
A Dichotomy for 2-Constraint Forbidden CSP Patterns∗

Martin C. Cooper and Guillaume Escamocher
IRIT, University of Toulouse, France (cooper@irit.fr)

Abstract

Novel tractable classes of the binary CSP (constraint satis-
faction problem) have recently been discovered by study-
ing classes of instances defined by excluding subproblems
described by patterns. The complete characterisation of all
tractable classes defined by forbidden patterns is a challeng-
ing problem. We demonstrate a dichotomy in the case of for-
bidden patterns consisting of two constraints.

Introduction
In a CSP instance the aim is to determine the existence
of an assignment of values to variables such that a set
of constraints are simultaneously satisfied. A fundamen-
tal research question is the identification of tractable sub-
problems of CSP. Classical approaches consist in identi-
fying restrictions either on the constraint relations or on
the (hyper)graph of constraint scopes which imply the ex-
istence of a polynomial-time algorithm. In some cases, di-
chotomies have even been proved (Bulatov, Jeavons, and
Krokhin 2005; Bulatov 2006; Grohe 2007; Marx 2010).

Recently, a new avenue of research has been investigated:
the identification of tractable classes of CSP instances de-
fined by forbidding a specific (set of) subproblem(s). Novel
tractable classes have been discovered by forbidding sim-
ple 3-variable subproblems (Cooper, Jeavons, and Salamon
2010; Cooper and Živný 2011b). This paper presents an
essential first step towards the identification of all such
tractable classes, namely a dichotomy for the special case
of forbidden 2-constraint subproblems.

We first define the notion of a CSP pattern. A pattern can
represent a set of subproblems by leaving the consistency of
some tuples undefined. We use the term point to denote an
assignment of a value to a variable. A pattern is a graph in
which vertices correspond to points and both vertices and
edges are labelled. The label of a vertex corresponding to
a variable-value assignment 〈v, d〉 is simply the variable v
and the label of an edge between two vertices describes the
compatibility of the corresponding pair of assignments.
Definition 1. A pattern is a quintuplet 〈V,A, var,E, cpt〉
comprising: a set V of variables, a set A of points (assign-

∗supported by ANR Project ANR-10-BLAN-0210.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ments), a variable function var : A→ V , a set E ⊆
(
A
2

)
of

edges (unordered pairs of elements of A) such that {a, b} ∈
E ⇒ var(a) 6= var(b), and a Boolean-valued compatibility
function cpt : E → {F, T}, where for notational simplicity
we write cpt(a, b) instead of cpt({a, b}).

For a pattern P = 〈V,A, var,E, cpt〉 and a variable
v ∈ V , we use Av to denote the set of assignments {a ∈
A | var(a) = v} to v. If cpt(a, b) = T then the two assign-
ments (points) a, b are compatible and {a, b} is a compati-
bility edge; if cpt(a, b) = F then the two assignments a, b
are incompatible and {a, b} is an incompatibility edge. In a
pattern, the compatibility of a pair of points a, b such that
var(a) 6= var(b) and (a, b) /∈ E is undefined.

A binary CSP instance is a pattern 〈V,A, var,E, cpt〉
in which the compatibility of each pair of assignments to
distinct variables is specified by the compatibility func-
tion. The question corresponding to the instance is: does
there exist a solution, that is a pairwise-compatible set
of assignments to all variables in V ? The constraint
on variables v1, v2 ∈ V is the 2-variable sub-instance
〈{v1, v2}, A12, var|A12 , E12, cpt|E12〉 where A12 = Av1 ∪
Av2 and E12 = {{a, b} | a ∈ Av1 , b ∈ Av2}. The constraint
between variables v1 and v2 in an instance is non-trivial if
there is at least one incompatible pair of assignments, i.e.
a ∈ Av1

and b ∈ Av2
such that cpt(a, b) = F .

A pattern is a compact way of representing the set of all
instances obtained by arbitrarily specifying the compatibil-
ity of its undefined pairs. Two patterns P and Q are isomor-
phic if they are identical except for a possible renaming of
variables and assignments.

In a CSP instance 〈V,A, var,E, cpt〉, we call the set
{d | 〈v, d〉 ∈ A} of values that can be assigned to vari-
able v the domain of v. The constraint graph of an instance
〈V,A, var,E, cpt〉 is 〈V,H〉, where H is the set of pairs of
variables v1, v2 ∈ V such that the constraint on v1, v2 is
non-trivial.

Definition 2. We say that a pattern P occurs in a pattern P ′

(and P ′ contains P) if P ′ is isomorphic to a pattern Q in the
transitive closure of the following two operations (extension
and merging) applied to P :

extension P = 〈VP , AP , varP , EP , cptP 〉 is a sub-pattern
of Q = 〈VQ, AQ, varQ, EQ, cptQ〉: VP ⊆ VQ, AP ⊆
AQ, varP = varQ|P , EP ⊆ EQ, cptP = cptQ|EP

.

