative recall as a model of creativity, 
including what kind of memory base must be present to 
support it and whether it can be applied to generating large 
batches of stories, because the limitations of Turner’s 
original system raise questions about the generality of his 
model.

Our reconstruction highlights several interesting design 
choices in the Minstrel architecture and provides 
quantitative results to demonstrate how the architecture 
performs. We show that Minstrel's story library was critical 
to its success, and provide an alternate implementation 
which does not rely so heavily on this library. By 
measuring the use of imaginative recall during story 
construction, we are also able to show that our 
implementation is better tuned to provide sustainable 
variety over the course of many stories, instead of 
generating only a few very creative stories before 
exhausting its library. Finally, we have made Minstrel 
available (downloadable from http://minstrel.soe.ucsc.edu) 
as a Scala library so that other interested researchers can 
use it in new projects or perform their own experiments on 
it.
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Related Work

Story and Planning and Case-Based Reasoning
Classic Minstrel and its Remix are similar to a number of 
other systems for story generation. Some of the earliest 
work in this area was done by systems that relied primarily 
on planning algorithms such as Universe (Lebowitz 1954) 
and Talespin (Meehan 1977). Later storytelling systems 
such as Fairclough’s multiplayer story generator and 
Gervas et al.’s plot generator have demonstrated the 
effectiveness of CBR techniques applied to the problem of 
story generation (Fairclough and Cunningham 2003, 
Gervas et al. 2005). One of the difficulties in applying 
Case-Based Reasoning (CBR) to stories is coming up with 
a searchable and compositional representation of story 
events. Fairclough and Gervas et al. drew extensively from 
Vladimir Propp’s formal theories about the substance of 
Russian folktales (Propp 1968) to come up with 
representations of stories that were amenable to being 
searched as a case base (Turner was aware of Propp’s 
analysis, but developed his own method of representing 
stories involving a graph of frames describing story 
events.)

Minstrel is related to all of these systems since it uses 
both planning and CBR. A modified form of Case-Based 
Planning which involves incremental transformation and 
adaption steps is employed for fine grained generation 
while planning is used to simulate higher level authorial 
intention and additions that an author might use while 
creating a story.

Rational Reconstruction
Rational reconstruction (RR) is the process of 
reconstructing existing systems with the goal of 
understanding their operation as well as the original design 
decisions involved, and how those decisions affected the 
final system. Rational reconstruction efforts offer a chance 
to critically reexamine older research, as well as to explore 
fruitful designs using modern tools. There are a number of 
books which discuss RR as a useful tool such as Partridge's 
books on the fundamentals of Artificial Intelligence 
(Partridge 1990, Partridge 1991). Additionally, a number of 
papers discuss successful rational reconstruction projects 
such as Langley's rebuilding of the GRIDS system 
(Langley and Stromsten 1990), Ritchie's reconstruction of 
Proteus (Ritchie 1984), McDonald's reconstruction of 
Genaro (McDonald 1999), and even Peinado and Gervas' 
reconstruction of Minstrel's ontology using the OWL Web 
Ontology Language (Peinado and Gervas 2006). These 
works demonstrate rational reconstruction’s potential for 
producing knowledge about existing systems and 
informing new theories.

Computational Creativity
Turner’s work on Minstrel built on an existing literature in 
computational creativity, including the AM (Lenat 1976) 

and Daydreamer (Meuller 1990)  systems. Since his work, 
Margaret Boden (1996, 2004)  and Graeme Ritchie (2001, 
2007) have proposed models for creativity and methods for 
measuring it. Boden focuses on the distinctions between 
transformational, combinational, and exploratory creativity 
(Minstrel focuses on the last of these). Boden also 
describes the difference between P-Creativity (creativity 
relative to a creator’s knowledge, which Minstrel exhibits) 
and H-Creativity (creativity relative to a culture). Ritchie 
builds on Boden’s ideas and focuses on novelty and quality 
of artifacts as the most important measurable 
manifestations of creativity. 

Perhaps most directly relevant to our work is that done 
by Kolodner (1994) on how standard CBR should be 
altered in order to generate creative solutions. Although 
Kolodner’s ideas are slightly different from Turner’s, they 
offer an alternative and quite similar perspective to the 
concept of using case transformation to support creativity.

