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Abstract

Temporal problems with uncertainty are a well established
formalism to model time constraints of a system interacting
with an uncertain environment. Several works have addressed
the definition and the solving of controllability problems, and
three degrees of controllability have been proposed: weak,
strong, and dynamic.
In this work we focus on weak controllability: we address
both the decision and the strategy extraction problems. Ex-
tracting a strategy means finding a function from assignments
to uncontrollable time points to assignments to controllable
time points that fulfills all the temporal constraints.
We address the two problems in the satisfiability modulo the-
ory framework. We provide a clean and complete formal-
ization of the problems, and we propose novel techniques to
extract strategies. We also provide experimental evidence of
the scalability and efficiency of the proposed techniques.

Introduction
A temporal problem (TP) is a collection of temporal con-
straints over a given set of time points. A typical exam-
ple is a set of activities with the respective durations sub-
ject to constraints. When durations are controllable, TP’s
range from simple temporal problems (STP), to Tempo-
ral constraint satisfaction problem (TCSP) (Dechter, Meiri,
and Pearl 1991), to disjunctive temporal problems (DTP)
(Tsamardinos and Pollack 2003), depending on the structure
of the constraints. In these cases, a solution is an assignment
to all the time points (to the starting and ending instants of
the activities) that satisfies all the constraints.

When activities have uncertain (and uncontrollable) dura-
tion, we speak of TP with uncertainty (TPU), and previous
problems are generalized to STPU, TCSPU, and DTPU (Vi-
dal and Fargier 1999; Peintner, Venable, and Yorke-Smith
2007). A TPU admits several forms of solution. In the case
of strong controllability, a solution is a precise, uncondi-
tioned assignment to each activity start, that will satisfy the
constraints regardless of the uncontrollable duration of the
activities. To draw an analogy, strong controllability is the
TP counterpart for conformant planning, where the course
of action is decided without observing the uncontrollable be-
havior of the environment.
Copyright c© 2012, Association for the Advancement of Artificial
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Weak controllability, on the other hand, concerns the ex-
istence of a strategy that associates values to the starting
points of each activity, as a function of the uncontrollable
durations, that are assumed to be known in advance. Weak
controllability is analogous to a form of conditional plan-
ning with uncertainty under full observability. At a first sight
the “clairvoyance” needed to apply a weak strategy makes
the weak controllability problem impractical; nevertheless,
it has a clear theoretical importance in the field of temporal
reasoning and it is also useful in situations where a para-
metric TP has to be solved. Given actual parameter values
it is relatively easy to solve such a problem as it consists in
solving consistency. However, if the same problem occurs
many times with different parameter instantiations and the
computation power of the device that needs to solve the TP
is limited, it can be more effective to pre-compute solutions
for any possible parameter instantiation. This problem can
be modeled as a TPU where uncontrollable time points rep-
resent the parameter values. Finding a weak strategy for the
TPU means finding a solution for any parameter allocation
in advance.

In this paper, we tackle the problem of weak controlla-
bility, making two key contributions. First, we propose a
general decision procedure for the problem of weak control-
lability for TPU’s. Our approach is a cast in the framework
of Satisfiability Modulo Theory (SMT) (Barrett et al. 2009),
a formal framework that allows for the analysis of problems
in decidable fragments of first order logic. The decision pro-
cedure is based on a reduction to an SMT problem for the
theory of Quantified Linear Real Arithmetic (LRA). The en-
coding can be thought as working by refutation: we state the
existence of an assignment to uncontrollable time points that
cannot be countered by any controllable assignment. This
means that the SMT problem is satisfiable if and only if the
TP is not weakly controllable. The problem can be directly
provided to an efficient SMT solver, thus this approach ac-
counts for the first implemented decision procedure for weak
controllability of DTPU.