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

464

• •
•��

��
•

P

�
�

�
�

�
�

�
�a

b
c
d

• •
•��

��
•
PPPP

Z

�
�

�
�

�
�

�
� •

•��
��

•

V

�
�

�
�

�
�

�
�

Figure 1: Three patterns

merging Merging two points in P =
〈VP , AP , varP , EP , cptP 〉 transforms P into
Q = 〈VQ, AQ, varQ, EQ, cptQ〉: ∃a, b ∈ AP such
that varP (a) = varP (b) and ∀c ∈ AP such
that {a, c}, {b, c} ∈ EP , cptP (a, c) = cptP (b, c).
Furthermore, VP = VQ, AQ = AP \ {b},
varQ = varP |AQ

, EQ = EP ∪ {{a, x} | {b, x} ∈ EP }
and cptQ(a, x) = cptQ(b, x) if {b, x} ∈ EP ,
cptQ(e) = cptP (e) otherwise.

Consider the three patterns shown in Figure 1. Assign-
ments (points) are represented by bullets, and assignments to
the same variable v are grouped together within an oval rep-
resenting Av . Solid lines represent compatibility edges and
dashed lines incompatibility edges. For example, P consists
of 4 points a, b ∈ Av0 , c, d ∈ Av1 such that cpt(a, c) =
cpt(b, c) = T and cpt(b, d) = F . P occurs in Z since Z
is an extension of P . P also occurs in V since V can be
obtained from P by merging points a, b.

Definition 3. If P is a pattern, CSP(P) denotes the set of
binary CSP instances Q in which P does not occur. Pattern
P is tractable if there is a polynomial-time algorithm to solve
CSP(P); P is intractable if CSP(P) is NP-complete.

Preprocessing Operations
This section describes polynomial-time simplification
operations that can be applied to a CSP instance
〈V,A, var,E, cpt〉. If for some variable v, Av is a singleton
{a}, then the elimination of a single-valued variable corre-
sponds to making the assignment a and consists of elimi-
nating v from V and eliminating a from A along with all
assignments b which are incompatible with a.

Arc consistency consists in eliminating from A all assign-
ments a for which there is some variable v 6= var(a) in V
such that ∀b ∈ Av , cpt(a, b) = F .

If var(a) = var(b) and for all variables v 6= var(a),
∀c ∈ Av , cpt(a, c) = T ⇒ cpt(b, c) = T , then we can elim-
inate a from A by neighbourhood substitution, since in any
solution in which a appears, we can replace a by b (Freuder
1991; Cooper 1997). None of single-valued variable elimi-
nation, arc consistency or neighbourhood substitution when
applied to an instance in CSP(P) can introduce the forbid-
den pattern P . To simplify our proofs, we assume through-
out that we have applied these three operations until conver-
gence to all CSP instances.

We now consider two new simplification operations. They
are simplification operations that can be applied to certain
CSP instances. We can always perform the fusion of two
variables v1, v2 in a CSP instance into a single variable v
whose set of assignments is the cartesian product of the sets
of assignments to v1 and to v2. Under certain conditions, we

do not need to keep all elements of this cartesian product
and, indeed, the total number of assignments actually de-
creases.

Definition 4. Consider a CSP instance 〈V,A, var,E, cpt〉
with v1, v2 ∈ V . Suppose that there is a fusion function
f : Av1 → Av2 , such that ∀u ∈ Av1 , whenever u is in
a solution S, there is a solution S′ containing both u and
f(u). Then we can perform the simple fusion of v2 and v1
to create a new fused variable v. The resulting instance is
〈V ′, A′, var′, E′, cpt′〉 defined by V ′ = (V \{v1, v2})∪{v},
A′ = A \ Av2

, var′(u) = var(u) for all u ∈ A′ \ Av1

and var′(u) = v for all u ∈ Av1
, E′ = {(p, q) ∈

(
A′

2

)
|

var′(p) 6= var′(q)}, cpt′(p, q) = cpt(p, q) if p, q ∈ A′ \
Av1

, cpt′(u, q) = cpt(u, q) ∧ cpt(f(u), q) for all u ∈ Av1

and all q ∈ A′ \Av1 .

Definition 5. Consider a CSP instance 〈V,A, var,E, cpt〉
with v1, v2 ∈ V and a hinge value a ∈ Av1

. Suppose that
there is a fusion function f : Av1

\ {a} → Av2
, such that

∀u ∈ Av1
\ {a}, whenever u is in a solution S, there is a

solution S′ containing both u and f(u). Then we can per-
form the complex fusion of v2 and v1 to create a new fused
variable v. The resulting instance is 〈V ′, A′, var′, E′, cpt′〉
defined by V ′ = (V \ {v1, v2}) ∪ {v}, A′ = A \ {a},
var′(u) = var(u) for all u ∈ A′ \ (Av1 ∪ Av2) and
var′(u) = v for all u ∈ (Av1 \ {a}) ∪Av2 , E′ = {(p, q) ∈(
A′

2

)
| var′(p) 6= var′(q)}, cpt′(p, q) = cpt(p, q) if p, q ∈

A′ \ (Av1
∪ Av2

), cpt′(u, q) = cpt(u, q) ∧ cpt(f(u), q)
for all u ∈ Av1

\ {a} and all q ∈ A′ \ (Av1
∪ Av2

),
cpt′(p, q) = cpt(a, q) ∧ cpt(p, q) for all p ∈ Av2

and all
q ∈ A′ \ (Av1 ∪Av2).