Although we don’t focus on analyzing Minstrel Remixed 
in terms of its creativity in this paper, these developments 
in creativity theory have informed our reconstruction. In 
particular, there is a close relationship between the TRAM 
system in Minstrel and both the variety and quality of 
results.

Architecture

Our system, called Minstrel Remixed (MR), is a rational 
reconstruction of Scott Turner’s 1993 Minstrel system. 
Working from Turner’s dissertation describing the system, 
we have re-implemented the core algorithms and 
supporting structures in Scala (Turner, 1993). MR includes 
the original components of Minstrel as well as a few 
upgrades of our own devising. Additionally, MR is easily 
configurable, and it includes a configuration designed to 
imitate the original Minstrel as closely as possible.

The Minstrel Architecture 
Minstrel is a complex architecture including many 
subsystems and components. In this paper we focus on 
three subsystems which are relevant to how imaginative 
recall interacts with the story library: TRAMs, ALPs, and 
boredom. TRAM stands for Transform Recall Adapt 
Method and ‘the TRAM system’ refers to a collection of 
TRAMs and accompanying support mechanisms that are 
used to generate the fine details of a story. ALP stands for 
Author Level Plan and these are used to direct the broader 
themes of a story as well as being used to enforce a variety 
of consistency constraints. Together the planning of the 
ALP system and the modified case-based reasoning of the 
TRAM system allow for complete stories to be pieced 
together. The third relevant system, boredom, helps to 
ensure that stories that are generated differ both from the 
stories in the library and from subsequently produced 
stories.
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TRAMs
TRAMs (Transform Recall Adapt Methods) support a 
modified form of case based reasoning. In Minstrel, many 
small fragments of stories are created over the course of 
creating a whole story and this is done by the TRAMs. The 
TRAM system is called with a search query which is 
generally a partially defined story fragment such as 
“someone does something to a dragon which kills it.” The 
system has a number of TRAMs which can be recursively 
applied in any order to a given query to find a match: each 
TRAM applies changes (Transforms) the query (usually 
making it more general) until a match is found (Recall), 
and then each TRAM Adapts the result, so that at the end 
of the process the modified result applies to the original 
query. So the TRAMs both control the search direction and 
handle the adaptation step in Minstrel’s case-based 
reasoning subsystem.

The first step for each query is to attempt to recall 
fragments out of the story library which match without any 
transformation. Failing this, TRAMs have transformations 
that they apply to the query before recursing.  Effectively, 
the TRAM system searches through a space of TRAM 
applications to find a linear sequence of TRAMs which 
lead to a query that directly matches a story fragment in the 
library. When a result is found, each TRAM in the 
recursive stack applies its own adaptation code, 
transforming the result into a form applicable to the 
original query. The benefit of this method is that it can use 
precise transformations and adaptions in sequence to 
effectively find cases that are quite different from the 
original query. Of course, the TRAMs are not perfect, and 
the more TRAMs used, the higher the risk of a result which 
is incoherent with the rest of the story. Thus the TRAM 
system relies on a story library which contains examples 
that are fairly close to the queries it attempts to answer.

Figure 1. TRAM system in action

In Figure 1, an example query is shown in which Bob 
needs to do something to a dragon but no stories are 
available in the library which can be used. As a result, a 
TRAM converts the dragon to a generic monster and this 

new query retrieves a fragment from the case library about 
Bob fighting a troll with a magic sword. This result is 
finally adapted back to a fragment in which Bob fights the 
dragon with a magic sword, satisfying all of the original 
requirements.

TRAMs operate inside of a backtracking search tree, 
allowing for many different sets of TRAMs to be tried in 
order to eventually find a match for a given query. Figure 2 
below illustrates a TRAM search tree with 3 useable 
TRAMs. The query passed in is the top node in which a 
knight fights something. Three TRAMs are possible 
children of this node and in the diagram, the middle child 
has been picked, transforming the query to a person 
fighting something. At this point Minstrel might recall, a  
peasant fighting a troll. When adapted back, a story about a 
knight fighting a troll makes sense. If the recall were to fail 
however (if there are no stories in the library about people 
fighting) there are 2 children, relaxing the constraint that 
there is a person involved (which would likely result in 
adequate results) or releasing the constraint of a fight being 
in the matching story. Now Minstrel might match a story 
about a princess eating a berry, yielding a much stranger 
story after adaptation: a knight fighting a berry. 

