
An Efficient Higher-Order Consistency
Algorithm for Table Constraints ∗

Anastasia Paparrizou and Kostas Stergiou
Department of Informatics and Telecommunications Engineering

University of Western Macedonia, Greece

Abstract
Table constraints are very important in constraint program-
ming as they are present in many real problems from areas
such as configuration and databases. As a result, numerous
specialized algorithms that achieve generalized arc consis-
tency (GAC) on table constraints have been proposed. Since
these algorithms achieve GAC, they operate on one constraint
at a time. In this paper we propose an efficient algorithm for
table constraints that achieves a stronger local consistency
than GAC. This algorithm, called maxRPWC+, is based on
the local consistency maxRPWC and allows the efficient han-
dling of intersecting table constraints. Experimental results
from benchmark problems demonstrate that maxRPWC+ is
clearly more robust than a state-of-the-art GAC algorithm in
classes of problems with interleaved table constraints, being
orders of magnitude faster in some of these classes.

Introduction
Table constraints, i.e. constraints given in extension, are
ubiquitous in constraint programming (CP). First, they nat-
urally arise in many real applications from areas such as
configuration and databases. And second, they are a use-
ful modeling tool that can be called upon to, for instance,
easily capture preferences. Given their importance in CP, it
is not surprising that numerous specialized algorithms that
achieve GAC (i.e. domain consistency) on table constraints
have been proposed. Since GAC is a property defined on
single constraints, algorithms for GAC operate on one con-
straint at a time trying to filter infeasible values from the
variables of the constraint.

Higher-order consistencies that are stronger than GAC
have been proposed in the literature but are not widely used.
Typically, such local consistencies take advantage of inter-
sections between constraints to remove inconsistent tuples
or to add new constraints. Recently there has been re-
newed interest for higher-order consistencies as new ones

∗This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through
the Operational Program ”Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) - Research
Funding Program: Heracleitus II. Investing in knowledge society
through the European Social Fund.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been proposed (Lecoutre, Cardon, and Vion 2007;
Bessiere, Stergiou, and Walsh 2008) or efficient algorithms
for existing ones have been devised (Karakashian et al.
2010). Interestingly, the local consistencies introduced in
(Bessiere, Stergiou, and Walsh 2008) are domain filtering,
meaning that they only prune values from the domains of
variables and therefore do not alter the structure of the con-
straint hypergraph or the constraints’ relations. This makes
them easier to integrate into existing solvers. One of the
most promising consistencies of this type is Max Restricted
Pairwise Consistency (maxRPWC) (Bessiere, Stergiou, and
Walsh 2008).

In this paper we propose a specialized algorithm that
is based on maxRPWC and allows the efficient handling
of intersecting table constraints. The algorithm, called
maxRPWC+, extends the state-of-the-art GAC algorithm
for table constraints given in (Lecoutre and Szymanek
2006) and specializes the generic maxRWPC algorithm
maxRPWC1. The proposed algorithm incorporates several
techniques that help alleviate redundancies displayed by ex-
isting maxRPWC algorithms. Specifically, we consider a
simple approximation of maxRPWC which achieves slightly
less pruning than maxRPWC, at considerably reduced cost.
Then we apply two complementary methods that can speed
up the process of checking for consistency through the ex-
ploitation of a simple data structure already used in existing
maxRPWC and GAC algorithms. The first (resp. second)
method targets cases where a tuple is consistent (resp. is
inconsistent) and tries to quickly verify this. maxRPWC+,
achieves a local consistency level stronger than GAC and
incomparable to maxRPWC.

Although maxRPWC+ is specialized for table constraints,
we show that it can be also applied on intensional con-
straints. This may be useful in cases of constraints without
specialized filtering algorithms, or to simply explore the po-
tential of a higher-order consistency on any given constraint.

Experimental results from benchmark problems demon-
strate that maxRPWC+ is clearly more robust than a state-
of-the-art GAC algorithm in classes of problems with inter-
leaved table constraints, being orders of magnitude faster in
some of these classes. In addition, maxRPWC+ is consider-
ably faster than generic maxRPWC algorithms, showing that
specialized algorithms for higher-order consistencies can be
very useful in practice.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

535

Background
A Constraint Satisfaction Problem (CSP) is defined as a tu-
ple (X ,D, C) where X = {x1, . . . , xn} is a set of n vari-
ables, D = {D(x1), . . . , D(xn)} is a set of finite domains,
one for each variable, with maximum cardinality d, and
C = {c1, . . . , ce} is a set of e constraints, with maximum
arity k. Each constraint c is a pair (var(c), rel(c)), where
var(c) = {x1, . . . , xm} is an ordered subset of X referred
to as the constraint scope, and rel(c) is a subset of the Carte-
sian productD(x1)×. . .×D(xm) that specifies the allowed
combinations of values for the variables in var(c).