Lemma 1. If I is a CSP instance and I ′ the result of a (sim-
ple or complex) fusion of two variables in I , then I ′ is solv-
able iff I is solvable.

Proof. We give the proof only for the case of a complex
fusion, since a simple fusion can be considered as a special
case. Among the assignments in the cartesian product of Av1

and Av2
, it is sufficient, in order to preserve solvability, to

keep only those of the form (a, q) where q ∈ Av2
or of the

form (u, f(u)) where u ∈ Av1
\{a}. To complete the proof,

it suffices to observe that in A′ we use q ∈ Av2
to represent

the pair of assignments (a, q) and u ∈ Av1
\{a} to represent

(u, f(u)).

Fusion preserves solvability and the total number of as-
signments decreases by at least 1 (in fact, by |Av2

| in the
case of a simple fusion). However, when solving instances
I ∈ CSP(P), for some pattern P , a fusion operation will
only be useful if it does not introduce the forbidden pattern
P .

Reduction and Intractable Patterns
In a pattern P , a point a which is linked by a single com-
patibility edge to the rest of P is a dangling point. If an arc
consistent instance I does not contain the pattern P then it
does not contain the pattern P ′ which is equivalent to P in

465

which the dangling point a and the corresponding compati-
bility edge have been deleted. Thus, to decide tractability we
only need consider patterns without dangling points.

Definition 6. We say that a pattern P can be reduced to
a pattern Q, and that Q is a reduction of P , if Q is in the
transitive closure of the three operations extension, merging
and dp-elimination applied to P , where dp-elimination is the
following operation:

dp-elimination Eliminating a dangling point and its cor-
responding compatibility edge from P transforms P into
Q.

The following lemma follows immediately from the defi-
nitions.

Lemma 2. Let P and Q be two patterns, such that P can
be reduced to Q. Let I be a CSP instance satisfying arc con-
sistency. If Q occurs in I , then P also occurs in I . If Q is
tractable, then P is tractable. If P is intractable, then Q is
intractable.

It follows that we only need to study those patterns that
cannot be reduced to a known tractable pattern and that are
not the reduction of a known intractable pattern. In the re-
mainder of this section we prove some results that are es-
sential for the proof of the 2-constraint dichotomy given in
the following section.

Lemma 3. Let P be a pattern such that a constraint in P
contains two distinct incompatibility edges that cannot be
merged. Then P is intractable.

Proof. Let P be a pattern such that a constraint in P con-
tains two non-mergeable incompatibility edges. Let SAT1 be
the set of SAT instances with at most one occurrence of each
variable in each clause. SAT1 is trivially equivalent to SAT
which is well known to be NP-complete (Cook 1971). It suf-
fices to give a polynomial reduction from SAT1 to CSP(P).
We suppose that we have a SAT1 instance I = {V, S} with
V a set of variables {v1, v2, . . . , vn} and S a set of clauses
{C1, C2, . . . , Ck} such that each clause Ci is a disjunction
of ci literals l1i ∨ · · · ∨ lcii . We create the following CSP in-
stance I ′:

• n+ k variables v′1, . . . , v
′
n+k.

• ∀v′i with 1 ≤ i ≤ n, two points "vi" and "vi" in Av′i
.

• ∀v′i with n + 1 ≤ i ≤ n + k, ci−n points l1i−n, . . . , l
ci−n

i−n
in Av′i

.
• ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ ci, an incompatibility edge

between the point lji ∈ Av′n+i
and the occurrence in

Av′1
, . . . , Av′n of the literal lji .

By construction, I ′ has a solution if and only if I has a solu-
tion. Furthermore, each time an incompatibility edge occurs
in a constraint C, this constraint C is between a CSP variable
v′i representing the SAT1 variable vi and another CSP vari-
able v′n+j representing the SAT1 clause Cj . Since vi occurs
at most once in Cj , then there is only one incompatibility
edge in C. So I ′ does not contain the pattern P . So we have
reduced SAT1 to CSP(P).

Definition 7. Given a pattern P = 〈V,A, var,E, cpt〉, a
variable v ∈ V , and a point a ∈ Av , we say that a is ex-
plicitly compatible (respectively explicitly incompatible) if
there is a point b ∈ A such that a is compatible with b (re-
spectively such that a is incompatible with b).

The following lemma follows from the definition of merg-
ing.
Lemma 4. Let P be a non-mergeable pattern. Then for ev-
ery variable v in P , there is at most one point in Av which
is not explicitly incompatible.
Lemma 5. Let Z be the pattern on two variables v and
v′ (shown in Figure 1), with points a, b ∈ Av and points
c, d ∈ Av′ such that a is compatible with both c and d, b is
compatible with c and incompatible with d. Z is intractable.