Figure 2. TRAM search space

Figure 2 includes two first level children which are 
instances of the same TRAM: Generalize Constraint 
(which turns a constraint into a ‘?’). The original Minstrel 
only considers each TRAM once, choosing a target for its 
modification. Classic Minstrel makes these decisions 
randomly, which can cause it to overlook possible results.

 We made two significant changes to TRAM search in 
Minstrel Remixed to support deterministic searches while 
maintaining the core functionality. First, we split each node 
of the search tree into fragments which include targeting 
information as well as a given TRAM. This allows the 
system to explore all of the possible applications of each 
TRAM, but also greatly expands the search space. To 
compensate for this expansion, we added a strict limit to 
the number of nodes the system was allowed to explore. In 
addition to Turner’s limit of a search depth of 3 TRAMs, 
we forced the system to stop searching for a result after 
exploring 250 nodes in the TRAM search tree. We also 
modified the TRAM selection algorithm to treat variants of 

Knight  
fights  ?

Knight
?s ?

Person
fights ?

?  
fights  ?

? 
?s ?

Person
?s ?
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a single TRAM with different targeting information as a 
single TRAM for the purposes of selection during search, 
to ensure that our addition of variants didn’t bias the search 
process.

Our second modification was the addition of a weighted 
random selection method to control the search. In our 
modified version, each TRAM is assigned a weight, 
corresponding roughly to how much it modifies the 
original query. TRAMs are then selected randomly with 
probability inversely proportional to their weights, so that 
TRAMs which have more drastic effects are chosen less 
frequently. The overall effect of this modification is to keep 
stories from being too strange even when multiple TRAMs 
are required to get a result by searching more intensely in 
the part of the search space closest to the original query (in 
terms of the strength rather than the number of TRAMs). 
The cost is that the most creative solutions are more rare, 
because dramatic modifications to a query are one (risky) 
way to achieve creative results. To compensate for this, we 
generate more stories. Turner’s original system can 
generate five quite creative stories before beginning to 
generate incoherent stories (a limitation that Turner 
discussed in his own dissertation, as we note below in the 
context of the Boredom subsystem.) Instead, we want to 
produce a system that can generate hundreds of different 
stories, most of which will contain some creativity and 
some of which will be highly creative. 

Author-Level Planning
In the author-level planning system, Minstrel pursues 
author-level goals (ALGs) by retrieving and executing 
author-level plans (ALPs) that serve specific functions in 
the service of generating a story. High level goals consider 
the story as a whole, and represent tasks such as deciding 
on a theme for the story or checking the story for 
opportunities to insert foreshadowing. At the same time, 
lower level goals concern things such as filling out the 
details of a particular state or act within the story, or 
checking that a particular story node is consistent and 
properly motivated. Some of the ALPs encode micro-
theories about storytelling (theories of consistent 
motivation, for example)  that help Minstrel produce 
consistent output. Other ALPs rely on the story library to 
act as a model of a well-formed story, using the TRAM 
system to fill in pieces of the story under construction with 
appropriate material.

It is worth noting that Minstrel does not simply generate 
free-form story structures. Instead, it relies on a “planning 
advice theme” (PAT, or more generally a story template)  to 
give structure to its stories. These story templates contain 
rough specifications for important parts of the plot. 
Minstrel generates stories by selecting an appropriate PAT 
and then filling in the details of the PAT, adding extra 
scenes to the story as necessary along the way.

Once a goal is selected and a set of plans to achieve that 
goal is found, plans are tried one by one until one 
succeeds. If all available plans fail, the system re-enqueues 
the current goal with half of its original priority and drops 

it entirely if this would put it below a minimum priority 
threshold. This convention allows goals to interact: if one 
goal cannot be solved initially, other goals are attempted in 
the hopes that they will alter the story configuration and 
make the initial goal solvable. Once the goal queue is 
empty, story generation is finished.

In the original Minstrel, the goal queue contained low-
priority goals (which would be executed last) for 
generating prose from the story graph that Minstrel had 
produced. Because Minstrel Remixed does not yet have a 
natural language generation component, our system’s 
output is currently raw story graphs. Although these aren’t 
accessible to a wide audience, we are able to interpret them 
and judge the variety and consistency of the stories that 
they represent in order to learn about Turner’s algorithm.