Unfortunately, the approach is not constructive: in fact,
when the problem is weakly controllable, the SMT solver
will simply conclude the unsatisfiability of the SMT prob-
lem, providing no information on the strategy. The second
contribution is then to investigate various constructive ap-
proaches to strategy extraction for the STPU problem class.
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We first consider the case of linear strategies, that expresses
the (controllable) starts of the activities as a linear function
of the (uncontrollable) action durations. We show that strat-
egy extraction can be reduced to an SMT problem for the
theory of quantified nonlinear polynomials. The encoding
is constructive in that the assignments to the existential vari-
ables are the coefficients for the linear function being sought.
This approach is however impractical because of technical
limitations of current SMT solvers, therefore we further sim-
plify the approach by exploiting a generalization of the result
in (Vidal and Fargier 1999).

We also show that a linear strategy is not always guar-
anteed to exist. Thus, we analyze the case of a piecewise-
linear strategy, i.e. a conditional strategy that associates a
linear function to each element of a finite partition of the
uncontrollable space. We show that a piecewise-linear strat-
egy is always guaranteed to exist for any STPU. From the
constructive proof, we determine a procedure that induces
the partition based on the enumeration of simplexes (hyper-
tetrahedra). We further improve the method using a lazy ap-
proach, that tries to reduce the cardinality of the partition, by
enlarging the scope of applicability of the linear sub-strategy
whenever possible.

All the proposed algorithms have been implemented on
top of state of the art SMT solvers, and have been evaluated
on a comprehensive set of benchmarks.

Related work. The notion of weak controllability is pro-
posed in the seminal paper by Fargier and Vidal (Vidal and
Fargier 1999) for the STPU problem class and has been ex-
tended for TCSPU and DTPU in (Peintner, Venable, and
Yorke-Smith 2007). In (Venable et al. 2010) the authors
approach the problem of deciding weak controllability of
DTPU using an explicit algorithm that enumerates the STPU
components of a DTPU. In this work we focus on the same
problem but we exploit symbolic techniques to avoid this
explicit enumeration. In general, no algorithm implementa-
tions is available for deciding TPU weak controllability nor
for extracting a strategy.

There exists a third form of controllability for TPU’s,
namely dynamic controllability, that is also analogous to
conditional planning with uncertainty under full observabil-
ity. The key difference is that in the case of weak con-
trollability clairvoyance in the strategy is not allowed, i.e.
the strategy cannot see in advance all the action durations,
but only the ones that have already happened. Similarly to
weak controllability, also dynamic controllability is a largely
open problem (Venable et al. 2010). In the STPU problem
class, a series of works (Morris, Muscettola, and Vidal 2001;
Morris and Muscettola 2005) describe a technique to effi-
ciently check dynamic controllability.

Structure of the paper. First, we provide some back-
ground and we define the problem. Second, we show the
decision procedure. Third, we tackle the case of linear strat-
egy extraction. Fourth, we discuss how to extract piecewise-
linear strategies. Fifth, we present an experimental evalua-
tion of the approach. Finally, we draw some conclusions and
discuss future work.

Background
Satisfiability modulo theory
Given a first-order formula ψ in a background theory T the
satisfiability modulo theory (SMT) problem consists in de-
ciding whether there exists a model (i.e. an assignment to the
free variables in ψ) that satisfies ψ. For example, consider
the formula (x ≤ y) ∧ (x+ 3 = z) ∨ (z ≥ y) in the theory
of real numbers (x, y, z ∈ R). The formula is satisfiable and
a valid model is {x := 5, y := 6, z := 8}.

An SMT solver (Barrett et al. 2009) is a decision proce-
dure which solves the satisfiability problem for a formula
expressed in a decidable subset of first-order logic.

SMT solvers can support different Theories. A widely
used theory is Linear Real Arithmetic (LRA). A formula
in LRA is an arbitrary Boolean combination, or universal
(∀) and existential (∃) quantification, of atoms in the form∑

i aixi ./ c where ./∈ {>,<,≥,≤, 6=,=}, every xi is a
real variable and every ai and c are real constants. We de-
note with QF LRA the quantifier-free fragment. The logic
in which we allow arbitrary polynomial atoms is called Non-
linear Real Arithmetic (NRA), and its quantifier-free frag-
ment is denoted with QF NRA. To the best of our knowl-
edge, currently there are no available SMT solvers for full
NRA, while some SMT solvers like for instance Microsoft
Z3 (de Moura and Bjørner 2008) support QF NRA.

