
DUCT: An Upper Confidence Bound Approach
to Distributed Constraint Optimization Problems

Brammert Ottens and Christos Dimitrakakis and Boi Faltings
EPFL, Lausanne, Switzerland
{first-name.last-name@epfl.ch}

Abstract

The Upper Confidence Bounds (UCB) algorithm is a well-
known near-optimal strategy for the stochastic multi-armed
bandit problem. Its extensions to trees, such as the Upper
Confidence Tree (UCT) algorithm, have resulted in good so-
lutions to the problem of Go. This paper introduces DUCT,
a distributed algorithm inspired by UCT, for solving Dis-
tributed Constraint Optimization Problems (DCOP). Bounds
on the solution quality are provided, and experiments show
that, compared to existing DCOP approaches, DUCT is able
to solve very large problems much more efficiently, or to find
significantly higher quality solutions.

1 Introduction
The field of Distributed Constraint Optimization (DCOP)
was introduced in (Yokoo et al. 1998) in its satisfaction
form. A DCOP can be used to model distributed coordi-
nation problems. For example, in (Maheswaran, Pearce, and
Tambe 2004) meeting scheduling problems are modeled as
a DCOP. In (Ali, Koenig, and Tambe 2005) a sensor net-
work problem is transformed into a DCOP, and in both (Ot-
tens and Faltings 2008) and (Léauté, Ottens, and Faltings
2010) a transportation problem is solved using DCOP meth-
ods. Existing DCOP algorithms can be roughly subdivided
into search based(SynchBB (Hirayama and Yokoo 1997),
ADOPT (Modi et al. 2005)), inference based (DPOP (Petcu
and Faltings 2005), O-DPOP (Petcu and Faltings 2006)) and
local search based methods (MGM (Maheswaran, Pearce,
and Tambe 2004), MGM2 (Maheswaran, Pearce, and Tambe
2004) and DSA (Zhang et al. 2005)).

This paper proposes a novel distributed approach for solv-
ing DCOPs, based on confidence bounds. A natural choice
is the UCB (Auer, Cesa-Bianchi, and Fischer 2002) algo-
rithm and its variants for tree-structured problems, such as
UCT (Kocsis and Szepesvári 2006) and HOO (Bubeck et al.
2011). Such algorithms have been shown to be very success-
ful in playing Go (Gelly and Silver 2008). However, they
assume stochasticity or smoothness, which is not the case
in our setting. We nonetheless show that UCB based search
on DCOP not only significantly outperforms local search in
terms of solution quality, but is also able to provide good

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

feasible solutions for problems where optimal methods (in
particular, DPOP) are too complex. We also provide a the-
oretical analysis of the proposed algorithms, based on weak
assumptions on the problem structure.

To the best of our knowledge, no previous work uses sam-
pling and confidence bounds for solving DCOPs. However,
sampling has been used for solving both Constraint Satisfac-
tion Problems (CSP) (Gogate and Dechter 2006) and Quan-
tified CSPs (Baba et al. 2011). Furthermore, in (Léauté and
Faltings 2011) sampling is used as a preprocessing method
when dealing with stochastic problems.

The rest of this paper is organized as follows. Section 2
introduces the DCOP framework. Section 3 explains confi-
dence bounds and describes the DUCT algorithm. Complex-
ity results are given in Section 4, the experimental evaluation
can be found in Section 5 and Section 6 concludes.

2 Distributed Constraint Optimization
A Distributed Constraint Optimization Problem (DCOP)
consists of a set of variables, owned by different agents, and
a set of constraints, each defined over a set of variables. The
objective is to find a variable assignment that gives a feasible
solution that minimizes cost. More precisely:
Definition 1. A distributed constraint optimization problem
(DCOP) is a tuple 〈X ,D ,F〉 where

• X , {xi | i = 1, . . . , n}, is a set of variables, to which
the agents assign values.