Boredom
Boredom is the final relevant subsystem to our current 
discussion. To add variability to the system, Minstrel is 
programmed to get bored with similar repeated solutions to 
the same problems and, as a result, to find novel untried 
solutions. This is implemented as a table of query/solution 
signatures coupled with a boredom value. Every time a 
query is given to the TRAM system and a solution 
returned, the boredom value of that signature is 
incremented. Minstrel won’t allow high boredom query/
solutions to be used, so as the boredom value for a pair 
rises, other solutions must be found for given queries.  
Without this method of enforcing variation, Minstrel would 
sometimes generate duplicate stories (of course, the 
random nature of the TRAM searches also contributes to 
variation whenever TRAMs are used to generate results).

Classic Minstrel has a boredom threshold of two and 
increments boredom values of signatures by one every time 
a query/result pair is used. In section 15.7.2 of his 
dissertation, Turner evaluates boredom by generating six 
stories, showing how boredom drives the use of new 
material, but also that by the sixth story, Minstrel has 
exhausted its story library (Turner 1993). As a result, 
Minstrel Remixed contains an upgraded boredom system 
in which each call to the TRAM system fractionally 
decrements the values of all signatures in the boredom 
table. Functionally this means that signatures refresh over 
time, allowing them to be reused in subsequent stories. 
Using this system, instead of quickly becoming bored of 
everything, Minstrel establishes a cyclical pattern of 
boredom. This forces it to generate a variety of stories, just 
like the original boredom heuristic, and the random nature 
of the TRAM system means that the set of boring results 
doesn't have any predictable pattern. The effect is similar 
to generating each new story using a random subset of the 
story library, always avoiding recent results. This 
randomization produces much more sustainable variety 
than Turner's original boredom mechanism: it distributes 
the creative potential of the system given the story library 
more evenly over a large number of stories.
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Experiments

Although Minstrel's original configuration works well for 
building stories, it does this by virtue of access to a well-
tailored story library: in section 15.10 of his dissertation, 
Turner reports that 88% of searches in his system were able 
to recall episodes directly from the story library without 
using imaginative recall (Turner 1993). The original 
system was also designed to generate only a few stories at 
a time, especially given the aggressive boredom 
mechanism (discard a result forever if it's been used twice). 
These facts raise questions about imaginative recall as a 
model of creativity: can imaginative recall function 
effectively in an environment where direct recall is not the 
norm, and can imaginative recall be tuned to focus on 
producing variety with occasional creativity, rather than 
making everything creative but quickly running out of 
episodes to recall? To the extent that Turner's system relies 
heavily on an extensive library and can generate only a few 
stories at a time, it is not an effective model of human 
creativity, because humans have no such limitations. On 
the other hand, if these properties were simply outgrowths 
of architectural choices that could have been made 
differently, Turner's claim that imaginative recall is a 
model of human creativity might still be valid. To explore 
these issues, we focused on changes that allow the system 
to work with a sparser library and to produce substantially 
more stories by distributing its creativity more evenly. We 
validated these changes by showing that during 
imaginative recall, our modified system is more successful 
than Turner's system overall, and that, for successful 
searches, it searches a smaller space and finds results using 
fewer transformations than Turner's system. This implies 
that the underlying model of creativity as imaginative 
recall is not inherently limited in terms of requiring an 
extensive library or quickly exhausting creative results.

One reason that Turner focused on generating only a 
small number of stories may have been the limited 
computing power available to him in 1993. Given a 
modern computer (2.4 GHz Intel i7 with 8 GB of RAM), 
we can generate stories quite quickly (56 seconds per 
story), and thus it is reasonable to expect a system to 
generate tens or hundreds of stories at a time. Turner's 
original system took an average of 1,400 seconds to 
construct a story, so such mass production was not quite as 
feasible (even though his version was probably better 
optimized, considering that our average is only two orders 
of magnitude faster). His approach also corresponds to a 
different application of creativity: if a person were to 
produce one creative story twenty times in a row, she 
would produce a different result than if you ask her for 
twenty creative stories. Turner's original model is closer to 
the first case, while our changes have made the system 
operate a bit more like the second case (although explicit 
planning for distributing creative results across multiple 
stories remains a direction for future work).