Temporal problems with uncertainty
A temporal problem (TP) is a formalism that is used to
represent temporal constraints over time-valued variables
representing time points. This formalism is expressive
enough to express Allen’s interval algebra (Allen 1983) and
also quantitative constraints over intervals and time points.
Two families of TP’s have been presented in literature over
the years: TP without Uncertainty, in which all the time
points are freely assignable (Dechter, Meiri, and Pearl 1991;
Tsamardinos and Pollack 2003); and TP with Uncertainty
(TPU) in which the represented situation is a game between
an agent that tries to fulfill the constraints and an adversar-
ial environment (Vidal and Fargier 1999). In this work we
focus on TPU’s.
Definition 1. A TPU is a tuple (Xc, Xu, Cc, Cf ), where
Xc

.
= {b1, ..., bn} is the set of controllable time points,

Xu
.
= {e1, ..., em} is the set of uncontrollable time points,

Cc
.
= {cc1, ..., ccm} is the set of contingent constraints, and

Cf
.
= {cf1, ..., cfh} is the set of free constraints.

cci
.
= (ei − bji) ∈ [li, ui] cfi

.
=

Di∨
j=1

(xij − yij) ∈ [lij , uij ]

such that: ji∈ [1 . . . n], li, uj , lij , uij ∈R, li≤uj , lij ≤uij ,
Di is the number of disjuncts for the i-th free constraint and
xij , yij ∈ Xc∪Xu

Intuitively, time points belonging to Xc are time deci-
sions that can be controlled by the agent, while time points
in Xu are under the control of the environment. A similar
subdivision is imposed on the constraints: free constraints
Cf are constraints that the agent is required to fulfill, while
contingent constraints Cc are the assumptions that the en-
vironment will fulfill. As in (Vidal and Fargier 1999) we
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consider only contingent constraints that start with a con-
trollable time point. Thus, each uncontrollable time point
is linked by exactly one contingent constraint to a control-
lable time point. However, this assumption does not affect
the generality of the formalism, as for each contingent con-
straint (ei− ej) ∈ [l, u] we can add an artificial controllable
time point a, and add (a− ej) ∈ [0, 0] to the free constraints
and (ei − a) to the contingent constraints.

Three nested TPU classes have been defined depending
on the type of disjunctive structure allowed in the problem
constraints. Definition 1 coincides to the literature defini-
tion of the Disjunctive Temporal Problem with Uncertainty
(DTPU). If we admit only disjunctions on a single couple
of variables the resulting problem is a Temporal Constraint
Satisfaction Problem with Uncertainty (TCSPU) and if we
disallow disjunctions we obtain a Simple Temporal Problem
with Uncertainty (STPU).

For a TPU three different problems can be addressed:
strong controllability, dynamic controllability and weak
controllability (Vidal and Fargier 1999). In all these prob-
lems, the agent is required to fulfill all the free constraints
under any possible assignment of the uncontrollable time
points that fulfill the contingent constraints. The difference
between them resides in the amount of observability that the
agent is allowed to have over the environment decisions.

Weak controllability. Weak controllability consists in
finding a function that maps a total assignment to uncon-
trollable time points to a total assignment to controllable
time points. The function output must fulfill all the free
constraints under any input assignment that fulfills the con-
tingent constraints. We assume to have full observability
over the uncontrollable evolution of the system. Intuitively,
a problem is weakly controllable if for every valid assign-
ment of the uncontrollable time points, there exists a win-
ning strategy for the allocation of controllable time points,
assuming to know in advance the values of all the uncontrol-
lable time points.