• D , {Di | i = 1, . . . , n}, is a collection of finite domains,
with product spaceD =

∏n
i=1Di, such that xi ∈ Di. Let

x = (x1, . . . , xn), with x ∈ D.
• F , {fi | i = 1, . . . ,m} is a set of constraints. Each con-

straint fi : Di → R ∪ {∞} depends on n(i) variables,
with Di , Di1 × . . . ×Din(i)

. We use x‖Di for the pro-
jection of x to the subspace on which the i-th constraint
is defined, and X‖i for the variables in the range of fi.

Each variable is owned by a single agent, who selects its
value. The objective is to find x minimizing the total cost:

f (x) ,
m∑
i=1

fi
(
x‖Di

)
, (1)

with the minimum value being f∗(D) , minx∈D f (x).

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

528



x3 x2

x4

x1

(a) Constraint graph

x3

x2

x4

x1

(b) pseudo-tree

Figure 1: The constraint graph for f1(x1, x2, x3) +
f2(x2, x4) and one of its possible pseudo-trees

For ease of exposition, we assume that each agent owns
only a single variable. However, our method can easily be
extended to the more general case.

3 Distributed UCT
Notation and Concepts
The constraint structure can be captured using a constraint
graph, defined below. An example can be seen in Fig. 1(a).

Definition 2 (Constraint Graph). Given a DCOP
〈X ,D ,F〉, its constraint graph G = 〈X , E〉 is such that
(xi, xj) ∈ E if there is a fk ∈ F such that xi, xj ∈ X‖k

In a DCOP, the global function f is decomposable in a
set of factors, i.e. f , f1 + . . . + fm. As fi and fj might
depend on a common variable, a partial order on the vari-
ables could make the optimization more efficient. This can
be obtained from the constraint graph by finding a pseudo-
tree (Freuder and Quinn 1985) of the graph. A pseudo-tree
G′ is simply a rooted directed spanning tree on G. In the al-
gorithms we propose, agent communication takes place only
via the edges in G′. Any edge in G \G′ is called a back edge.
An example pseudo-tree is shown in Fig. 1(b), where the
dashed line is a back edge. A factor is enforced by the low-
est variable in the tree that influences it. For example, f1 is
enforced by x3 while f2 is enforced by x4. The separator of
a node n is the minimal set of nodes that must be removed
to separate the subtree rooted at n from the rest of the tree.
For example, the separator of x3 is {x2, x1}.

The structure of the search space can be captured by
AND/OR graphs (Dechter and Mateescu 2004). Such a
graph consists of alternating AND nodes and OR nodes,
where OR nodes represent alternative ways of solving the
problem, and AND nodes represent a problem decomposi-
tion. The AND/OR graph of the pseudo-tree in Fig. 1 is
shown in Fig. 2, with the squares and circles representing
AND and OR nodes respectively. Note that since the sub-
problem rooted at x4 does not depend on the value of x1,
we merge the two subgraphs corresponding to x1 = 0 and
x1 = 1. A path represents an assignment to all variables. At
AND nodes, the path branches to all the children, while at
an OR node, the path chooses only a single child. The bold
lines in Fig. 2 constitute a path, and represent the assignment
{x1 = 0 , x2 = 1 , x3 = 0 , x4 = 1}. To prevent confusion

x1

0 1

x2 x2

0 1 0 1

x3 x3 x4 x4 x3 x3

0 1 0 1 0 1 0 1 0 1 0 1

Figure 2: And AND/OR graph with ∀iDi = {0, 1}

between the pseudo-tree and the AND/OR graph, nodes in
the pseudo-tree are from here on called agents, while nodes
in the AND/OR graph are nodes.

Random Sampling: The RANDOM algorithm
DCOP search algorithms, such as ADOPT, operate by send-
ing context messages down the pseudo-tree. A context is
an assignment to all the variables in the receiving variable’s
separator. Based on this, variables systematically choose a
value for themselves, in order to explore the search space. A
different, but simple, approach would be to randomly sam-
ple the search space. We call this algorithm RANDOM.