Each tuple τ ∈ rel(c) is an ordered list of values <
(x1, a1), . . . , (xm, am) > s.t. aj ∈ D(xj), j = 1, . . . ,m.
Given a constraint c, a variable xi ∈ var(c), and a tuple
τ ∈ rel(c), we denote by τ [xi] the projection of τ on xi. A
tuple is valid iff none of the values in the tuple has been re-
moved from the domain of the corresponding variable. For
any constraint cwe denote by> (resp. ⊥) a dummy tuple s.t.
τ < > (resp. τ > ⊥) for any tuple τ ∈ rel(c). Given two
constraints ci and cj , if var(ci) ∩ var(cj) 6= ∅ we say that
the constraints intersect. We denote by fmax (resp. fmin)
the maximum (resp. minimum) number of variables that are
common to any two constraints that intersect on more than
one variable.

The most commonly used local consistency is generalized
arc consistency (GAC) or domain consistency. A value ai ∈
D(xi) is GAC iff for every constraint c, s.t. xi ∈ var(c),
there exists a valid tuple τ ∈ rel(c) s.t. τ [xi] = ai. In this
case τ is a GAC-support of ai on c. A variable is GAC iff
all values in its domain are GAC.

Several alternative consistencies have been proposed with
domain filtering consistencies being especially interesting.
Examples of such consistencies include SAC (Debruyne and
Bessière 2001), RPWC and maxRPWC (Bessiere, Stergiou,
and Walsh 2008), rPIC (van Beek and Dechter 1995). A the-
oretical and experimental evaluation presented in (Bessiere,
Stergiou, and Walsh 2008) demonstrated that maxRPWC is
a promising alternative to GAC.

A value a ∈ D(xi) is max Restricted Pairwise Consis-
tent (maxRPWC) iff ∀cj ∈ C, where xi ∈ var(cj), a has
a GAC-support τ ∈ rel(cj) s.t. ∀cl ∈ C (cl 6= cj), s.t.
var(cj) ∩ var(cl) 6= ∅,∃τ ′ ∈ rel(cl), s.t. τ [var(cj) ∩
var(cl)] = τ ′[var(cj)∩var(cl)] and τ ′ is valid. In this case
we say that τ ′ is a PW-support of τ and τ is a maxRPWC-
support of a. A variable is maxRPWC iff all values in its
domain are maxRPWC.

Following (Debruyne and Bessière 2001) we call a local
consistency A stronger than B iff in any problem in which
A holds then B holds, and strictly stronger iff it is stronger
and there is at least one problem in which B holds but A
does not. Accordingly, A is incomparable to B iff none is
stronger than the other.

Three algorithms for achieving maxRPWC were pro-
posed in (Bessiere, Stergiou, and Walsh 2008). The first
one, maxRPWC1, has O(e2k2dp) worst-case time complex-
ity and O(ekd) space complexity, where p is the maximum
number of variables involved in two constraints that share
at least two variables. The second one has O(e2kdk) time
complexity but its space complexity is exponential in fmax.

The third one has the same time complexity as maxRPWC1
butO(e2kd) space complexity. Although maxRPWC1 is less
sophisticated than the other two, its performance is better
than theirs because it uses lighter data structures. All these
algorithms are generic in the sense that they do not consider
any specific semantics that the constraints may have.

maxRPWC+
Table constraints are very common in applications from con-
figuration and databases among others. As a result, in the
last few years many specialized GAC algorithms for table
constraints have been proposed (Lhomme and Régin 2005;
Lecoutre and Szymanek 2006; Gent et al. 2007; Cheng and
Yap 2010; Lecoutre 2011). However, these algorithms can-
not exploit possible intersections that may exist between dif-
ferent constraints. On the other hand, existing algorithms for
maxRPWC and other related higher-order consistencies are
generic and thus very expensive. Hence, any extra prun-
ing that they may achieve by exploiting intersections will be
outweighed by the cpu time overhead.

We will now describe a specialized algorithm for table
constraints that is based on maxRPWC and builds upon
the generic maxRPWC algorithm maxRPWC1 and the spe-
cialized GAC algorithm of (Lecoutre and Szymanek 2006)
(called GAC-va hereafter). The presented algorithm, called
maxRPWC+, not only specializes maxRPWC to table con-
straints, but also introduces several techniques that help
eliminate redundancies displayed by existing algorithms. As
in GAC-va, the main idea behind maxRPWC+ is to inter-
leave support and validity checks.

Restricted maxRPWC Before going into the details of
the algorithm we describe a simple modification that can
be incorporated into any maxRPWC algorithm to boost its
performance. From the definition of maxRPWC we can see
that the value deletions from some D(xi) may trigger the
deletion of a value b ∈ D(xj) in two cases:

1. b may no longer be maxRPWC because its current
maxRPWC-support in some constraint c is no longer valid
and it was the last such support in c. We call this case
maxRPWC-support loss.

2. The last maxRPWC-support of b in some constraint cmay
have lost its last PW-support in another constraint c′ inter-
secting with c. We call this case PW-support loss.

