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Abstract

UCT, a state-of-the art algorithm for Monte Carlo tree search
(MCTS) in games and Markov decision processes, is based
on UCB, a sampling policy for the Multi-armed Bandit prob-
lem (MAB) that minimizes the cumulative regret. However,
search differs from MAB in that in MCTS it is usually only
the final “arm pull” (the actual move selection) that collects a
reward, rather than all “arm pulls”. Therefore, it makes more
sense to minimize the simple regret, as opposed to the cu-
mulative regret. We begin by introducing policies for multi-
armed bandits with lower finite-time and asymptotic simple
regret than UCB, using it to develop a two-stage scheme
(SR+CR) for MCTS which outperforms UCT empirically.
Optimizing the sampling process is itself a metareasoning
problem, a solution of which can use value of information
(VOI) techniques. Although the theory of VOI for search ex-
ists, applying it to MCTS is non-trivial, as typical myopic
assumptions fail. Lacking a complete working VOI theory
for MCTS, we nevertheless propose a sampling scheme that
is “aware” of VOI, achieving an algorithm that in empirical
evaluation outperforms both UCT and the other proposed al-
gorithms.

Introduction

Monte-Carlo tree search, and especially a version based on
the UCT formula (Kocsis and Szepesvéri 2006) appears
in numerous search applications, such as (Gelly and Wang
2006; Eyerich, Keller, and Helmert 2010). Although these
methods are shown to be successful empirically, most au-
thors appear to be using the UCT formula “because it has
been shown to be successful in the past”, and “because it
does a good job of trading off exploration and exploita-
tion”. While the latter statement may be correct for the
multi-armed bandit and for the UCB method (Auer, Cesa-
Bianchi, and Fischer 2002), we argue that it is inappropri-
ate for search. The problem is not that UCT does not work;
rather, a simple reconsideration from basic principles can re-
sult in schemes that outperform UCT.

The core issue is that in adversarial search and search in
“games against nature” — optimizing behavior under un-
certainty, the goal is typically to either find a good (or op-
timal) strategy, or even just to find the best first action of
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such a policy. Once such an action is discovered, it is usually
not beneficial to further sample that action, “exploitation”
is thus meaningless for search problems. Finding a good
first action is closer to the pure exploration variant, as seen
in the selection problem (Bubeck, Munos, and Stoltz 2011;
Tolpin and Shimony 2012). In the selection problem, it is
much better to minimize the simple regret. However, the
simple and the cumulative regret cannot be minimized si-
multaneously; moreover, (Bubeck, Munos, and Stoltz 2011)
shows that in many cases the smaller the cumulative regret,
the greater the simple regret.

We begin with background definitions and related work.
Some sampling schemes are introduced, and shown to have
better bounds for the simple regret on sets than UCB, the first
contribution of this paper. The results are applied to sam-
pling in trees by combining the proposed sampling schemes
on the first step of a rollout with UCT for the rest of the
rollout. An additional sampling scheme based on metarea-
soning principles is also suggested, another contribution of
this paper. Finally, the performance of the proposed sam-
pling schemes is evaluated on sets of Bernoulli arms, in ran-
domly generated 2-level trees, and on the sailing domain,
showing where the proposed schemes have improved per-
formance.

Background and Related Work

Monte-Carlo tree search was initially suggested as a scheme
for finding approximately optimal policies for Markov De-
cision Processes (MDP). An MDP is defined by the set of
states .S, the set of actions A (also called moves in this pa-
per), the transition distribution 7'(s, a, s’), the reward func-
tion R(s,a,s’), the initial state s and an optional goal
state t: (S, A, T, R, s,t) (Russell and Norvig 2003). Several
MCTS schemes explore an MDP by performing rollouts—
trajectories from the current state to a state in which a termi-
nation condition is satisfied (either the goal state, or a cutoff
state for which the reward is evaluated approximately).

Multi-armed bandits and UCT

In the Multi-armed Bandit problem (Vermorel and Mohri
2005) we have a set of K arms (see Figure 1.a). Each arm
can be pulled multiple times. Sometimes a cost is associ-
ated with each pulling action. When the sth arm is pulled,



a random reward X; from an unknown stationary distribu-
tion is encountered. The reward is usually bounded between
0 and 1. In the cumulative setting (the focus of much of
the research literature on Multi-armed bandits), all encoun-
tered rewards are collected by the agent. The UCB scheme
was shown to be near-optimal in this respect (Auer, Cesa-
Bianchi, and Fischer 2002):

Definition 1. Scheme UCB(c) pulls arm i that maximizes
upper confidence bound b; on the reward:

clog(n)

Uz

bi =X+ ey
where X ; is the average sample reward obtained from arm
i, n; is the number of times arm @ was pulled, and n is the
total number of pulls so far.