Proof. Since 3-COLOURING is NP-complete (Garey and
Johnson 1979), it suffices to give a polynomial reduction
from 3-COLOURING to CSP(Z), the set of CSP instances in
which the pattern Z does not occur.

Define the constraint Rs,t ⊆ {1, 2, 3}2 by

Rs,t = {〈u, v〉|(u = s ∧ v = t) ∨ (u 6= s ∧ v 6= t)}

It is easy to verify that Rs,t does not contain the pat-
tern Z. Consider the 5-variable gadget with variables
vi, vj , u1, u2, u3, each with domain {1, 2, 3}, and with con-
straints Rk,k on variables (vi, uk) (k = 1, 2, 3) and con-
straints R1+(k mod 3),k on variables (uk, vj) (k = 1, 2, 3).
The joint effect of these six constraints is simply to im-
pose the constraint vi 6= vj . Any instance 〈V,E〉 of 3-
COLOURING, with V = {1, . . . , n}, can be reduced to an
instance of CSP(Z) with variables v1, . . . , vn by placing a
copy of this gadget between every pair of variables (vi, vj)
such that {i, j} ∈ E. This reduction is clearly polyno-
mial.

Lemma 6. Any 2-constraint pattern P on 3 variables in
which both constraints contain an incompatibility edge and
two intersecting but non-mergeable compatibility edges is
intractable.

Proof. We will reduce CSP to CSP(P). Let I be a CSP in-
stance. For each (v, w) in I such that there is a non-trivial
constraint between v and w, we introduce two new variables
v′ and w′ such that the domain of v′ is the same as the do-
main of v, the domain of w′ is the same as the domain of w.
We add equality constraints between v and v′, and between
w and w′, and we add between v′ and w′ the same constraint
as there was between v and w. All other constraints involv-
ing v′ or w′ are trivial. We also replace the constraint be-
tween v and w by a trivial constraint. Let I ′ be the instance
obtained after all such transformations have been performed
on I . By construction, I ′ has a solution if and only I has a
solution.

We now suppose that we have three variables v0, v1 and
v2 in I ′ such that there are non-trivial constraints between v0
and v1 and between v0 and v2. By construction, at least one
of these constraints is an equality constraint. By definition,
a point in an equality constraint is compatible with one and
only one point. Hence, P cannot occur on v0, v1 and v2. This

466

•

•

•

�
�
��

•Q
Q
QQ

T1

�
�

�
�

�
�

�
��

�
�
�

c

d

b
a

•

•

•

�
�
��

•PPPP
•

T2

�
�

�
�

�
�

�
�

�
�

�
�

•

•

•

�
�
��
•PPPP

•

T3

�
�

�
�

�
�

�
�

�
�

�
�
•

•

•

�
�
��

•Q
Q
QQ

•
�
�
��

T4

�
�

�
�

�
�

�
��

�
�
�•

•

•

�
�
��
•Q

Q
QQ

T5

�
�

�
�

�
�

�
��

�
�
�

Figure 2: The set of tractable patterns T

polynomial reduction from CSP to CSP(P) shows that P is
intractable.

2-Constraint Pattern Dichotomy
Let T = {T1, T2, T3, T4, T5} be the set of patterns shown in
Figure 2.

No pattern in T can be reduced to a different pattern in T .
As we will show, each Ti defines a tractable class of binary
CSP instances. For example, T4 defines a class of instances
which includes as a proper subset all instances with zero-
one-all constraints (Cooper, Cohen, and Jeavons 1994), a
generalisation of 2SAT clauses to multi-valued logics. Since
tractable 2-constraint patterns on 4 variables are necessarily
composed of two trivial 1-constraint patterns, we restrict our
attention to 2-constraint patterns on 3 variables.

Theorem 1. Let P be a two-constraint pattern on three vari-
ables. Then P is tractable if and only if P is reducible to one
of the patterns in T .

Proof. ⇒: From Lemma 3, we know that we only have
to study patterns with at most one incompatibility edge in
each constraint. If one of the constraints does not contain
any incompatibility edge at all, then the pattern is reducible
by merging and/or dp-elimination to a pattern with only one
constraint. It is not difficult to show that all 1-constraint
tractable pattern are reducible to one of the patterns in T . So
we can assume from now on that there is exactly one incom-
patibility edge (a ∈ Av0 , b ∈ Av1) between v0 and v1, and
also exactly one incompatibility edge (c ∈ Av0 , d ∈ Av2)
between v0 and v2. The “skeleton” of incompatibility edges
of an irreducible tractable pattern can thus take two forms
according to whether a = c (skeleton of type 1) or a 6= c
(skeleton of type 2).