Although detecting PW-support loss is necessary for an al-
gorithm to achieve maxRPWC, our experiments have shown
that the pruning it achieves rarely justifies its cost. Hence,
maxRPWC+ applies maxRPWC in a restricted way by only
detecting maxRPWC-support loss. A similar approxima-
tion of the related binary local consistency maxRPC has also
been shown to be efficient compared to full maxRPC (Vion
and Debruyne 2009; Balafoutis et al. 2011).

Algorithm maxRPWC+ uses the following data structures:

• For each variable-value pair (xi, ai) and each constraint c
involving xi, allowed(c, xi, ai) is the list of allowed tu-
ples in c that include the assignment (xi, ai).

536

• For each constraint c and each value ai ∈ D(xi),
where xi ∈ var(c), LastPWCc,xi,ai gives the most re-
cently discovered (and thus lexicographically smallest)
maxRPWC-support of ai in c.
Given a table constraint ci, we now describe how algo-

rithm maxRPWC+ can be used to filter the domain of any
variable xj ∈ var(ci). We assume that the domain of some
variable in var(ci) (different than xj) has been modified and
as a result the propagation engine will revise all other vari-
ables in var(ci). Initially, Function 1 is called.

Function 1 revisePW+ (ci, xj)

1: for each aj ∈ D(xj) do
2: τ ←seekSupport-va(ci, xj , aj);
3: while τ 6= > do
4: if isPWconsistent+(ci, τ) then break;
5: τ ←seekSupport-va(ci, xj , aj);
6: if τ = > then remove aj fromD(xj);

For each value aj ∈ D(xj) Function 1 first searches for a
GAC-support. This is done by calling function seekSupport-
va which is an adaptation of algorithm GAC-va. This func-
tion first checks if LastPWCci,xj ,aj , which is the most
recently found maxRPWC-support, and thus also GAC-
support, is still valid. If this is true, τ = LastPWCci,xj ,aj
is returned, else the valid and allowed tuples of ci are vis-
ited in an alternating fashion to locate the lexicographi-
cally smallest valid and allowed tuple τ of ci, such that
τ > LastPWCci,xj ,aj and τ [xj] = aj . If such a tuple
τ is found, we then check it for PW consistency through
Function isPWconsistent+ (Function 2). If aj does not have
a GAC-support (i.e. seekSupport-va returns >) or none of
its GAC-supports is a PW-support, then it will be removed
from D(xj).

Function 2 isPWconsistent+ (ci, τ): boolean
1: for each ck 6= ci s.t. |var(ck) ∩ var(ci)| > 1 do
2: PW=FALSE;
3: max τ ′ ← ⊥;
4: for each xk ∈ var(ck) ∩ var(ci) do
5: τ ′ ← LastPWCck,xk,τ[xk];
6: if isValid(ck, τ ′) AND τ ′[var(ck) ∩ var(ci)] = τ [var(ck) ∩

var(ci)] then
7: PW=TRUE; break;
8: if τ ′ > max τ ′ then max τ ′ ← τ ′;
9: if ¬PW then
10: if seekPWSupport(ci, τ, ck,max τ ′) => then
11: return FALSE;
12: return TRUE;

The process of checking if a tuple τ of a constraint ci is
PW consistent involves iterating over each ck that intersects
with ci on at least two variables1 and searching for a PW-
support for τ (Function 2 line 1). For each such constraint
ck maxRPWC+ first tries to quickly verify if a PW-support
for τ exists by exploiting the LastPWC data structure as
we now explain.

1On constraints that intersect on one variable maxRPWC is
equivalent to GAC (Bessiere, Stergiou, and Walsh 2008).

Fast check for PW-support For each variable xk belong-
ing to the intersection of ci and ck, we check if τ ′ =
LastPWCck,xk,τ [xk] is valid and if it includes the same val-
ues for the rest of the variables in the intersection as τ (line
6 in Function 2). Function isValid simply checks if all val-
ues in the tuple are still in the domains of the corresponding
variables. If these conditions hold for some variable xk in
the intersection then τ is PW-supported by τ ′.

Else, we find max τ ′ the lexicographically greatest
LastPWCck,xk,τ [xk] among the variables that belong to the
intersection of ci and ck and we search for a new PW-support
in Function seekPWSupport (line 10). In case seekPWSup-
port returns > for some ck then isPWconsistent+ returns
FALSE and a new GAC-support must be found and checked
for PW consistency.

Fast check for lack of PW-support Function 3 seeks a
PW-support for τ in rel(ck). Before commencing with this
search, it performs a fast check aiming at detecting a pos-
sible inconsistency (and thus avoiding the search). In a few
words, this check can sometimes establish that there cannnot
exist a PW-support for τ . This is accomplished by exploiting
the lexicographical ordering of the tuples in the constraints’
relations.