To test our modifications, we set up a version of our 
system that duplicated the performance of the original as 
closely as possible, and compared it to our modified 

version. Due to slight differences in our architecture and 
information lacking in Turner's dissertation (such as the 
exact contents of the story library) we were not able to 
perfectly duplicate the original. However, we did recreate 
the original boredom system and TRAM search method, 
which are the only components varied between our two 
experimental conditions.

Method
Our tests involved generating stories and measuring the 
performance of the TRAM system. Because the TRAM 
system is the main mechanism for creativity, the number of 
TRAMs used and the number of TRAMs tried reveal 
information about the functionality of the system. For our 
reconstruction of Turner's original system, we generated 75 
stories using random TRAM selection and eliminative 
boredom. We then restarted the system (to reset boredom) 
and asked it to generate 75 new stories, this time with 
weighted TRAM selection and boredom reduction enabled.
For each batch of stories, we recorded every call to the 
TRAM system, including whether it succeeded, how many 
TRAMs it tried while searching for a result, and how many 
TRAMs were used to find the result if it succeeded (note 
that the number of TRAMs used is never more than three 
(the depth limit) but that the number of TRAMs tried may 
be much larger). For both experiments, we used Turner's 
original depth limit of three TRAMs, as well as our 
exploration limit of 250 TRAMs. We used a single story 
template (PAT) for all 150 stories, which helps exercise the 
boredom mechanism (Turner's original boredom 
experiment also used a single PAT). Our story template 
consists of one character trying to kill another character but 
accidentally dying, after which a third character avenges 
the first character.

Results
Given our recreation of the original system, we found that 
for successful queries that involved TRAMs (as opposed to 
queries that found a result directly) an average of 2.38 
TRAMs were used. In contrast, our modified system used 
an average of 1.39 TRAMs when it used TRAMs to find a 
result.

In the recreated version, out of 490 total TRAM 
attempts, 59% of searches found a result directly, 22.2% 
used one or more TRAMs, and 18.7% failed (as a result of 
running into the exploration limit). In our modified version, 
which made 503 total TRAM attempts, 72.2% of searches 
found direct results, 24.5% used one or more TRAMs, and 
3.4% failed. For searches that succeeded (including 
searches that succeeded directly), the recreated system 
tried an average of 13.8 TRAMs, while our version tried 
7.7 TRAMs. When only searches that required TRAMs to 
succeed are considered, the recreated system tried 141.3 
TRAMs on average, while ours tried 56.8. These results 
are summarized in table 1 below.
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Most of the results are driven by our boredom changes: 
with fewer results excluded via boredom, it's easier to find 
valid results (including direct results). This means that 
fewer TRAMs are needed, fewer TRAMs need be 
attempted, and fewer queries fail. Overall, this leads to the 
conclusion that Turner's original design was tuned to 
generate only a small number of stories, which makes 
sense given the experiments that he chose to conduct. It's 
also apparent that our story library is not as well tuned as 
Turner's was. He reported that 88% of searches found 
results directly, whereas using his parameters, only about 
59% of ours do. Even using our new parameters 
(particularly our more lenient boredom mechanism) only 
about 72% of searches succeeded directly. With his original 
library, direct recall of queries was the norm, while our 
library is considerably less exhaustive. Although spending 
time tuning our library might increase the number of direct 
results, it's not a good way to leverage the architecture. 
Effectively, tuning the story library represents increasing 
the quality of stories by hand-authoring more content, and 
this tuning must be done separately for each domain to 
which the architecture is applied.

Instead, we have made the core algorithm more robust: 
our modifications reduce the percentage of failed TRAM 
searches from 18.7% to just 3.4%, even given the less 
dependable story library (relative to Turner's). Of course, a 
single failed TRAM search does not mean that the relevant 
story failed to generate: the search will be tried again later 
by Minstrel's author-level planning system, and might 
succeed, or information for that node might be filled in by 
other searches. TRAM failures do represent lost 
opportunities to find creative results, of course, and they 
could cause story generation to fail entirely if they occur 
too frequently.