The root agent starts sampling by selecting a value for
its variable, and sending a CONTEXT message containing
this value to all its children. Every time an agent k receives
a CONTEXT message, containing a context a, it randomly
chooses a value d ∈ Dk for xk, appends this to a, and sends
this enlarged context to its children using a CONTEXT mes-
sage. This process stops when the leaf agents are reached.
At this time, the algorithm has selected a path through the
AND/OR tree. Based on the received context a, the leaf
agents now calculate the minimal value the sum of the con-
straints they enforce can take:

ytk = min
d∈Dk

`(a, d) (2)

where t denotes that this is the t-th sample taken by agent
k, and `(a, d) is the sum of the values of the constraints en-
forced by agent k. ytk is sent up the path using a COST
message. Every subsequent agent calculates its own COST
message using the following equation:

ytk = `(a, d) +
∑

k′∈C(k)

ytk′ (3)

Here C(k) denotes the children of agent k. The cost is thus
the sum of the samples reported by its children plus the value
of its local problem.

529



Each agent k stores, for each context a it has received,
the best value for yk it has seen so far. More formally, let
atk be the context received by agent k at time t, and xtk the
value chosen by agent k at time t, then each agent stores the
following:
• µ̂ta,d: the lowest cost found for value d under context a:

µ̂ta,d , min
{
ylk
∣∣ l ≤ t : alk = a, xlk = d

}
, (4)

• µ̂ta: the lowest cost found under context a, µ̂ta ,
mind µ̂

t
a,d and the value with the lowest cost d̂a ,

arg mind µ̂
t
a,d

Using this information the agents together reconstruct,
upon termination the best path seen.

Termination
As a DCOP is distributed, a local termination condition is
necessary. To this end, the following additional information
must be stored by each agent:
• τ ta,d: the number of times value d has been selected for

variable xk under context a:

τ ta,d ,
t∑
l=1

I
{
alk = a ∧ xlk = d

}
(5)

An agent k now terminates when the following two condi-
tions are met:
• Its parent has terminated (this condition trivially holds for

the root agent);
• The following equation holds for the last context a re-

ported by its parent:

max
d∈Dk

µ̂ta − (µ̂ta,d −

√
ln 2
δ

τ ta,d
) ≤ ε (6)

where ε and δ are parameters of the algorithm. Equation
(6) holds when the biggest gap between the currently best
value and the minimal lower bound on all values is smaller
then ε. Note that, although the square root term has the
form of a Hoeffding bound, it is used here heuristically.

When an agent k terminates, it adds xk = d̂a to the context
a, and sends a F-CONTEXT message to its children, to sig-
nal its termination. Note that, since τ ta,d always increases,
the algorithm is guaranteed to satisfy this condition in a fi-
nite number of steps.

Confidence Bounds: The DUCT algorithm
When an agent receives a context, one can say the search
algorithm has reached an OR node in the AND/OR graph.
In RANDOM, the next branch (variable value) on the path
to the leaf nodes is chosen randomly. However, we could
instead focus the search on more promising choices. One
way to do that is by constructing a confidence boundB such
that the best value for any context is at least B, and sam-
pling the choice with the least bound. Indeed, the prob-
lem each OR node faces is similar to a multi-armed ban-
dit problem, for which confidence bound based algorithms

such as UCB (Auer, Cesa-Bianchi, and Fischer 2002) are
nearly optimal solutions. UCB has been extended to tree-
structured domains in the form of the UCB on trees (UCT)
algorithm (Kocsis and Szepesvári 2006) and its variants
BAST (Coquelin and Munos 2007) and HOO (Bubeck et al.
2011). These employ inequalities on the probability of large
deviations of a sum of random variables from its expected
value, which are used to optimistically search the space. The
main assumptions are that the space is metric, the cost func-
tion is stochastic and its expected value satisfies a Lipschitz
smoothness condition with respect to the metric. Our setting
is quite dissimilar, mainly because it is hard to justify any
smoothness assumption on typical DCOPs. However, under
a different set of assumptions, described in Sec. 4, we con-
struct a similar type of confidence bound, which results in
an efficient distributed tree search algorithm (DUCT).