In detail, the validity of max τ ′ is first checked in line
1. If isValid returns FALSE, then function setNextTuple
is called to find the lexicographically smallest valid tu-
ple in ck that is greater than max τ ′ and is such that
max τ ′[var(ck) ∩ var(ci)] = τ [var(ck) ∩ var(ci)]. If no
such tuple exists, setNextTuple returns>, and the search ter-
minates since no PW-support for τ exists in ck. If a tuple
max τ ′ is located then Function checkPWtuple is called to
essentially perform a lexicographical comparison between
max τ ′ and τ taking into account the intersection of the two
constraints (line 2). According to the result we may con-
clude that there can be no PW-support of τ in ck and thus
Function 3 will return >.

The addition of this simple check enables maxRPWC+ to
perform extra pruning compared to a typical maxRPWC al-
gorithm. Before explaining how checkPWtuple works, we
demonstrate this with an example.
Example 1 Consider a problem that includes two con-
straints c1 and c2 with var(c1) = {x1, x2, x3, x4} and
var(c2) = {x3, x4, x5, x6}. Assume that the GAC-support
τ = {0, 2, 2, 1} has been located for value 0 of x1 and that
there exists a valid PW-support for τ in c2 (e.g. {2, 1, 2, 2}).
Also, assume that LastPWCc2,x3,2 and LastPWCc2,x4,1

are tuples τ ′ = {2, 2, 0, 1} and τ ′′ = {1, 1, 2, 3}, mean-
ing that max τ ′ = τ ′. Since τ has a PW-support, a maxR-
PWC algorithm will discover this and will continue to check
the next constraint intersecting c1. However, since τ ′[x4] is
greater than τ [x4], it is clear that there is no PW consistent
tuple in c2 that includes values 2 and 1 for x3 and x4 re-
spectively. If we assume that τ is the last GAC-support of
(x1, 0) then maxRPWC+ will detect this and will delete 0
from D(x1), while a maxRPWC algorithm will not.

Function checkPWtuple (Function 4) checks if there can
exist a tuple greater or equal to max τ ′ that has the same
values for the variables of the intersection as τ . Crucially,

537

this check is done in linear time as follows: Assuming
max τ ′ =< (x1, a1), ..., (xm, am) > then this tuple is
scanned from left to right. If the currently examined variable
xk belongs to var(ck) ∩ var(ci) and ak > τ [xk], where ak
is the value of xk in max τ ′, then we conclude that there
can be no PW-support for τ in ck (line 7). If xk does not
belong to var(ck) ∩ var(ci) then if the value it takes in
max τ ′ is the last value in its domain, we continue scan-
ning (line 3). Otherwise, the scan is stopped because there
may exist a tuple larger or equal to max τ ′ that potentially
is a PW-support of τ . However, max τ ′ can still be used to
avoid searching for a PW-support from scratch. Hence it is
returned to seekPWsupport.

Function 3 seekPWsupport (ci, τ, ck, max τ ′)
1: if¬ isValid(ck,max τ ′) thenmax τ ′ ← setNextTuple(ci, τ, ck,max τ ′);
2: ifmax τ ′ 6= > then τ ′ ← checkPWtuple(ci, τ, ck,max τ ′);
3: else return>;
4: while τ ′ 6= > do
5: τ ′′ ← binarySearch(allowed(ck, xch, τ ′[xch]),τ ′);
6: if τ ′′ = τ ′ OR isValid(ck, τ ′′) then return τ ′′;
7: if τ ′′ = > then return>;
8: τ ′ ← setNextTuple(ci, τ, ck, τ ′′);
9: return>;

Searching for PW-support In case no inconsistency is
detected through the fast check, then the search for a PW-
support for τ begins, starting with the tuple τ ′ returned from
checkPWtuple. We first check if τ ′ is an allowed tuple using
binary search in a similar way to GAC-va. However, since
there are more than one variables in the intersection of ci
and ck, the question is which list of allowed tuples to con-
sider when searching. Let us assume that the search will be
performed on the list allowed(ck, xch, τ ′[xch]) of variable
xch. After describing the process, we will discuss possible
criteria for choosing this variable.

Function 4 checkPWtuple (ci, τ, ck,max τ
′)

1: for each xk ∈ var(ck) do
2: if xk /∈ var(ck) ∩ var(ci) then
3: ifmax τ ′[xk] is last value inD(xk) then continue;
4: else break;
5: else
6: ifmax τ ′[xk] < τ [xk] then break;
7: ifmax τ ′[xk] > τ [xk] then return>;
8: returnmax τ ′;

Binary search will either return τ ′ if it is indeed allowed,
or the lexicographically smallest allowed tuple τ ′′ that is
greater than τ ′, or > if no such tuple exists. In the first
case a PW-support for τ has been located and it is returned.
In the third case, no PW-support exists. In the second case,
we check if τ ′′ is valid, by using function isValid and if so,
then it constitutes a PW-support for τ . Otherwise, function
setNextTuple is called taking τ ′′ and returning the smallest
valid tuple for var(ck) that is lexicographically greater than
τ ′′, such that τ ′[var(ck)∩ var(ci)] = τ [var(ck)∩ var(ci)]
(line 8). If setNextTuple returns> the search terminates, oth-

erwise, we continue to check if the returned tuple is allowed
as explained above, and so on.