The UCT algorithm, an extension of UCB to Monte-Carlo
Tree Search is described in (Kocsis and Szepesvari 2006),
and shown to outperform many state of the art search algo-
rithms in both MDP and adversarial games (Eyerich, Keller,
and Helmert 2010; Gelly and Wang 2006).

In the simple regret (selection) setting, the agent gets to

collect only the reward of the last pull.
Definition 2. The simple regret Er of a sampling policy for
the Multi-armed Bandit Problem is the expected difference
between the best true expected reward [, and the true ex-
pected reward (i of the arm with the greatest sample mean,
j = argmax; X;:

K
Er = Z A; Pr(j = argmax X ;)

j=1

(@)

where Aj = (1, — ;.

Strategies that minimize the simple regret are called pure
exploration strategies (Bubeck, Munos, and Stoltz 2011).
An upper bound on the simple regret of uniform sam-
pling is exponentially decreasing in the number of samples
(see (Bubeck, Munos, and Stoltz 2011), Proposition 1). For
UCB(c) the best known respective upper bound on the sim-
ple regret of UCB(c) is only polynomially decreasing in the
number of samples (see (Bubeck, Munos, and Stoltz 2011),
Theorems 2,3). However, empirically UCB(c) appears to
yield a lower simple regret than uniform sampling.

Metareasoning

A completely different scheme for control of sampling can
use the principles of bounded rationality (Horvitz 1987) and
metareasoning — (Russell and Wefald 1991) provided a for-
mal description of rational metareasoning and case studies
of applications in several problem domains. In search, under
myopic and sub-tree independence assumptions, one main-
tains a current best move « at the root, and finds the ex-
pected gain from finding another move 3 to be better than
the current best (Russell and Wefald 1991). The “cost” of
search actions can also be factored in. Ideally, an “optimal”
sampling scheme, to be used for selecting what to sample,
both at the root node (Hay and Russell 2011) and elsewhere,
can be developed using metareasoning. However, this task is
daunting for the following reasons:
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e The method is in general intractable, necessitating simpli-
fying assumptions. However, using the standard metarea-
soning myopic assumption, where samples would be se-
lected as though at most one sample can be taken before
an action is chosen, we run into serious problems. Even
the basic selection problem (Tolpin and Shimony 2012)
exhibits a non-concave utility function and results in pre-
mature stopping of the standard myopic algorithms. This
is due to the fact that the value of information of a sin-
gle measurement (analogous to a sample in MCTYS) is fre-
quently less than its time-cost, even though this is not true
for multiple measurements.

When applying the selection problem to MCTS, the sit-
uation is exacerbated. The utility of an action is usually
bounded, and thus in many cases a single sample may be
insufficient to change the current best action, regardless
of its outcome. As a result, we frequently get a zero “my-
opic” value of information for a single sample.

e Rational metareasoning requires a known distribution
model, which may be difficult to obtain.

e Defining the time-cost of a sample is not trivial.

As the above ultimate goal is extremely difficult to
achieve, we introduce in this paper simple schemes more
amenable to analysis, loosely based on the metareasoning
concept of value of information, and compare them to UCB
(on sets) and UCT (in trees).

Sampling Based on Simple Regret
Analysis of Sampling on Sets

We examine two sampling schemes with super-
polynomially decreasing upper bounds on the simple
regret. The bounds suggest that these schemes achieve a
lower simple regret than uniform sampling; indeed, this is
confirmed by experiments.

We first consider e-greedy sampling as a straightforward
generalization of uniform sampling:

Definition 3. The e-greedy sampling scheme pulls the arm
that currently has the greatst sample mean, with probability

0 < e < 1, and any other arm with probability 11{_‘51.