In order to use more informed bounds to guide the search,
each agent k stores the following data for each context a:
• τ ta: the number of times context a has been received:

τ ta ,
t∑
l=1

I
{
alk = a

}
(7)

We would like our bound to steer the sampling to the most
promising values, while not completely ignoring the other
values. Appropriate choices of this bound will result in
a good balance between exploration of new branches and
exploitation of currently known good branches. This can
be achieved by a careful adjustment of the bound as t in-
creases. Based on the collected information, we use the
following bound, which is similar to the one employed in
HOO (Bubeck et al. 2011)

Bta,d , `(a, d) + max{µ̂ta,d − Lta,d,
∑

k′∈C(k)

Btk′}, (8)

where Btk′ = mind′∈Dk′ B
t
a′,d′ is the bound reported by

agent k′ for context a′ = a ∪ {xk = d}. For leaf agents,
Bta,d = `(a, d). Finally, the confidence interval Lta,d is a
UCB-style bound: (Auer, Cesa-Bianchi, and Fischer 2002)

Lta,d =

√
2λalnτ ta
τ ta,d

, (9)

where λa denotes the length of the path to the deepest leaf
node. Unlike UCB, (9) is not due to statistical considera-
tions, but due to a different assumption about the problem
structure, given in the analysis of Sec. 4. This results in the
bound (13), which has the same form as (9).

Bound (8) is an optimistic estimate of the optimal value
for the sub-tree rooted at agent k for context a and choice
d. Note that, when Bta,d = `(a, d) + µ̂ta,d, the optimal cost
for the subtree rooted at agent k, for context a and choice
d, has been found. After this occurs, d should be ignored
under context a. More precisely, let Sta = {d ∈ Dk|Bta,d 6=
`(a, d) + µ̂ta,d} be the set of allowed sample values. After
trying each value at least once (since otherwise (9) is unde-
fined), the agent samples according to:

xtk , arg min
d∈Sta

Bta,d, (10)

530



Algorithm 1: DUCT algorithm for variable k
1 initialization
2 if root then
3 parentFinished = true;
4 d = sample();
5 for each child k′ do
6 send(k′, CONTEXT({xk = d}))
7 else
8 parentFinished = false;

9 when received(CONTEXT(a)) from parent
10 if variable k is a leaf node then
11 `min = mind∈Dk `(a, d);
12 send(parent, COST(`min, `min))
13 else
14 d = sample(a);
15 for each child k′ do
16 send(k′, CONTEXT(a ∪ {xk = d}))
17 when received(F-CONTEXT(a)) from parent
18 parentFinished = true;
19 if Eq. (11) satisfied then
20 for each child k′ do
21 send(k′, F-CONTEXT(i ∪ {xk = d̂a}))
22 else
23 d = sample(a);
24 for each child k′ do
25 send(k′, CONTEXT(a ∪ {xk = d}))
26 when received(COST(ytk′ , Btk′,)) from child k′

27 if received cost message from all children then
28 if parentFinished ∧ Eq. (11) satisfied then
29 for each child k′ do
30 send(k′, F-CONTEXT(i ∪ {d̂i}))
31 else if parentFinished ∨ ytk =∞ then
32 d = sample(a);
33 for each child k′ do
34 send(k′, CONTEXT(a ∪ {xk = d}))
35 else
36 send(parent, COST(ytk, Btk,))

with ties broken randomly. Also, the termination condition
is now:

max
d∈Sta

µ̂ta − (µ̂ta,d −

√
ln 2
δ

τ ta,d
) ≤ ε. (11)

The description of DUCT can be found in Algorithm 1.
parentF inished is used to store whether the agent’s par-
ent has terminated.

Normalization
The above assumes that the range of the global cost is [0, 1].
As general DCOP problems, this is not the case, a normal-
ization procedure must be carried out beforehand. An upper
bound on the global cost can be found by summing up the
maximal values of all the local cost functions. This can be
done in a bottom-up procedure: As soon as the root of the

pseudo-tree has received this upper bound, UB, every lo-
cal constraint is shifted to the left by subtracting its minimal
value, and then divided by UB. During this phase, we can
also obtain auxiliary information, such as the depth of the
deepest descendant.