Selecting the list of allowed tuples Since there are
|var(ck) ∩ var(ci)| variables in the intersection of ci and
ck, there is the same number of choices for the list of al-
lowed tuples to be searched. Obviously, the size of the lists
is a factor that needs to be taken into account. The selection
can be based on any of the following (and possibly other)
criteria:

1. Select the variable xch having minimum size of
allowed(ck, xch, τ

′[xch]).

2. Select the variable xch having the minimum number of
tuples between τ ′ and >.

3. Select the leftmost variable in var(ck) ∩ var(ci).
4. Select the rightmost variable in var(ck) ∩ var(ci).

The first heuristic considers a static measure of the size of
the lists. The second considers a more dynamic and accurate
measure. In the experiments, presented below, we have used
the fourth selection criterion. Although this seems simplis-
tic, as Example 2 demonstrates, there are potentially signifi-
cant benefits in choosing the rightmost variable.

Example 2 Consider a constraint ck on variables x1, . . . , x4
with domains D(x1) = D(x4) = {0, . . . , 9} and D(x2) =
D(x3) = {0, 1}. Assume that we are seeking a PW-support
for tuple τ of constraint ci in ck. Also, var(ck)∩ var(ci) =
{x1, x4}, τ [x1] = 1, τ [x4] = 0, and |allowed(ck, x1, 1)| =
|allowed(ck, x4, 0)|. Figure 1 (partly) shows the lists
allowed(ck, x1, 1) and allowed(ck, x4, 0). If we choose to
search for a PW-support in allowed(ck, x1, 1) then in the
worst case binary search will traverse the whole list since tu-
ples with value 0 for x4 are scattered throughout the list. In
contrast, if we choose allowed(ck, x4, 0) then search can fo-
cus in the highlighted part of the list since tuples with value
1 for x1 are grouped together.

Figure 1: allowed(ck, x1, 1) and allowed(ck, x4, 0).

We now analyze the worst-case complexity of the re-
visePW+ function of maxRPWC+. The symbols M , N , S
are explained in the proof.

Proposition 1 The worst-case time complexity of
revisePW+(ci, xj) is O(d.e.N.M(d+ k.log(S))).

Proof: Let us first consider the complexities of the in-
dividual functions called by seekPWsupport. The cost of
setNextTuple to construct a valid tuple for the variables that
do not belong to the intersection is O(d+ (k − fmin)). The

538

cost of checkPWtuple is linear, since it requires at most O(k)
checks to determine if any of xk ∈ ck is inconsistent with
τ [xk]. The worst-case time complexity of binarySearch is
O(k.log(S)) with S = |allowed(cch, xch, τ ′[xch])|. The
worst-case time complexity for one execution of the loop
body is then O(d+(k−fmin)+k.log(S))=O(d+k.log(S)).
Let us assume that M is the number of sequences of valid
tuples that contain no allowed tuple, and for each tuple
t belonging to such a sequence t[var(ck) ∩ var(ci)] =
τ [var(ck) ∩ var(ci)]. Then M bounds the number of it-
erations of the while loop in seekPWsupport. Therefore
the worst time complexity of seekPWsupport is O(M(d +
k.log(S))).

The cost of isPWconsistent+ is O(e.M(d + k.log(S))),
since in the worst case seekPWsupport is called once for
each of the at most e intersecting constraints. The max-
imun number of iterations for the while loop in revisePW+
is N , where N is the number of sequences of valid tu-
ples in ci containing no allowed tuple. The cost of one
call to seekSupport-va is O(d + k.log(S)) (Lecoutre and
Szymanek 2006). Therefore, for d values the complex-
ity of revisePW+ is O(d.N(e.M(d + k.log(S)) + (d +
k.log(S))))=O(d.e.N.M(d+ k.log(S))).2

If isPWconsistent+ is embedded within an AC3-like algo-
rithm (as maxRPWC1 is) then the worst-case time complex-
ity of maxRPWC+ will be O(e2.k.d.N.M(d + k.log(S)))).
Assuming the implementation of (Lecoutre and Szy-
manek 2006), the space complexity of maxRPWC+ is
O(e.k.|allowed(c, x, a)| + e.k.d), where |allowed(c, x, a)|
is the maximum size of any constraint’s relation and ekd is
the space required for the LastPWC structure.

Regarding the pruning power of maxRPWC+, it is easy to
show that it is strictly stronger than GAC and incomparable
to maxRPWC. With respect to the latter, a maxRPWC al-
gorithm may achieve stronger pruning than maxRPWC+ be-
cause it detects PW-support loss in addition to maxRPWC-
support loss. On the other hand, the check for lack of PW-
support enables maxRPWC+ to prune extra values compared
to maxRPWC.

maxRPWC+ for Intensional Constraints
Although maxRPWC+ is specialized for table constraints, it
can be applied on intensional constraints after some modifi-
cations. This may be useful in cases of constraints without
specialized filtering algorithms, or to simply explore the po-
tential of a higher-order consistency on any given constraint
without having to invent specialized algorithms.