In order to formally define weak controllability we per-
form some transformations. We first rewrite each uncontrol-
lable time point ei in terms of its time difference with its
starting time point bji by means of an uncontrollable off-
set yi. For every contingent constraint cci, let yi ∈ R be
an offset for the uncontrollable duration such that: yi ≥ 0,
yi ≤ ui− li and ei = bji +ui−yi. Intuitively, yi represents
the offset with respect to the maximal duration of the time
difference between bji and ei, and can be used to rewrite
all the constraints involving ei in terms of bji and yi only.
To simplify the notation, we introduce two vectors: ~x is the
vector of controllable time points (b1, ..., bn), and ~y is the
vector of uncontrollable offsets (y1, ..., ym). Thanks to the
redefinition of each ei in terms of yi, the rewriting of the
contingent constraints depends only on ~y.

We call Γ(~y) the formula representing the conjunction of
all the contingent constraints, and Ψ(~x, ~y) the conjunction
of all the free constraints rewritten in terms of ~x and ~y.

Γ(~y)
.
=

m∧
k=1

(yk ≥ 0) ∧ (yk ≤ (uk−lk)) Ψ(~x, ~y)
.
=
∧

c∈Cf

c(~x, ~y)

In this setting, the weak controllability decision problem

consists in deciding whether for every value of ~y such that
Γ(~y) there exists an assignment to ~x such that Ψ(~x, ~y) eval-
uates to >.
Definition 2. A TPU is weakly controllable if and only if
∀~y.∃~x.(Γ(~y)→ Ψ(~x, ~y)) is valid.

In many cases, we are not only interested in checking
weak controllability, but we also want to find the winning
strategy for the agent. A weak strategy is a total function
f that maps a total assignment to the uncontrollable offsets
~y to a total assignment to the controllable time points ~x, if
~y satisfies Γ(~y). Otherwise, the strategy is inapplicable and
returns ⊥.
Definition 3. A function f : R|Xu| → R|Xc| ∪ ⊥ is a weak
strategy for a TPU if

f(~y)
.
=

{
⊥ if ¬Γ(~y)

~x |Ψ(~x, ~y) Otherwise.

This definition does not impose any constraint (e.g. linearity,
continuity) on f other than the fact of being a function.

Encoding weak controllability into SMT
Looking at the weak controllability formal characterization
in Definition 2 from an SMT perspective, it is clear that we
are solving the validity problem of an LRA formula. Any
SMT solver with full support of LRA is able to deal with
that formula directly and it can correctly solve the problem.
However, due to the high computational cost of directly han-
dling quantifiers, an optimized encoding is in order.

We first rewrite the formula encoding weak controllability
in Definition 2 by transforming the external universal quan-
tifier into the negation of an existential one, and we consider
the negation of the resulting formula. We call the resulting
formula inverted SMT encoding.

∃~y.¬∃~x.(Γ(~y)→ Ψ(~x, ~y))

If this formula is unsatisfiable, then the problem is weakly
controllable, while if it is satisfiable, then the problem is not
weakly controllable. Intuitively the encoding is a search for
an assignment to uncontrollable time points that is able to
violate the free constraints under any possible strategy (it is
a winning strategy for the environment). This encoding still
requires a solver with full support of LRA, but is able to
exploit the searching power of the SMT framework (the ex-
ternal quantifier is existential) and in case of non-weak con-
trollability it allows for the extraction of debug information
by providing a model of the formula.

A further improvement can be achieved by limiting as
much as possible the scope of the quantified variables. To
this extent, we push the existential quantifier over the impli-
cation, and thus the quantification is limited to the problem’s
free constraints only (ref. as gamma extraction encoding):

∃~y.(Γ(~y) ∧ ¬∃~x.Ψ(~x, ~y)).

For the special case of STPU, in (Vidal and Fargier 1999)
the concept of weak controllability on bounds is presented:
in order to check whether a STPU is weakly controllable it
suffices to check whether it is controllable in all the extreme
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assignments of the uncontrollable values. This idea can also
be exploited in the SMT framework. However, the resulting
encoding would be exponentially big: the extreme points of
the uncontrollable region are the 2|Xu| vertexes of an hyper-
rectangle in |Xu| dimensions. Nevertheless, we will extend
and use this result for the strategy extraction problem.