Hard Constraints
Hard constraints, where there is some infeasible setDI ⊂ D
such that ∀x ∈ DI f (x) = ∞ break the normalization
procedure. One way to deal with this is to adjust the cost
function such that all costs remain finite, while ensuring that
f (x) < f (x′) for every x /∈ DI , x′ ∈ DI , i.e. feasi-
ble assignments have lower cost than infeasible assignments.
However, normalization will squeeze the set of feasible costs
into a small range, making optimization harder. As we veri-
fied experimentally, replacing infeasible costs with a penalty
resulted in the algorithm minimizing constraint violations
instead of looking for good feasible solutions.

For this reason, firstly we only normalize so that f (x) ∈
[0, 1] for x /∈ DI . Secondly, all infeasible parts of D are
pruned as soon as their infeasibility is evident, and a search
for the next feasible solution is started. Infeasible assign-
ments can easily be recognized by the variable that enforces
the infeasible constraint. Thirdly, when a node a does not
have an infeasible local problem, but all its children reported
to be infeasible, a is considered to be infeasible as well.

4 Theoretical Analysis
A general problem-independent analysis for DCOP is not
possible. One can always construct a counterexample such
that there exists only one optimal solution x∗, with all re-
maining choices of x being either infeasible or far from op-
timal. For that reason, we assume that the number of sub-
optimal choices are bounded as follows:

Assumption 1. Let λ be the counting measure on D and let
f∗(A) , min {f (x) |x ∈ A}, for all A ⊂ D. There exists
β > 0 and γ ∈ [0, 1] s.t. ∀A ⊂ D, ε ≥ γ1/β :

λ ({x ∈ A | f (x) > f∗(A) + ε}) ≤ λ (A) γε−β . (12)

This assumption is quite weak, as it does not guarantee
how many choices will be arbitrarily close to the optimal.
It is weaker than a Lipschitz smoothness condition, as it is
does not require a metric. Intuitively, it allows the optimal
solution to be hidden in a bad set of solutions, as long as
there are sufficiently many good solutions elsewhere. The
assumption even holds in pathological cases, by taking β, γ
close to 0, 1 respectively. Nevertheless, it can be used to
obtain bounds on the value f∗(A) of any setA. Assume that
we have taken T samples from A, with values (y1

k, . . . , y
T
k ).

In the worst-case, these are the T worst values, and thus an
upper bound on the gap between the best-found value and
the optimal value in A is:

ε ≤
(
γλ (A)

T

)1/β

. (13)

531



Definition 3. Let ρ(T ) be the regret after T steps:

ρ(T ) , min
{
yt0
∣∣ t = 1, . . . , T

}
− f∗(D). (14)

Thus, an algorithm that samples all ofD in fixed arbitrary
order has regret bounded by (13) with A = D, since an
adversary could manipulate the problem so that the worst
values are seen first. On the contrary, the regret of RANDOM,
which selects assignments uniformly, i.e.: xt ∼ Uni(D),
does not depend on the size of D:
Theorem 1. The expected regret of the RANDOM algorithm
is E ρ(T ) ∈ O(1/βT + γ1/(β+1)).

Proof. If Ass. 1 holds, then the probability that the regret of
RANDOM after T samples exceeds ε is bounded by:

P

(
T∧
t=1

f (xt) > f∗(D) + ε

)
≤
(
γε−β

)T
. (15)

It follows from (15) and the fact that the regret and probabil-
ities are bounded that ∀ε, E ρ(T ) ≤

(
γε−β

)T
+ ε. Setting

the derivative to zero, we find that ε0 =
(
βTγT

)1/(βT+1)
.

Replacing to find the tightest bound:

E ρ(T ) ≤ γT (βTγT )−
βT
βT+1 + (βTγT )

1
βT+1 (16)

≤ 1

βT
+ (βTγT )

1
βT+1 (17)

The second term can be bounded as follows. Note that
maxx x

1/(1+x) < maxx x
1/x and that

d

dx
x1/x =

d

dx
e

1
x ln x = e

1
x ln xx−2(1− lnx),

which has a root x = e. Consequently, (βT )1/(βT+1) <
e1/e. Finally, γT/(βT+1) ≤ γ1/(β+1).