Function 5 seekPWsupport-v (ci, τ, ck,max τ ′)
1: if¬ isValid(ck,max τ ′) thenmax τ ′ ← setNextTuple(ci, τ, ck,max τ ′);
2: ifmax τ ′ 6= > then τ ′ ← checkPWtuple(ci, τ, ck,max τ ′);
3: else return>;
4: while τ ′ 6= > do
5: if isConsistent(ck, τ ′) then return τ ′;
6: τ ′ ← setNextTuple(ci, τ, ck, τ ′);
7: return>;

Function seekSupport-v for intensional constraints is sim-
ilar to the corresponding function (seekSupport) for exten-

sional ones. The difference is that the search for GAC-
support is a linear scan of the tuples after LastPWCci,xj ,aj
in lexicographical order. That is, only the list of valid tuples
is traversed.

The corresponding function that searches for a PW-
support is Function seekPWsupport-v (Function 5). Lines
5-6 show the different approach we use on intensional con-
staints. Instead of interchangeably visiting valid and allowed
tuples, we just check if the valid tuple τ ′ satisfies the con-
straint ck by calling function isConsistent. If τ ′ is inconsis-
tent then a new tuple τ ′ is constructed by setNextTuple (line
6), such that τ ′[var(ck)∩ var(ci)] = τ [var(ck)∩ var(ci)].
If setNextTuple returns > the search terminates, otherwise,
we continue to check if the returned tuple is consistent as
explained above, and so on.

The worst-case time complexity of maxRPWC+ for inten-
sional constraints is O(e2k2d2k−fmin), which is the same
as that of maxRPWC1 if we consider that in the worst case
p = 2k − fmin. The space complexity of maxRPWC+ is
O(ekd) which is the space required for LastPWC and is
the same as maxRPWC1 but lower than both maxRPWC2 and
maxRPWC3.

Experiments
We ran experiments on benchmark non-binary problems
from the CSP Solver Competition2. The arities of the con-
straints in these problems range from 3 to 18. We tried the
following classes: random problems, forced random prob-
lems, chessboard coloration, Schurr’s lemma, aim, modified
Renault, positive table constraints and BDD. Some other
classes typically used in the evaluation of GAC algorithms
for table constraints, such as crossword puzzles and trav-
elling salesman, were ommitted because they include con-
straint intersections on at most one variable. As explained,
maxRPWC+ cannot achieve extra filtering compared to GAC
in such problems.

The algorithms were implemented within a CP solver
written in Java and tested on an Intel Core i5 of 2.40GHz
processor and 4GB RAM. Search used a binary branching
scheme, the dom/wdeg heuristic for variable ordering and
lexicographical value ordering heuristic (Boussemart et al.
2004).

In Table 1 we present indicative results from search algo-
rithms that apply GAC-va, maxRPWC1 and maxRPWC+ on
various instances, as well their average performance in each
problem class. We also include results from the restricted
version of maxRPWC1, denoted RmaxRPWC1, which, as
demonstrated, is almost always beneficial compared to the
full version. maxRPWC+ can clearly outperform GAC-va,
even by orders of magnitude, on many problem classes (i.e.
Positive table-10, aim, BDD). Specifically, GAC-va reached
the cutoff limit on Positive table-10 instances due to the high
memory consumption. In addition, maxRPWC+ is consid-
erably faster than the generic maxRPWC algorithm, show-
ing that specialized algorithms for higher-order consisten-
cies can be very useful in practice.

2http://www.cril.univ-artois.fr/CPAI08/

539

Specifically, maxRPWC+ is always faster than
RmaxRPWC1 and can be orders of magnitude faster
than maxRPWC1. There are classes (i.e. Positive table-8,
Renault-modified), where maxRPWC1 was not able to solve
the majority of the instances within 6 hours (our cutoff
limit). Similarly, GAC-va could not solve any of the
Positive table-10 instances within 6 hours. Significantly,
maxRPWC+ solved all instances within the time limit. There
are problems where GAC-va was faster than maxRPWC+
(e.g. Positive table-8), but the differences were never very
significant.

Table 1: Cpu times (t) in secs and nodes (n) from various
representative problem instances.