From Lemma 4 we know that |Av| ≤ 2 for each vari-
able v with only one explicitly incompatible point, and that
|Av| ≤ 3 for each variable v with two explicitly incom-
patible points. We know from Lemmas 5 and 6 that any 2-
constraint pattern on 3 variables containing Z or in which
both constraints contain an incompatibility edge and two
non-mergeable compatibility edges is intractable. We know

that we have two possible incompatibility skeletons to study,
each one implying a maximum number of points appearing
in the pattern. By exhaustive search over all patterns, we can
deduce that all tractable patterns with an incompatibility-
edge skeleton of type 1 are reducible by extension, merging
and dp-elimination to one of T1 or T2, and that all tractable
patterns with an incompatibility-edge skeleton of type 2 are
reducible to one of T3, T4 or T5. So the only possible irre-
ducible tractable patterns are T1, . . . , T5.
⇐: We now give the tractability proofs for all patterns in

T . More detailed proofs can be found in the arXiv version
of this paper (Cooper and Escamocher 2012).

Proof of tractability of T1 : Consider an instance from
CSP(T1).

We suppose we forbid the pattern T1. Let the gadget X
be the pattern on two variables v0, v1 with points a, b ∈ Av0

and c, d ∈ Av1
such that a is incompatible with c and com-

patible with d, and b is compatible with c and incompatible
with d.

Suppose that the gadget X occurs in an instance. Suppose
a is in a solution S. Let e ∈ Av2

be such that v2 6= v0,
v2 6= v1 and e ∈ S. Let f be the point of S in v1.

If b is incompatible with e then a, b, d and e form the
forbidden pattern. So b is compatible with e. Similarly, if c
is incompatible with e, then a, c, f and e form the forbidden
pattern. So c is compatible with e. So if we replace a by b
and f by c in S, then we have another solution. So if a is in
a solution, then b is also in a solution. So we can remove a
while preserving the solvability of the instance.

So we can assume from now on that the gadget X doesn’t
occur in the instance. The following lemma indicates when
we can perform fusion operations.

Lemma 7. Consider a (simple or complex) fusion of two
variables v, v′ in an instance in CSP(T1). Suppose that
whenever (a, a′) and (b, b′) are pairs of fused points dur-
ing this fusion, such that a 6= b ∈ Av and a′ 6= b′ ∈ Av′ ,
then either a and b′ are incompatible or b and a′ are incom-
patible. Then the pattern T1 cannot be introduced by this
fusion.

Proof. By the definition of (simple or complex) fusion, the
only way that T1 could be introduced is when the two points
in the right-hand variable of T1 are created by the fusion of
pairs of points (a, a′) and (b, b′) such that the compatibility
of the points a, b ∈ Av and a′, b′ ∈ Av′ with the two other
points c, d of T1 are given by: cpt(c, a) = cpt(d, a′) = F ,
cpt(c, b) = cpt(c, b′) = cpt(a, a′) = cpt(b, b′) = cpt(d, b)
= cpt(d, b′) = T .

Now, if a and b′ were incompatible, then T1 was already
present on points c, a, b, b′ in the original instance, and hence
cannot be introduced by the fusion. Similarly, if b and a′

were incompatible, then T1 was already present on points b,
a′, b′, d in the original instance.

Definition 8. ∀v, v′, ∀a, b ∈ Av , we say that b is better than
a with respect to v′, which we denote by a ≤ b for (v, v′)
(or for v′), if every point in Av′ compatible with a is also
compatible with b.

467

It is easy to see that ≤ is a partial order. We also have the
relations ≥, <,> and =, derived in the obvious way from ≤.

Lemma 8. In an instance in CSP(T1),

1. ∀(v, v′), the order ≤ on Av with respect to v′ is total.
2. ∀v, ∀a, b ∈ Av , there is v′ such that a < b for v′.
3. ∀v, ∀a, b ∈ Av , there is only one v′ such that a < b for

v′.

Proof. 1. Because the gadget X cannot occur.
2. Otherwise b is dominated by a and we can remove it by

neighbourhood substitution.
3. Because of the initial forbidden pattern.

By using the properties on the order ≤, it is possible to
show that we can partition the instance into three sets of vari-
ables, such that we can apply fusion operations as described
in Lemma 7 between two variables from a same set, if the
constraint between these two variables is non-trivial. We re-
peat the process until convergence. It can be shown that one
of the three sets is reduced by the fusion operations to a sin-
gle variable and that at this point, we have an instance with
two sets of variables F and G = V \ F such that:

• there is no non-trivial constraint between v and v′ if
v, v′ ∈ F or v, v′ ∈ G.
• ∀v ∈ G, ∀g ∈ Av , g is incompatible with points in Av′

for one and only one variable v′ ∈ F . Furthermore, g is
incompatible with all points of Av′ but one.
• The only possible non-trivial constraint between a vari-

able v ∈ G and a variable v′ ∈ F is of the following
form: there is a point b ∈ Av incompatible with all but
one of the points in Av′ , and ∀c ∈ Av with c 6= b, c is
compatible with all points in Av′ .

The total number of assignments decreases when we fuse
variables, so the total number of fusions that can be per-
formed is linear in the size of the original instance.