Let us now consider DUCT. Since we have no knowl-
edge of β, γ, the algorithm increases (9) slowly, so that at
some point it will bound (13). For that reason, DUCT is
initially optimistic and searches mostly subsets where it has
already found good solutions, because it believes its bounds
are tight. The following theorem makes this intuition pre-
cise, by bounding the time spent in suboptimal parts of the
space:
Theorem 2. Consider two disjoint sets A1, A2 ⊂ D with
f∗(A1) = f∗(A2) + ∆, A , A1 ∪ A2. If τ is the num-
ber of times A is sampled then the number of times the sub-
optimal set A1 is sampled under DUCT is O(∆−2 ln τ +
(γ/2)β/(2−β) + eγ/2).

Proof. Let µ̂ti be the best-measured value inAi at time t. For
our bounds to hold, we must sample A at least eγ/2 times
and Ai at least τi = (γ/2)β/(2−β) times. Then, we have:

f∗(Ai) ∈ [µ̂ti − Li,t, µ̂ti + Li,t],

Since we selectA1 rather thanA2, we have: f∗(A2) ≥ µ̂t2−
L2,t ≥ µ̂t1 − L1,t. But µ̂t1 ≥ f∗(A1)− L1,t. Consequently,
in order to selectA1 it is necessary that f∗(A2) ≥ f∗(A1)−
2L1,t. From the definition, we obtain τi ≤

(
4
∆

)2
ln τ .

Figure 3: Meeting scheduling: Solution cost

To complete the analysis, we prove a lower bound on the
expected regret of any algorithm.

Theorem 3. E ρ(T ) ∈ Ω(γ1/2β+T/2).

Proof. It is sufficient to consider a function g in only one
variable, for which Ass. 1 holds with equality. Assume a
random bijection h : D → D. Then function f(x) =
g(h(x)) also satisfies Ass. 1 and any algorithm is equiva-
lent to RANDOM. Then E ρ(T ) ≥ γT ε1−βT as (12) holds
with equality. Selecting ε = γ1/2β completes the proof.

nodes 18 19 20 21 22 23 24 25 26
DPOP 0 0 0 0 0 - - - -
DUCT 0 0 0 0 0 0 0 0 0

RANDOM 0 0 0 1 1 1 2 2 2
DSA 2 2 2 2 2 2 2 2 2
MGM 2 2 2 2 2 2 2 2 2

MGM2 1 0 0 0 0 0 0 0 0

Table 1: Graph coloring: Number of constraint violations

5 Experimental Evaluation
The introduced algorithms are evaluated on the meet-
ing scheduling domain introduced in (Maheswaran et al.
2004), and on randomly generated graph coloring problems.
DUCT is compared against both optimal algorithms (DPOP,
O-DPOP, ADOPT, SynchBB and AFB) and non-optimal al-
gorithms (DSA, MGM and MGM2). ADOPT, SynchBB and
AFB could not solve the majority of the problems within the
given time, and are thus omitted from the figures. O-DPOP
found the same solutions as DPOP, and so is only included
in the CPU time graphs. Furthermore, RANDOM is used as
a baseline sampling algorithm. Comparisons are made both
on solution quality and runtime, where runtime is measured
using the simulated time notion as introduced in (Sultanik,
Lass, and Regli 2007).

532



Figure 4: Meeting scheduling: Simulated time in ms

Experimental Setup
All evaluated algorithms are implemented in the FRODO
platform (Léauté, Ottens, and Szymanek 2009). For meeting
scheduling, we used a pool of 30 agents, with 3 agents per
meeting and between 11 and 20 meetings per instance. The
cost for each meeting is randomly taken from [0, 10]. For the
graph coloring problems, graphs with a density of 0.3 were
randomly generated, the number of available colors was 5
and between 18 and 26 nodes per instance. Problems were
modelled as Min-CSPs. For each set of parameters, 99 prob-
lem instances were generated using the generators provided
by FRODO, with a time out set at 15 minutes per problem.
The parameters δ and ε were set to 0.05. The experiments
are run on a 64 core Linux machine, with 2GB per run.