Instance GAC-va maxRPWC1 RmaxRPWC1 maxRPWC+
rand-3-20-20- t 147 95 283 46
60-632-fcd-2 n 94,424 8,165 46,192 9,973
rand-3-20-20- t 108 292 22 16
60-632-fcd-15 n 85,940 39,972 5,790 5,800
Rand-fcd t 136 400 229 135
AVERAGE n 105,852 48,559 51,006 42.241
rand-3-20-20 t 122 144 44 29
-60-632-8 n 105,182 17,349 9,060 8,447
rand-3-20-20 t 101 521 230 165
-60-632-9 n 73,408 52,311 50,818 50,353
Random t 304 786 460 323
AVERAGE n 227,085 86,863 102,437 98,800
pt-8-20-5- t 1,203 - 3,572 1,266
18-80-4 n 37,466 - 10,654 9,199
pt-8-20-5- t 493 - 1,741 564
18-80-7 n 15,845 - 4,423 4,126
Positive table-8 t 1,042 - 4,650 1,641
AVERAGE n 47,073 - 15,142 14,349
pt-10-20-10- t - 2,302 2,393 13
5-10000-2 n - 0 0 0
pt-10-20-10- t - 3,723 3,861 690
5-10000-4 n - 0 0 0
Positive table-10 t - 3,864 4,013 653
AVERAGE n - 0 0 0
aim-200-1- t 85 23 94 61
6-unsat-2 n 680,774 154,540 708,211 461,185
aim-200-2- t 705 0.8 1.5 1.3
0-sat-4 n 4,180,497 1,060 3,882 3,882
aim t 165 6 33 30
AVERAGE n 1,038,481 32,038 238,816 214,571
bdd-21-133- t 5,317 734 12 10
18-78-2 n 18,720 22 22 22
bdd-21-133- t 4,312 1,308 28 22
18-78-7 n 36,383 22 22 22
BDD t 4,247 790 18 16
AVERAGE n 34,691 17 17 17
renault-mod-5 t 327 - 883 54

n 1,070 - 95 0
renault-mod-30 t 1,136 - 1,377 529

n 1,468 - 870 882
modified Renault t 138 - 378 113
AVERAGE n 784 - 299 198

RmaxRPWC1 also managed to solve all instances, but it
was typically outperformed by maxRPWC+, in some cases

by very large margins (e.g. Positive table-10). These
differences are due to the stronger pruning achieved by
maxRPWC+ because of the check for lack of PW-support, as
well as the cpu time gained by the fast check for PW-support
and the efficient way of searching for PW-supports.

We also ran maxRPWC+ on two intensionally specified
problems: chessboard coloration and Schurr’s lemma. In
this case we compared it against the generic GAC algorithm
GAC2001/3.1 (Bessière et al. 2005). GAC2001/3.1
took 27 and 118 seconds on average to solve the instances
of these classes respectively, while maxRPWC+ required 41
and 154 seconds. In both cases maxRPWC+ achieved very
little, if any, extra pruning (in Schurr’s lemma instances node
visits where identical). Despite this, the cpu time overhead
was not very significant. In contrast, maxRPWC+ clearly
outperformed maxRPWC1 (947 and 298 secs), and was close
to RmaxRPWC1 (52 and 155 secs).

Figure 2: GAC-va vs. maxRPWC+.

Cpu times from all tested instances comparing
maxRPWC+ to GAC-va (or GAC2001/3.1) are pre-
sented in Figure 2 in a logarithmic scale. Points above
the diagonal correspond to instances that are solved faster
by maxRPWC+. We can clearly see the benefits of our
approach: Although most instances are gathered around
the diagonal indicating closely matched performance, there
are instances from various classes where GAC-va thrashes
while maxRPWC+ does not. On the other hand, there are
no instances where the opposite occurs. In a few words,
maxRPWC+ is clearly more robust than a state-of-the-art
GAC algorithm in classes of problems with interleaved
table constraints, being orders of magnitude faster in some
of these classes.

Related Work
GAC algorithms for table constraints have attracted consid-
erable interest dating back to GAC-Schema (Bessière and
Régin 1996). This generic method can be instantiated to ei-
ther a method that searches the lists of allowed tuples for
suppports, or to one that searches the valid tuples. The

540

GAC-va algorithm of (Lecoutre and Szymanek 2006) im-
proves on GAC-Schema by interleaving the exploration of
allowed and valid tuples using binary search. The inter-
leaved exploration of allowed and valid tuples is also the
main idea in (Lhomme and Régin 2005). However, in this
case it is implemented through the use of an elaborate data
structure (Hologram) introduced in (Lhomme 2004).

In (Gent et al. 2007) alternative data structures for table
constraints were introduced with a Trie structure being the
most efficient one. Also, authors in (Katsirelos and Walsh
2007) used a compact representation for allowed and disal-
lowed tuples which can be constructed from a decision tree
that represents the original tuples.

Simple Tabular Reduction (STR) (Ullmann 2007) and its
variants (Lecoutre 2011) constitute an alternative, and ef-
ficient, approach to enforcing GAC based on the dynamic
maintainance of the support tables. Finally, (Cheng and Yap
2010) uses multi-valued decision diagrams to store and pro-
cess table constraints. Experimental results given in (Cheng
and Yap 2010) show that the mdd approach is the fastest one.
The algorithm of (Lecoutre and Szymanek 2006), on which
we build, is very competitive with the Trie approach, outper-
forms the Hologram method and has the advantage of easier
implementation and lack of complex data strucures over all
other methods.