Extraction of linear strategies
A linear strategy is such that the value of every controllable
time point is obtained as a linear combination of ~y. In the
following we discuss several approaches for extracting a lin-
ear strategy from a weakly controllable problem.

Encoding into NRA
Let N .

= |Xc| and M
.
= |Xu|, a linear strategy can be

represented with a matrix A of real coefficients of size N ×
(M + 1). The idea is to express every controllable variable
as a linear function of the uncontrollable offsets.

xi
.
= fi(~y)

.
= A·

(
~y
1

)
= Ai,1 · y1 + . . .+Ai,M · yM +Ai,M+1

Therefore, the matrixAmust have one column for every off-
set and an additional column for the constant additive term.
Equation 1 is an encoding into NRA for extracting a linear
strategy for any TPU problem in a single check.

∃A1,1, . . . , An,m.∀~y.Γ(~y)→Ψ(A·
(
~y
1

)
, ~y) (1)

The idea is to let the solver search for the Aij coefficients of
the linear combination of ~y that represent the set of hyper-
planes that are strategies for each x ∈ ~x. If the solver reports
unsatisfiable, it means that no linear strategy exists for the
given problem. Unfortunately, this approach needs a solver
supporting the quantified NRA theory, and to the best of our
knowledge, no SMT solver currently supports this theory.

In the following, we restrict to STPU problems. For such
problems we can exploit the convexity of the constraints to
design cheaper algorithms for strategy extraction.

Reduction to quantifier-free LRA
If the problem is convex, given any two points in the solu-
tion space, any point in the line connecting these two points
is also a solution. Following this idea we can generalize
the result of weak controllability on bounds in (Vidal and
Fargier 1999) to the search of linear strategies.
Theorem 1. If a STPU admits a linear strategy f(~y) that
fulfills the problem constraints in all the bounds of the un-
controllable region, than f(~y) is a valid linear strategy for
the entire problem.

The idea is to create a single SMT problem that encodes
the problem with a symbolic strategy in all the extremes of
the uncontrollable region. The encoding is obtained from
the NRA formula in Equation 1 by substituting the univer-
sal quantifier with the instantiation of the problem free con-
straints (Ψ(P~y, ~y)) in all the extreme values of ~y, that are the
vertexes of the polyhedron represented by Γ(~y). Algorithm

Algorithm 1 Linear strategy extraction (LSE)

1: procedure LINEARSTRATEGY(Γ(~y), Ψ(~x, ~y))
2: P ← VARIABLEMATRIX(|Xc|,|Xu|+ 1)
3: φ(P )← >
4: for all ~c ∈ EXTREMEASSIGNMENTS(Γ(~y)) do
5: φ(P )← φ(P ) ∧Ψ(P ·~c,~c)
6: end for
7: if SMT(φ(P )) then
8: return GETMODEL()
9: end if

10: return None
11: end procedure

1 shows the pseudo-code for extracting a linear strategy with
such encoding.

In the pseudocode, the function VARIABLEMATRIX cre-
ates a matrix of real variables, while the function EXTREME-
ASSIGNMENTS generates all the vertexes of Γ(~y). The func-
tion SMT checks the satisfiability of the given SMT for-
mula using a solver, while GETMODEL returns the produced
model in case of SAT answer. Note that, this approach leads
to an exponential blowup in the size of the SMT problem:
this is a strong limitation on the scalability of the approach,
nevertheless this is the first practically-working approach for
linear strategy extraction.

From strong to weak controllability: incremental
weakening
In order to limit the exponential blowup of the previous en-
coding to the worst case only, we developed another ap-
proach called “incremental weakening” that tries to limit
the number of coefficients to search for and to reduce the
amount of observability needed to solve the problem. The
underlying idea is to start from solving a strong controllabil-
ity problem, if a solution is found, the strong assignment is a
valid weak linear strategy for the problem, otherwise an un-
controllable offset yp is heuristically picked and marked as
observable. The algorithm then tries to build a linear strat-
egy that relies on yp only. This is done by exploding in the
extremes of yp the strong controllability problem defined on
the remaining uncontrollable offsets only. If the algorithm
fails in finding a linear strategy, another variable is picked
and the approach is iterated, until all the uncontrollable off-
sets are marked as observable and the encoding coincides
with the previous approach. The pseudo-code of this method
is reported in Algorithm 2.