Results that are found by applying more TRAMs are 
generally more creative (but also more likely to be 
incoherent). This is because the changes to the query made 
by each TRAM decrease the amount of context used in the 
search. Turner reported that after just five stories, the 
boredom assessment was causing TRAMs to find 
questionable results. The modified TRAM and boredom 
system, by performing fewer TRAM applications on 
average, reins in this creativity, meaning that many of our 
results are minor modifications of content in the library. 
When it uses TRAMs to find a result, our system only 
explores 56.8 TRAM combinations on average, and the 
results that it finds use an average of 1.4 TRAM 
applications. In contrast, the reconstructed system explores 
an average of 141.3 TRAM combinations and uses an 
average of 2.38 TRAMs. Compared to our version, 
Turner's version requires more effort to find results, and 
when it finds them, they are less similar to the original 
query. These numbers only include searches that used 
TRAMs successfully, so they are independent from the 
difference in failure rates. Of course, when generating a 
large batch of stories, creative results will be mixed in 
either due to luck or due to our modified boredom 
mechanism. Rather than quickly exhausting Minstrel's 

creativity, we have chosen to mete it out more sparingly 
across many stories, so that our system can effectively 
generate a wide variety of simple variations, with some 
especially creative variations mixed in.

Turner’s Version Recreated Version
Total Searches 490 503

Direct Matches 289 (59%) 363 (72.2%)
Indirect Matches 109 (22.2%) 123 (24.5%)
Failures 92 (18.7%) 17 (3.4%)

Avg. TRAMs tried 57.9 15.8
Avg. TRAMs tried 
(all matches)

13.8 7.7

Avg. TRAMs tried 
(indirect matches)

141.3 56.8

Avg. TRAMs used 
(all matches)

0.65 0.35

Avg. TRAMs used 
(indirect matches)

2.38 1.39

Table 1: Experimental results from the generation of 25 stories.

Conclusion

Rational reconstruction aims to rebuild existing systems 
from their technical specifications in order to learn more 
about the motivations behind architectural decisions as 
well as figure out which parts of a system are essential to 
its operation. In our rational reconstruction of Minstrel, we 
have also tried to create a system that makes the Minstrel 
architecture available in a modern format and which adapts 
the architecture to exploit the increases in computing 
power since Minstrel's first release. Instead of focusing on 
generating a few very creative stories, our system focuses 
on longer-term generation of story variants, some of which 
we expect to be creative. Our system is also less reliant on 
a finely-tuned story library than Turner's. It is able to 
function with only a 3% search failure rate even with only 
a 72% direct match rate against our story library. Our 
reconstruction of Turner's system, in contrast, matches 
against the story library only 59% of the time and fails 
22% of the time. By modifying the boredom heuristic we 
are able to achieve dramatically increased success rates, 
and by also modifying the TRAM search method, we have 
created a system tuned for producing large batches of 
results that contain some creativity. These successes show 
that Turner’s model of creativity as imaginative recall is 
more flexible than the system that he built to demonstrate 
it.

As we reconstructed Minstrel, it seemed at first to be 
extremely specific. Because Turner's original story library 
isn't available (it isn't fully described in his dissertation) we 
constructed our own story library, but quickly found that it 
didn't match our templates closely enough. If extensive 
library tuning were required for Minstrel to function, it 
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would not be a model of strong creativity, because its 
creative power would depend on a high rate of 
unimaginative recall rather than extensively using 
imaginative recall. Although Turner claims that his system 
demonstrates that creative recall is not necessarily common 
when making up stories, it is more useful to have a system 
which can operate using more or less imagination 
depending on the situation: such a system can then be 
compared to human performance in a variety of situations. 
Thus instead of tuning our library to produce results, we 
focused on modifications to the original that could allow it 
to work with a sparser library, while still retaining creative 
results. As our experiment demonstrates, we have created a 
version of the Minstrel architecture that works well for 
generating large batches of stories, even with a less tailored 
library.

Through our efforts, we not only gained knowledge 
about the original system, but also created a new version 
which is available in a modern format. This is an 
encouraging result because it indicates that rational 
reconstruction of older systems is a productive way to gain 
new knowledge about AI architectures and to better 
understand existing computational models of human 
cognition. Using our reconstruction, it is now feasible to 
concretely investigate imaginative recall as a model of 
human creativity by comparing it directly to human results.
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