With respect to higher-order consistencies, there is con-
siderable older work on relation filtering consistencies.
Such methods take advantage of the intersections between
constraints in order to identify and remove inconsistent tu-
ples or to add new constraints to the problem (e.g. (van
Beek and Dechter 1995; Jégou 1993)). Quite recently,
efficient ways to apply such consistencies were proposed
(Karakashian et al. 2010), and new consistencies of this type
were introduced (Lecoutre, Cardon, and Vion 2007). Do-
main filtering higher-order consistencies have also received
attention recently (Bessiere, Stergiou, and Walsh 2008;
Stergiou 2007).

Finally, a relevant work was presented in (Lhomme 2004)
where a method to achieve GAC on a conjunction of two
constraints using the Hologram data structure was proposed.
However, the method was not evaluated experimentally.

Our paper binds together recent advances on GAC for ta-
ble constraints and higher-order domain filtering consisten-
cies contributing to both directions. Specifically, we offer an
efficient method for strong filtering in cases of interleaved
table constraints, and we make higher-order consistencies
more practical by moving from generic to specialized algo-
rithms. In the future we will explore the benefits of combin-
ing domain and relation filtering approaches to the handling
of table constraints.

Conclusion
We presented maxRPWC+, an efficient specialized algorithm
that achieves a higher order local consistency on table con-
straints. This algorithm builds on and extends existing algo-
rithms for maxRWPC and GAC and can be easily adapted
to operate on intensional constraints. In addition, it can be
easily crafted into standard CP solvers. Experimental results

demonstrated the practical usefulness of the proposed algo-
rithm in the presence of interleaved table constraints, show-
ing that maxRPWC+ is clearly more robust than a state-of-
the-art GAC algorithm and considerably faster than generic
maxRPWC algorithms.

References
Balafoutis, T.; Paparrizou, A.; Stergiou, K.; and Walsh, T. 2011.
New algorithms for max restricted path consistency. Constraints
16(4):372–406.
Bessière, C., and Régin, J. 1996. Arc Consistency for General
Constraint Networks: Preliminary Results. In Proceedings of IJ-
CAI’97, 398–404.
Bessière, C.; Régin, J.; Yap, R.; and Zhang, Y. 2005. An Optimal
Coarse-grained Arc Consistency Algorithm. Artificial Intelligence
165(2):165–185.
Bessiere, C.; Stergiou, K.; and Walsh, T. 2008. Domain filter-
ing consistencies for non-binary constraints. Artificial Intelligence
172(6-7):800–822.
Boussemart, F.; Heremy, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In Proceed-
ings of ECAI’04, 482–486.
Cheng, K., and Yap, R. 2010. An mdd-based generalized arc con-
sistency algorithm for positive and negative table constraints and
some global constraints. Constraints 15(2):265–304.
Debruyne, R., and Bessière, C. 2001. Domain Filtering Consisten-
cies. JAIR 14:205–230.
Gent, I. P.; Jefferson, C.; Miguel, I.; and Nightingale, P. 2007.
Data structures for generalised arc consistency for extensional con-
straints. In Proceedings of AAAI’07, 191–197.
Jégou, P. 1993. On the Consistency of General Constraint Satis-
faction Problems. In Proceedings of AAAI’93, 114–119.
Karakashian, S.; Woodward, R.; Reeson, C.; Choueiry, B.; and
Bessiere, C. 2010. A first practical algorithm for high levels of
relational consistency. In Proceedings of AAAI’10, 101–107.
Katsirelos, G., and Walsh, T. 2007. A compression algorithm for
large arity extensional constraints. In Proceedings of the 13th inter-
national conference on Principles and practice of constraint pro-
gramming, CP’07, 379–393. Springer-Verlag.
Lecoutre, C., and Szymanek, R. 2006. Generalized arc consistency
for positive table constraints. In Proceedings of CP’06, 284–298.
Lecoutre, C.; Cardon, S.; and Vion, J. 2007. Conservative Dual
Consistency. In Proceedings of AAAI’07, 237–242.
Lecoutre, C. 2011. Str2: optimized simple tabular reduction for
table constraints. Constraints 16(4):341–371.
Lhomme, O., and Régin, J. 2005. A fast arc consistency algorithm
for n-ary constraints. In Proceedings of AAAI’05, 405–410.
Lhomme, O. 2004. Arc-consistency filtering algorithms for logical
combinations of constraints. In Proceedings of CPAIOR’04, 209–
224.
Stergiou, K. 2007. Strong inverse Consistencies for Non-Binary
CSPs. In Proceedings of ICTAI’07, 215–222.
Ullmann, J. R. 2007. Partition search for non-binary constraint
satisfaction. Inf. Sci. 177(18):3639–3678.
van Beek, P., and Dechter, R. 1995. On the Minimality and
Global Consistency of Row-convex Constraint Networks. JACM
42(3):543–561.
Vion, J., and Debruyne, R. 2009. Light Algorithms for Maintaining
Max-RPC During Search. In Proceedings of SARA’09.

541