In the pseudocode, the function GETHEURISTICPIVOTS
shall return an heuristically computed subset of ~y and even-
tually must return the entire ~y that terminates the algorithm;
the function SC ENC produces the encoding of a strong
controllability problem in SMT, while the function LIN-
EARSTRATEGY is the function described in Algorithm 1.
This algorithm is highly dependent on the heuristic used for
~p extraction: the number of cycles of the algorithm directly
depends on the heuristic.

In principle, one could substitute the use of strong con-
trollability in this algorithm with dynamic controllability,
as they both imply weak controllability (Vidal and Fargier
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(a) (b)

Figure 1: (a) A STPU that does not admit a linear strategy. Controllable time points are represented as circled nodes, uncontrol-
lable nodes are represented as double circled nodes, free constraints are represented as solid arrows and contingent constraints
as dashed arrows. (b) The region of feasibility of the STPU in the space of X2, Y1 and Y2.

Algorithm 2 Incremental weakening LSE

1: procedure IWLINEARSTRATEGY(Γ(~y), Ψ(~x, ~y))
2: while ~p← GETHEURISTICPIVOTS(Γ(~y)) do
3: ~n← {y ∈ ~y | y 6∈ ~p}
4: η(~x, ~p)← SC ENC(Γ(~n), Ψ(~x, ~n))
5: Res← LINEARSTRATEGY(Γ(~p), η(~x, ~p))
6: if Res 6= None then
7: return Res
8: end if
9: end while

10: return None
11: end procedure

1999) and are tractable for STPU. Nevertheless, a yes/no
answer is not enough in this context: we need an equiva-
lent encoding of the controllability problem itself. Encod-
ing strong controllability of STPU is relatively simple using
the worst-case argument proposed by Vidal in (Vidal and
Fargier 1999), while we are not aware of any encoding of
dynamic controllability in the SMT framework.

Linearity is not enough

A linear strategy is very useful in practice: it is compact to
represent and easy to evaluate. In general, unfortunately, a
weakly controllable STPU is not guaranteed to have such a
strategy. Let us consider the STPU depicted in Figure (a).
This STPU is weakly controllable, but it does not admit
a linear strategy. In Figure (b) we plotted the solution
space of the STPU problem in the space (Y1, Y2, X2) re-
gions (Without loss of generality we projected the solution
space in X1 = 0). The plot clearly shows that there exists
no linear strategy for X2: considering the extreme (0, 0) in
the space (Y1, Y2), a linear solution must contain the point
(0, 0, 0); considering (0, 1) we must include (0, 1, 1), con-
sidering (3, 0) we must include (3, 0, 0) and for (3, 1) the
linear solution must include the point (3, 1, 0). However, no
linear solution can exists, as no 3D-plane can contain all of
them at the same time.

Extraction of piecewise-linear strategies
Given that there is no guarantee that a linear strategy always
exists, we investigate the existence of a piecewise-linear
strategy. A piecewise-linear strategy is defined by cases over
a splitting of the uncontrollable offsets valid region, in which
every region admits a linear strategy. Thus, an executor will
have to check in which region the actual value of ~y is con-
tained in, and successively apply the corresponding strategy.
Definition 4. A piecewise-linear strategy is a function

f(~y)
.
=


S1(~y) if η1(~y)

...

Sk(~y) if ηk(~y)

⊥ Otherwise

where Si are linear strategies and ηi(~y) are sub-regions of
Γ(~y) such that (

∨k
i=1 ηi(~y))↔ Γ(~y).

It can be proved that, a piecewise-linear strategy always
exists for any weakly controllable STPU.

Theorem 2. For any given STPU P , if P is weakly control-
lable, then P admits a piecewise-linear strategy.