This sampling scheme exhibits an exponentially decreas-
ing simple regret:

Theorem 1. Forevery 0 < n < 1and~y > 1 there exists N
such that for any number of samples n > N the simple re-
gret of the e-greedy sampling scheme is bounded from above
as

2
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Proof outline: Bound the probability P; that a non-optimal
arm ¢ is selected. Split the interval [p;, ] at p; + 0;. Apply

K
Era-greedy < 27 Z Ai exp (3)

i=1

(1+

with probability at least 1 — .



the Chernoff-Hoeffding bound to get:

P, < Pr[X; > i+ 6] +Pr[X. < pe — (A —

< 6:)]
< exp (7251277,1) + exp (72(A1 — 52)271*)

“

Observe that, in probability, X, — ;i as n — oo, therefore
Ny — NE, N; — "I((l%ls) as n — oo. Conclude that for every
0 <n < 1,v > 1 there exists NV such that for every n > N
and all non-optimal arms i:

P; <y <exp <252”(15)) +exp (—2(A; — 6i)2n6)>
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Substitute (5) together with (6) into (2) and obtain
K
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In particular, as the number of arms K grows, the bound
for 1-greedy sampling (¢ = 3) becomes considerably
tighter than for uniform random sampling (¢ = %):

Corollary 1. For uniform random sampling,

g

K
Eruniform <2y Z A exp
i=1

®)

For %-greedy sampling,

K
27y Z A exp

i=1

K
27 Z A, exp (_21?

i=1
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-greedy = (1 4 \/ﬁ) 2
2

Q

)forK > 1

e-greedy is based solely on sampling the arm that has the
greatest sample mean (henceforth called the “current best”
arm) with a higher probability then the rest of the arms, and
ignores information about sample means of other arms. On
the other hand, UCB distributes samples in accordance with
sample means, but, in order to minimize cumulative regret,
chooses the current best arm too often. Intuitively, a bet-
ter scheme for simple regret minimization would distribute
samples in a way similar to UCB, but would sample the cur-
rent best arm less often. This can be achieved by replacing
log(-) in Equation 1 with a faster growing sublinear func-
tion, for example, /-
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Definition 4. Scheme UCB, /(c) pulls arm i that maxi-
mizes b;, where:

NG

Uz

bi=X;+ (10)

where, as before, X; is the average reward obtained from
arm i, n; is the number of times arm i was pulled, and n is
the total number of pulls so far.

This scheme also exhibits a super-polynomially decreas-
ing simple regret:
Theorem 2. For every 0 < n < 1 and v > 1 there exists
N such that for any number of samples n > N the simple

regret of the UCB, /(c) sampling scheme is bounded from
above as

K
Er <23 A, _avn 11
ucby/- = ’YZ i €XP 2 (11)
1=1

with probability at least 1 — .

Proof outline: Bound the probability P; that a non-optimal
arm 4 is chosen. Split the interval [p;, 1] at p; + AQ . Apply
the Chernoff-Hoeffding bound to get:

- A - A
P, < Pr {Xi>ﬂqi+2} +Pr[X*<u*—2]
AZn, A2n,
< exp (=2 ) fexp (20 (12)
2 2
Observe that, in probability, n; — CALZE, n; < ngasn — oo.

Conclude that for every 0 < 1 < 1,y > 1 there exists N
such that for every n > N and all non-optimal arms i:

P; < 2yexp (_0\2/75) (13)
Substitute (13) into (2) and obtain
K
c/n
Er, . <2 A; e — 14
Tuchy/s = 7; exp ( 9 ) (14)
O

Sampling in Trees

As mentioned above, UCT (Kocsis and Szepesvari 20006) is
an extension of UCB for MCTS, that applies UCB(c) at each
step of a rollout. At the root node, the sampling in MCTS is
usually aimed at finding the first move to perform. Search
is re-started, either from scratch or using some previously
collected information, after observing the actual outcome (in
MDPs) or the opponent’s move (in adversarial games). Once
one move is shown to be the best choice with high confi-
dence, the value of information of additional samples of the
best move (or, in fact, of any other samples) is low. There-
fore, one should be able to do better than UCT by optimizing
simple regret, rather than cumulative regret, at the root node.

Nodes deeper in the search tree are a different matter.
In order to support an optimal move choice at the root, it



is beneficial in many cases to find a more precise estimate
of the value of the state in these search tree nodes. For
these internal nodes, optimizing simple regret is not the an-
swer, and cumulative regret optimization is not so far off
the mark. Lacking a complete metareasoning for sampling,
which would indicate the optimal way to sample both root
nodes and internal nodes, our suggested improvement to
UCT thus combines different sampling schemes on the first
step and during the rest of each rollout:

Definition 5. The SR+CR MCTS sampling scheme selects
an action at the current root node according to a scheme
suitable for minimizing the simple regret (SR), such as %—
greedy or UCB\[, and (at non-root nodes) then selects ac-
tions according to UCB, which approximately minimizes the

cumulative regret (CR).