DSA, MGM and MGM2 do not have any termination con-
dition, and, to be fair, were given as much time as DUCT.

The median is reported, together with 95% confidence in-
tervals. In some instances, the optimal algorithms time out
and consequently, their median can be higher than DUCT.

Experimental Results
Figure 3 shows the performance on meeting scheduling. It
can be seen that DPOP is only able to solve problems up to
14 meetings, after which it times out, while O-DPOP is even
slower. One can also see that DUCT finds optimal to near
optimal solutions for those problems. In fact, the heuristi-
cally used stopping criterion (6) appears to hold in practice,
as 93% of those runs fall within the 5% error range set as
the target for DUCT. This means the assumptions underlying
the bound used characterize the search space well. Overall,
DUCT consistently performs better than RANDOM, which
in turn outperforms the local search algorithms1. Figure 4
shows the amount of simulated time used by each algorithm
(since the local search algorithms are given the same time as
DUCT, they are excluded). It is clear that, for this domain,

1Local search algorithms failed to find a feasible solution in
more than 50% of the instances. Hence only the solved instances
are displayed in Fig 3

Figure 5: Graph coloring: Simulated time

DUCT terminates earlier than RANDOM, while the optimal
algorithms have an advantage for small problems.

Table 1 and Fig. 5 show the cost and time respectively
for the graph coloring domain. In this case, DUCT always
finds the optimal solution, while RANDOM’s performance
degrades as the size of the problem increases. DUCT stops
later in this problem than RANDOM, probably due to focus-
ing on suboptimal branches in the initial stages. The opti-
mal algorithms again fail to scale to larger problems. While
the other local algorithms fail, MGM2 performs well on this
domain. Since MGM2 is designed to find a 2-coordinated
solution this is perhaps not surprising.

In general, DUCT finds nearly optimal solutions, but
scales much better than optimal methods, both in terms of
time and message size. Due to space considerations, mes-
sage size results have been omitted, but it scales similarly
to time. The performance of the local search algorithms was
mostly poor, since they could only find feasible solutions for
the easiest problems, in contrast to the sampling algorithms.

6 Conclusions
We introduced a confidence bound based approach for solv-
ing Distributed Constraint Optimization Problems, inspired
by Monte-Carlo tree search and the application of UCB to
tree-structured problems. The result, a Distributed UCT al-
gorithm (DUCT), takes advantage of the distributed and de-
terministic nature of the problem, as well as the hard con-
straints, in order to efficiently search the solution space.

Theoretically, we show that even though DCOP is not a
smooth domain, we can still obtain meaningful bounds on
the regret, by using an assumption on the number of bad
solutions. However, the gap between the upper and lower
bounds indicates that even better results may be possible. It
is our view that a more intricate analysis requires additional
assumptions, such as some notion of smoothness, which we
shall investigate in further work.

The experiments show that DUCT not only can obtain
good solutions within a reasonable amount of time, but also

533



that it performs significantly better than local search within
the same time constraints. They also show that DUCT can
handle much bigger problems than optimal algorithms, and
performs nearly as well for smaller domains, making it a
very suitable algorithm for practical use. In all, DUCT is
thus very well suited for solving DCOPs.

Acknowledgements This work was funded by the
Swiss National Science Foundation under Project Number
200020-129515 and the EU FP7 Marie-Curie IEF project
ESDEMUU, Grant Number 237816.