We call NOOSAT (for Non-binary Only Once Sat) the
following problem: a set of variables V = {v1, v2, . . . , ve},
a set of values A = {a1, a2, . . . , an}, and a set of clauses
C = {C1, C2, . . . , Cf} such that: each clause is a disjunc-
tion of literals, with a literal being in this case of the form
vi = aj , and ∀i, j, p, q((vi = aj) ∈ Cp) ∧ ((vi = aj) ∈
Cq)⇒ p = q.

Lemma 9. CSP(T1) can be reduced to NOOSAT in polyno-
mial time.

Proof. We suppose we have a binary CSP instance in
CSP(T1) and preprocessed as described above. We know
that the non-trivial constraints between variables v ∈ G and
v′ ∈ F are all of the form v = b ⇒ v′ = a. Furthermore,
each variable-value assignment v = b occurs in exactly one
such constraint. For any v ∈ G, we can replace the set of
such constraints v = bi ⇒ vi = ai, for all values bi in the
domain of v, by the clause (v1 = a1) ∨ . . . ∨ (vd = ad). It
only remains to prove that no literal appears in two distinct
clauses. Suppose that we have a literal v1 = a which occurs

• •
•

PPPP•

b 6= c

N�
�

�
�

�
�

�
�

a
f

b
c

•

•
•��

��
•

b 6= c

W�
�

�
�

�
�

�
�

a
g

b
c

Figure 3: Two gadgets

in two distinct clauses. Then there must have been two con-
straints v2 = b ⇒ v1 = a and v3 = c ⇒ v1 = a and with
v1 ∈ F, v2 6= v3 ∈ G. Let a′ 6= a be a point in Av1

. Then b
and c are both incompatible with a′ but compatible with a.
But this is precisely the forbidden pattern. This contradiction
shows that CSP(T1) can be reduced to NOOSAT.

The constraints in NOOSAT are convex when viewed as
{0,∞}-valued cost functions, and the clauses are non over-
lapping. So, from (Cooper and Živný 2011a), it is solvable
in polynomial time, and hence T1 is tractable.

Proof of tractability of T2 : Consider an instance from
CSP(T2).

Let N be the gadget shown in Figure 3: two variables v0
and v1 with points a, f ∈ Av0 , b, c ∈ Av1 , with b 6= c, such
that a is compatible with both b and c, and f is incompatible
with c. Suppose we have the gadget N . Let v2 be a variable
with v2 6= v0, v2 6= v1 and let e be a point in Av2

such that
b and e are compatible. If c is incompatible with e, then we
have the forbidden pattern T2 on a, f , c, b, e. So c is com-
patible with e. If all the points in Av0

which are compatible
with b are also compatible with c, then we can remove b by
neighbourhood substitution. So, assuming that neighbour-
hood substitution operations have been applied until conver-
gence, if we have the gadget N , then there is a point g ∈ Av0

compatible with b and incompatible with c.
Let v3 6= v0, v1. By arc consistency, there is h ∈ Av3 such

that h is compatible with b. If c and h are incompatible, then
we have the forbidden pattern T2 on a, g, c, b, h. So c and
h are compatible. If there is i ∈ Av3

such that c and i are
incompatible, then we have the forbidden pattern on h, i, c,
b, g. So c is compatible with all the points in Av3

. So, if we
have the gadget N , then c is compatible with all the points
outside Av0

∪Av1
.

Definition 9. A constraint C between two variables v and
v′ is functional from v to v′ if ∀a ∈ Av , there is one and only
one point in Av′ compatible with a.

Let the gadget V − be the pattern comprising three vari-
ables v4, v5, v6 and points a ∈ Av4 , b ∈ Av5 , c ∈ Av6 such
that a is incompatible with both b and c.

From now on, since V − is a tractable pattern (Cooper and
Živný 2011b), we only need to consider the connected com-
ponents of the constraint graph which contain V −. We say
a point p is weakly incompatible with a variable v if there
exists some q ∈ Av such that p is incompatible with q.

468

Lemma 10. If in an instance from CSP(T2), we have the
gadget V −, then the constraint between v5 and v4 is func-
tional from v5 to v4 and the constraint between v4 and v6 is
functional from v6 to v4.

Proof. By symmetry, it suffices to prove functionality from
v5 to v4. We suppose we have the gadget V −. Let d ∈ Av5

be compatible with a. Since a is weakly incompatible with
two different variables, a, b and d cannot be part of the gad-
get N . So the only point in Av4

compatible with d is a. So if
a point in Av4

is compatible with a, then it is only compati-
ble with a. Likewise, if a point in Av6

is compatible with a,
then it is only compatible with a.

Let f 6= a be a point in Av4
. By arc consistency, we have

d ∈ Av5
and e ∈ Av6

such that a is compatible with d and
with e. From the previous paragraph, we know that both d
and e are incompatible with f .

So d, e and f form the gadget V −. So each point in Av5

and Av6 compatible with f is compatible with only one point
of Av4 . So each point in Av5 and Av6 compatible with a
point in Av4 is compatible with only one point of Av4 . By
arc consistency, each point of Av5 and Av6 is compatible
with exactly one point of Av4

. So the constraint between v4
and v5 is functional from v5 to v4.