The pseudocode of this two-stage rollout for an undis-
counted MDP is in Algorithm 1: FIRSTACTION selects the
first step of a rollout (line 5), and NEXTACTION (line 6)
selects steps during the rest of the rollout (usually using
UCB). The reward statistic for the selected action is updated
(line 10), and the sample reward is back-propagated (line 11)
towards the current root.

We denote such two-step realizations of SR+CR as
Alg+UCT, where Alg is the sampling scheme employed at
the first step of a rollout (e.g. %—greedy+UCT).

Algorithm 1 Two-stage Monte-Carlo tree search sampling

1: procedure ROLLOUT(node, depth=1)
if ISLEAF(node, depth) then
return O
else
if depth=1 then action <— FIRSTACTION(node)
else action «— NEXTACTION(node)
next-node <— NEXTSTATE(node, action)
reward <— REWARD(node, action, next-node)
9: + ROLLOUT(next-node, depth+1)

10: UPDATESTATS(node, action, reward)
11: return reward
12: end if

13: end procedure

We expect such two-stage sampling schemes to outper-
form UCT and be significantly less sensitive to the tun-
ing of the exploration factor ¢ of UCB(c). That is since
the contradiction between the need for a larger value of ¢
on the first step (simple regret) and a smaller value for the
rest of the rollout (cumulative regret) (Bubeck, Munos, and
Stoltz 2011) is resolved. In fact, a sampling scheme that uses
UCB(c) at all steps but a larger value of ¢ for the first step
than for the rest of the steps, should also outperform UCT.

VOI-aware Sampling

Further improvement can be achieved by computing or es-
timating the value of information (VOI) of the rollouts and
choosing rollouts that maximize the VOI. However, as indi-
cated above, actually computing the VOI is infeasible. In-
stead we suggest the following scheme based on the follow-
ing features of value of information:
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1. An estimate of the probability that one or more rollouts
will make another action appear better than the current
best a.

2. An estimate of the gain that may be incurred if such a

change occurs.

If the distribution of results generated by the rollouts were
known, the above features could be easily computed. How-
ever, this is not the case for most MCTS applications. There-
fore, we estimate bounds on the feature values from the cur-
rent set of samples, based on the myopic assumption that the
algorithm will only sample one of the actions, and use these
bounds as the feature values, to get:

VoI, X5

~ ¥~ 72
e (—2(Xo0 — X5)°na) (15)
- X, o
VOI;, = P exp (—2(Xa — X¢)2ni) , i1 # «
where a =argmax X;, [ =argmax X,

i, 1FQ

with VOI,, being the (approximate) value for sampling the
current best action, and V O1; is the (approximate) value for
sampling some other action 7.

These equations were derived as follows. The gain from
switching from the current best action « to another action
can be bounded: by the current expectation of the value
the current second-best action for the case where we sam-
ple only o, and by 1 (the maximum reward) minus the cur-
rent expectation of o when sampling any other action. The
probability that another action be found best can be bounded
by an exponential function of the difference in expectations
when the true value of the actions becomes known. But the
effect of each individual sample on the sample mean is in-
versely proportional to the current number of samples, hence
the current number of samples (plus one in order to handle
the initial case of no previous samples) in the denominator.

These VOI estimates are used in the “VOI-aware” sam-
pling scheme as follows: sample the action that has maxi-
mum estimated VOI. We judged these estimates to be too
crude to be used as “stopping criteria” that can be used to
cut off sampling, leaving this issue for future research. Al-
though this scheme appears too complicated to be amenable
to a formal analysis, early experiments (Section ) with this
approach demonstrate a significantly lower simple regret.

Empirical Evaluation

The results were empirically verified on Multi-armed Ban-
dit instances, on search trees, and on the sailing domain, as
defined in (Kocsis and Szepesvari 2006). In most cases, the
experiments showed a lower average simple regret for %-
greedy an UCB /- than for UCB on sets, and for the SR+CR
scheme than for UCT in trees.

Simple regret in multi-armed bandits

Figure 1 presents a comparison of MCTS sampling schemes
on Multi-armed bandits. Figure 1.a shows the search tree
corresponding to a problem instance. Each arm returns a ran-
dom reward drawn from a Bernoulli distribution. The search



selects an arm and compares the expected reward, unknown
to the algorithm during the sampling, to the expected reward
of the best arm.