Proof. (Sketch) Consider the solution space for the given
problem P , since P is a STPU it is a convex polyhedron.
Since P is weakly controllable, the projection of the polyhe-
dron in the uncontrollable offsets dimensions, entirely cov-
ers the space of the valid ~y which is an hyper-rectangle. If
we focus on the skin of the solution space, it is composed of
exactly two piecewise-linear continuous strategies.

In the following, we present two algorithms for extracting
a piecewise-linear strategy for a weakly controllable STPU.

Simplexes decomposition
A simple and direct approach to extract a piecewise-linear
strategy consists in partitioning the region of the uncontrol-
lables in a set of simplexes (hyper-tetrahedra); we use these
polyhedra because they are the minimal polytopes. For ev-
ery simplex, a linear strategy is guaranteed to exist, as it is
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always possible to force a d-dimensional hyper-plane to pass
over all the vertexes of a d-simplex.

A straightforward method to obtain the simplexes is to
use the extreme vertexes of the uncontrollable offsets region.
The number of derived simplexes is factorial w.r.t. the num-
ber of uncontrollable offsets. For each simplex it is possible
to find a linear strategy separately by enforcing an hyper-
plane to satisfy the problem constraints in all the simplex
vertexes. Algorithm 3 shows the pseudo-code for extracting
a piecewise linear strategy enumerating all the simplexes.
The complexity of this algorithm is very high because of the
enumeration of all the (|Xu|!) simplexes.

Algorithm 3 Piecewise-linear strategy extraction

1: procedure GETSTRATEGY(Γ(~y), Ψ(~x, ~y))
2: P ← ∅
3: for all s ∈ EXTREMALSIMPLEXES(Γ(~y)) do
4: L← GETSIMPLEXLINEARSTRATEGY(s, Γ(~y), Ψ(~x, ~y))
5: P ← P ∪ {( “IF ~y ∈ s THEN L ” )}
6: end for
7: return P
8: end procedure

In the pseudocode, the function EXTREMALSIMPLEXES
iterates over all the simplexes needed to cover the Γ(~y) poly-
hedron, while GETSIMPLEXLINEARSTRATEGY returns a
linear strategy suitable for the given simplex. We represent
a piecewise strategy as a set P of linear sub-strategies, each
conditioned to some region (The statement “IF ~y ∈ s THEN
L” represent the conditioning of the linear strategy L in the
region s).

Lazy expansion
To overcome the complexity limitation of the previous ap-
proach we developed a second technique, called lazy expan-
sion, that first selects a simplex in the uncontrollable region
and finds a linear strategy in that simplex. Second, we sym-
bolically compute the region of the uncontrollable offsets
that is satisfied by the computed strategy. Third, we asso-
ciate the computed strategy to the resulting region. Finally,
we search a new simplex in the remaining part of the uncon-
trollable space, until the uncontrollable offsets space is com-
pletely covered. The main advantage of this algorithm with
respect to the previous one is that it is not forced to enumer-
ate all the possible simplexes because the computed strategy
once found is exploited in all the possible points of the space
where it is applicable. Algorithm 4 shows the pseudo-code
for extracting a piecewise linear strategy exploiting lazy ex-
pansion. The difficulty in this approach resides in efficiently
finding a simplex from a symbolically-defined region: the
choice of the simplex is pivotal for the strategy extraction.
A naı̈ve approach consists in extracting vertexes of the sim-
plex using simple queries to an SMT solver.