Lemma 11. In a connected component of the constraint
graph containing V − of an instance from CSP(T2), all con-
straints are either functional or trivial.

Proof. Let P (V) be the following property: V is a con-
nected subgraph of size at least two of the constraint graph
and all constraints in V are either functional or trivial.

P ({v4, v5} is true from Lemma 10.
Let Vall be the set of all variables of the connected sub-

graph of the constraint graph containing V −. Let V be a
maximum (with respect to inclusion) subset of Vall for which
P (V). Let V ′ = Vall\V . Let v′ ∈ V ′. Let v ∈ V be such
that C(v, v′) (the constraint on v, v′) is non-trivial. So there
is d ∈ Av and e ∈ Av′ such that d and e are incompatible.
Since V is connected and of cardinality at least two, then
there is v′′ ∈ V such that C(v, v′′) is functional. By arc con-
sistency and elimination of single-valued variables, there is
necessarily a point f ∈ Av′′ such that d and f are incompat-
ible. So d, e and f form the gadget V −. From Lemma 10 we
know C(v, v′) is functional. So P (V) is true for all subsets
of Vall.

Lemma 12. In an instance from CSP(T2), for all variables
v, all points in Av are weakly incompatible with the exact
same set of variables.

Proof. Let a ∈ Av be weakly incompatible with v′. So
C(v, v′) is non trivial. So C(v, v′) is functional.

If C(v, v′) is functional from v to v′, then a point in Av

can be compatible with only one point in Av′ . We can as-
sume, by elimination of single-valued variables, that there
are at least two points in Av′ , so every point in Av is weakly
incompatible with v′.

If C(v, v′) is functional from v′ to v, then let b 6= a in
v. By arc consistency, we know there is c ∈ Av′ such that
a and c are compatible. Since C(v, v′) is functional from v′

to v, then c is compatible with only one point in Av , in that
case a, so b is incompatible with c. So every point in Av is
weakly incompatible with v′.

So ∀(v, v′), a ∈ Av weakly incompatible with v′ ⇒ ∀b ∈
Av, b weakly incompatible with v′.

Definition 10. A sequence of variables (v0, v1, . . . , vk) is a
path of functionality if ∀0 ≤ i ≤ k − 1 : C(vi, vi+1) is
functional from vi to vi+1.

Lemma 13. In an instance from CSP(T2), for all pairs of
variables v, v′, either v′ is a leaf in the constraint graph, or
there is a path of functionality from v to v′.

Proof. Since we are in a connected component, there is
a path of incompatibility (v0 = v, v1, v2, . . . , vk = v′)
with all vi different. If v′ is not a leaf, then we have a
path of incompatibility (v0, v1, v2, . . . , vk−1, vk, vk+1) with
vk+1 6= vk−1. From Lemma 12 we have a path of incompati-
bility (a0 ∈ Av0 , a1 ∈ Av1 , . . . , ak ∈ Avk

, ak+1 ∈ Avk+1
).

So ∀1 ≤ i ≤ k, ai−1, ai and ai+1 form the gadget V −.
So from Lemma 10, ∀1 ≤ i ≤ k, C(vi−1, vi) is functional
from vi−1 to vi. So we have a path of functionality from v
to v′.

Leaves can be added to an existing solution by arc consis-
tency. So once we have removed all the points we can (from
the gadget N) we only have to set an initial variable v0 and
see if the q chains of implications (with q being the num-
ber of points in Av0) lead to a solution. So the pattern T2 is
tractable.

Proof of tractability of T3 : Consider an instance from
CSP(T3).

Suppose that the gadget N , shown in Figure 3, occurs in
the instance and let d be a point in Av2

, with v2 6= v0, v1. If
d is compatible with c but not with b, then we have the for-
bidden pattern T3. So if c is compatible with a point outside
of Av0 , then b is also compatible with the same point.

Let S be a solution containing c. Let e be the point of
S in Av0 . If e is compatible with b, then we can replace c
by b in S while maintaining the correctness of the solution,
since all the points in the instance outside of Av0

which are
compatible with c are also compatible with b.

If e is not compatible with b, then edges {b, e}, {e, c} and
{c, a} form the gadget N . So, by our previous argument, if
e is compatible with a point outside of Av1

, then a is also
compatible with the same point. We can then replace c by
b and e by a in S while maintaining the correctness of the
solution, since all the points in the instance outside of Av0

which are compatible with c are also compatible with b and
all the points in the instance outside of Av1 which are com-
patible with e are also compatible with a. So if a solution
contains c, then there is another solution containing b. Thus
we can remove c while preserving solvability.

So each time the gadget N is present, we can remove
one of its points and hence eliminate N . The gadget N is
a known tractable pattern since forbidding N is equivalent
to saying that all constraints are either trivial or bijections.

469

So if it is not present, then the instance is tractable. It follows
that the pattern T3 is tractable.