References
Ali, S.; Koenig, S.; and Tambe, M. 2005. Preprocessing
techniques for accelerating the DCOP algorithm ADOPT.
In AAMAS ’05, 1041–1048.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite
time analysis of the multiarmed bandit problem. Machine
Learning 47(2/3):235–256.
Baba, S.; Joe, Y.; Iwasaki, A.; and Yokoo, M. 2011. Real-
time solving of quantified CSPs based on monte-carlo game
tree search. In IJCAI, 655–661.
Bubeck, S.; Munos, R.; Stoltz, G.; and Szepesvári, C. 2011.
X-armed bandits. Journal of Machine Learning Research
12:1655–1695.
Coquelin, P.-A., and Munos, R. 2007. Bandit algorithms
for tree search. In UAI ’07, Proceedings of the 23rd Confer-
ence in Uncertainty in Artificial Intelligence, Vancouver, BC
Canada.
Dechter, R., and Mateescu, R. 2004. Mixtures of
deterministic-probabilistic networks and their and/or search
space. In Proceedings of the 20th Conference on Uncer-
tainty in Artificial Intelligence, UAI ’04, 120–129. Arling-
ton, Virginia, United States: AUAI Press.
Freuder, E. C., and Quinn, M. J. 1985. Taking advantage of
stable sets of variables in constraint satisfaction problems. In
Proceedings of the 9th International Joint Conference on Ar-
tificial Intelligence - Volume 2, 1076–1078. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Gelly, S., and Silver, D. 2008. Achieving master level play
in 9&#0215;9 computer go. In Proceedings of the 23rd
National Conference on Artificial intelligence - Volume 3,
1537–1540. AAAI Press.
Gogate, V., and Dechter, R. 2006. A new algorithm for sam-
pling CSP solutions uniformly at random. In Benhamou, F.,
ed., Principles and Practice of Constraint Programming -
CP 2006, volume 4204 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg. 711–715.
Hirayama, K., and Yokoo, M. 1997. Distributed partial con-
straint satisfaction problem. In CP’97, 222–236.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning, (ECML06).
Léauté, T., and Faltings, B. 2011. Distributed constraint
optimization under stochastic uncertainty. In Proceedings

of the Twenty-Fifth Conference on Artificial Intelligence
(AAAI’11), 68–73.
Léauté, T.; Ottens, B.; and Faltings, B. 2010. Ensur-
ing privacy through distributed computation in multiple-
depot vehicle routing problems. In Proceedings of the
ECAI’10 Workshop on Artificial Intelligence and Logistics
(AILog’10).
Léauté, T.; Ottens, B.; and Szymanek, R. 2009. FRODO 2.0:
An open-source framework for distributed constraint opti-
mization. In Hirayama, K.; Yeoh, W.; and Zivan, R., eds.,
Proceedings of the IJCAI’09 Distributed Constraint Reason-
ing Workshop (DCR’09), 160–164.
Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.;
and Varakantham, P. 2004. Taking DCOP to the Real World:
Efficient Complete Solutions for Distributed Multi-Event
Scheduling. In Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), 310–317.
Maheswaran, R. T.; Pearce, J. P.; and Tambe, M. 2004.
Distributed algorithms for DCOP: A graphical-game-based
approach. In Proceedings of ISCA PDCS’04, 432–439.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161:149–180.
Ottens, B., and Faltings, B. 2008. Coordinating agent
plans through distributed constraint optimization. In Pro-
ceedings of the ICAPS’08 Multiagent Planning Workshop
(MASPLAN’08).
Petcu, A., and Faltings, B. 2005. DPOP: A Scalable Method
for Multiagent Constraint Optimization. In Proceedings of
the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI’05), 266–271.
Petcu, A., and Faltings, B. 2006. O-DPOP: An algorithm
for open/distributed constraint optimization. In Proceedings
of the 21st National Conference on Artificial Intelligence
(AAAI’06), 703–708.
Sultanik, E. A.; Lass, R. N.; and Regli, W. C. 2007. DCOPo-
lis: A framework for simulating and deploying distributed
constraint optimization algorithms. In Pearce, J. P., ed., Pro-
ceedings of the 9th Intl Workshop on Distributed Constraint
Reasoning (CP-DCR’07).
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998.
The distributed constraint satisfaction problem: formaliza-
tion and algorithms. Knowledge and Data Engineering,
IEEE Transactions on 10(5):673 –685.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L. 2005.
Distributed stochastic search and distributed breakout: prop-
erties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence
161(1–2):55–87.

534