Experimental evaluation
In order to empirically test the effectiveness of the proposed
approaches, we implemented a tool written in Python that
reads a TPU problem, and applies to it the portfolio of

Algorithm 4 Lazy piecewise-linear strategy extraction

1: procedure GETSTRATEGY(Γ(~y), Ψ(~x, ~y))
2: P ← ∅
3: η(~y)← Γ(~y)
4: while SMT(η(~y)) do
5: s← SIMPLEX(η(~y))
6: S ← GETSIMPLEXLINEARSTRATEGY(s, Γ(~y), Ψ(~x, ~y))
7: P ← P ∪ {( “IF η(~y) ∧Ψ(S(~y), ~y) THEN S ” )}
8: η(~y)← η(~y) ∧ ¬Ψ(S(~y), ~y)
9: end while

10: return P
11: end procedure

encodings we discussed. We used the Z3 (de Moura and
Bjørner 2008) SMT solver for the weak controllability deci-
sion problem, while we rely on the Python API provided by
the MathSAT5 (Cimatti et al. 2011) SMT solver for all the
strategy-extraction techniques. All the tests have been per-
formed on a Linux workstation equipped with a quad-core
Q6600 CPU and 4GB of RAM memory. We considered a
memory limit of 2GB, a time-out of 300 seconds and we
used sequential, single-core computation only.

We tested the decision problem encoding over a set of
1524 randomly generated DTPU, TCSPU and STPU in-
stances, with a number of time points ranging from 6 to
19956. For the random generation of problem instances we
extended the generator presented in (Armando, Castellini,
and Giunchiglia 1999) to produce TPU’s. For the evaluation
of the strategy-extraction techniques, we used 1354 weakly
controllable STPU benchmarks.

The results of checking the decision problem over the set
of TPU’s are plotted in Figure (a). This plot shows the cumu-
lative time (in logarithmic scale) needed to build and solve
the corresponding encoding on the y-axis and the number of
solved problems on the x-axis. The plot highlights the fact
that Z3 performs much better when the gamma extraction
encoding of the problem is considered: in fact, this approach
is able to solve, in less time, an higher number of instances
with respect to the inverted encoding.

The results for the evaluation of the strategy-extraction
techniques for the 1354 benchmarks are reported in Fig-
ure (b). The plot considers only those benchmarks for which
there exists a linear strategy, and compares the four dif-
ferent approaches. It is evident from the plot that for lin-
ear strategies, the incremental weakening approach outper-
forms all the others. The method enumerating all the sim-
plexes quickly explodes due to the factorial complexity of
their enumeration. Although, the techniques for piecewise-
linear strategy extraction are penalized as they are strictly
more general than the others, the plot shows that lazy ap-
proach is much faster than the simplex enumeration. In Fig-
ure (c) we plotted the number of “pieces” of the strategies
for the lazy and simplexes methods. The plot clearly shows
that, although for small numbers of uncontrollable variables
the lazy approach generates additional not needed “pieces”,
when the size increases the number of “pieces” identified by
the lazy method is much smaller than for the simplexes one.
We also experimented cases with 16 uncontrollable variables
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Figure 2: (a) Results for WC decision problem using Z3 SMT solver. (b) Results for linear strategy extraction problem. (c)
Size of the strategy for piecewise-linear algorithms expressed as the number of splitted regions.

in which the lazy approach can terminate in 4 iterations. In
general, the lazy approach has a huge gain in performances
and in strategy size, especially for sparse problems.

Conclusions and future work
In this paper we presented a comprehensive approach to the
problem of weak controllability for temporal problems un-
der uncertainty. The approach is a cast of the problem in the
SMT framework, and provides both a decision procedure,
and various constructive forms of strategy extraction.

The “incremental weakening” approach for linear strat-
egy extraction and the “lazy” approach for piecewise-linear
strategy extraction, are strongly influenced by heuristics that
we surely want to optimize. In particular, we are investigat-
ing the possibility to use topological information for the gen-
eration of effective subsets of ~y in “incremental weakening”,
and the use of extremal simplexes in the “lazy” approach.

In the future, we plan to study the applicability of
SMT proof-extraction techniques to the strategy construc-
tion problem: the capability of modern solvers to extract a
proofs of unsatisfiability could be useful to build the strat-
egy. In addition, we plan to tackle the problem of dynamic
controllability, where strategies are required to rely only on
the observation of events that have (instead of being “clair-
voyant”, i.e. assuming perfect forecast). In particular, we
plan to combine the approaches to strong controllability and
the one developed in this paper to explore the continuum
between strong and weak controllability.
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