Proof of tractability of T4 : Consider an instance from
CSP(T4).

Let W be the gadget shown in Figure 3: two variables v0
and v1 such that we have a in Av0 , b, c, g in Av1 , with b 6= c,
a compatible with both b and c, and a incompatible with g.
Suppose we have W in the instance.

Let f be a point in Av2 , with v2 6= v0, v1. If f is compat-
ible with b but not with c (or compatible with c but not with
b), then we have the forbidden pattern T4. So all the points of
the instance not in Av0

or Av1
have the same compatibility

towards b and c.
If all points in Av0

compatible with b are also compatible
with c, then all the points in the instance compatible with b
are also compatible with c and by neighborhood substitution
we can remove b. Thus we can assume there is d in Av0

such
that d is compatible with b but not with c.

Let S be a solution containing c. Let e be the point of S in
v0. If e is compatible with b, then we can replace c by b in S
while maintaining the correctness of the solution, since b and
c have the same compatibility towards all the points in the
instance outside of Av0

and Av1
. If e is not compatible with

b, then edges {b, e}, {b, a} and {b, d} form the gadget W .
So, by our argument above, a and d have the same compat-
ibility towards all the points in the instance outside of Av0

and Av1
. Similarly, edges {c, d}, {c, a} and {c, e} form the

gadget W . So a and e have the same compatibility towards
all the points in the instance outside of Av0

and Av1
. So d

and e have the same compatibility towards all the points in
the instance outside of Av0 and Av1 . Thus we can replace c
by b and e by d in S while maintaining the correctness of the
solution, since b and c have the same compatibility towards
all the points in the instance outside of Av0

and Av1
and e

and d have the same compatibility towards all the points in
the instance outside of Av0

and Av1
. So if a solution con-

tains c, then there is another solution containing b. Thus we
can remove c.

Therefore, each time the gadget W is present, we can re-
move one of its points. The gadget W is a known tractable
pattern since forbidding W is equivalent to saying that all
constraints are zero-one-all (Cooper, Cohen, and Jeavons
1994). So if it is not present, the instance is tractable. Hence
the pattern T4 is tractable.

Proof of tractability of T5 : The pattern T5 is a sub-
pattern of the broken-triangle pattern BTP , a known
tractable pattern (Cooper, Jeavons, and Salamon 2010) on
three constraints. So the pattern T5 is tractable.

Conclusion
We have proved a dichotomy for classes of binary CSP in-
stances defined by forbidding 2-constraint patterns. This has
allowed us to identify novel tractable classes, including, for
example, a new generalisation of zero-one-all constraints.
An avenue for future research is to investigate the possible
generalisations of the five tractable classes defined by for-
bidding patterns T1, . . . , T5, by replacing binary constraints

by k-ary constraints (k > 2) or by adding extra constraints
to the patterns.

References
Bulatov, A.; Jeavons, P.; and Krokhin, A. 2005. Classifying
the complexity of constraints using finite algebras. SIAM
Journal on Computing 34(3):720–742.
Bulatov, A. A. 2006. A dichotomy theorem for constraint
satisfaction problems on a 3-element set. Journal of the
ACM 53(1):66–120.
Cohen, D. A.; Cooper, M. C.; Green, M. J.; and Marx, D.
2011. On guaranteeing polynomially bounded search tree
size. In CP 2011, 160–171.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In STOC: Proceedings of the ACM symposium on
Theory of computing, 151–158. ACM.
Cooper, M. C., and Escamocher, G. 2012. A dichotomy for
2-constraint forbidden CSP patterns. CoRR abs/1201.3868.
Cooper, M. C., and Živný, S. 2011a. Hierarchically nested
convex VCSP. In CP 2011, 187–194.
Cooper, M. C., and Živný, S. 2011b. Hybrid tractability
of valued constraint problems. Artificial Intelligence 175(9-
10):1555–1569.
Cooper, M. C.; Cohen, D. A.; and Jeavons, P. G. 1994.
Characterising Tractable Constraints. Artificial Intelligence
65:347–361.
Cooper, M. C.; Jeavons, P. G.; and Salamon, A. Z.
2010. Generalizing constraint satisfaction on trees: Hybrid
tractability and variable elimination. Artificial Intelligence
174(9–10):570–584.
Cooper, M. C. 1997. Fundamental properties of neighbour-
hood substitution in constraint satisfaction problems. Artifi-
cial Intelligence 90:1–24.
Freuder, E. 1991. Eliminating Interchangeable Values in
Constraint Satisfaction Problems. In Proceedings of AAAI-
91, 227–233.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
San Francisco, CA.: W. H. Freeman.
Grohe, M. 2007. The complexity of homomorphism and
constraint satisfaction problems seen from the other side.
Journal of the ACM 54(1):1–24.
Marx, D. 2010. Tractable hypergraph properties for con-
straint satisfaction and conjunctive queries. In STOC ’10:
Proceedings of the 42nd ACM symposium on Theory of com-
puting, 735–744. ACM.

470