Figure 1.b shows the regret vs. the number of samples,
averaged over 10000 experiments for randomly generated
instances of 32 arms. Either %-greedy or UCB_ /. dominate
UCB over the whole range. For larger number of samples,
the advantage of UCB, /- over %-greedy becomes more sig-

nificant.
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5e-03
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-4 UCB
_| + 1/2—greedy
% UCBJ[sqrt]
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5e-04

Nsampies

b. regret vs. number of samples

Figure 1: Simple regret in MAB

Monte Carlo tree search

The second set of experiments was performed on randomly
generated 2-level max-max trees crafted so as to deliber-
ately deceive uniform sampling (Figure 2.a), necessitating
an adaptive sampling scheme, such as UCT. That is due to
the switch nodes, each with 2 children with anti-symmetric
values, which would cause a uniform sampling scheme to
incorrectly give them all a value of 0.5.

Simple regret vs. the number of samples are shown
for trees with root degree 16 (Figure 2.b) and 64 (Fig-
ure 2.c). The exploration factor c is set to 2, the default
value for rewards in the range [0, 1]. The algorithms ex-
hibit a similar relative performance: either %-greedy+UCT
or UCB \[+UCT result in the lowest regret, UCB \[+UCT
dominates UCT everywhere except when the number of
samples is small. The advantage of both %-greedy+UCT and
UCB _+UCT grows with the number of arms.

The sailing domain

Figures 3-5 show results of experiments on the sailing do-
main. Figure 3 shows the regret vs. the number of sam-
ples, computed for a range of values of c. Figure 3.a
shows the median cost, and Figure 3.b — the minimum
costs. UCT is always worse than either %-greedy+UCT or
UCB \[+UCT, and is sensitive to the value of c¢: the me-
dian cost is much higher than the minimum cost for UCT.
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Figure 2: MCTS in random trees

For both %-greedy+UCT and UCB_/+UCT, the difference
is significantly less prominent.

Figure 4 shows the regret vs. the exploration factor for
different numbers of samples. UCB_ /+UCT is always better

than UCT, and %- greedy+UCT is better than UCT expect for
a small range of values of the exploration factor.

Figure 5 shows the cost vs. the exploration factor for lakes
of different sizes. The relative difference between the sam-
pling schemes becomes more prominent when the lake size
increases.

VOI-aware MCTS

Finally, the VOI-aware sampling scheme was empirically
compared to other sampling schemes (UCT, %-greedy+UCT,
UCT +UCT). Again, the experiments were performed on
randomly generated trees with structure shown in Figure 2.a.
Figure 6 shows the results for 32 arms. VOI+UCT, the
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scheme based on a VOI estimate, outperforms all other sam-
pling schemes in this example. Similar performance im-
provements (not shown) also occur for the sailing domain.
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Figure 6: MCTS in random trees, including VOI+UCT.

Conclusion and Future Work

UCT-based Monte-Carlo tree search has been shown to be
very effective for finding good actions in both MDPs and
adversarial games. Further improvement of the sampling
scheme is thus of interest in numerous search applications.
We argue that although UCT is already very efficient, one
can do better if the sampling scheme is considered from a
metareasoning perspective of value of information (VOI).

The MCTS SR+CR scheme presented in the paper dif-
fers from UCT mainly in the first step of the rollout, when
we attempt to minimize the ‘simple’ selection regret rather
than the cumulative regret. Both the theoretical analysis and
the empirical evaluation provide evidence for better general
performance of the proposed scheme.

Although SR+CR is inspired by the notion of VOI, the
VOI is used there implicitly in the analysis of the algo-
rithm, rather than computed or learned explicitly in order



to plan the rollouts. Ideally, using VOI to control sampling
ab-initio should do even better, but the theory for doing that
is still not up to speed. Instead we suggest a “VOI-aware”
sampling scheme based on crude probability and value esti-
mates, which despite its simplicity already shows a marked
improvement in minimizing regret. However, application of
the theory of rational metareasoning to Monte Carlo Tree
Search is an open problem (Hay and Russell 2011), and both
a solid theoretical model and empirically efficient VOI esti-
mates need to be developed.

Finding a better sampling scheme for non-root nodes, as
well as the root node, should also be possible. Although cu-
mulative regret does reasonably well there, it is far from
optimal, as meta-reasoning principles imply that an optimal
scheme for these nodes must be asymmetrical (e.g. it is not
helpful to find out that the value of the current best action is
even better than previously believed).

Finally, applying VOI methods in complex deployed ap-
plications that already use MCTS is a challenge that should
be addressed in future work. In particular, UCT is ex-
tremely successful in Computer Go (Gelly and Wang 2006;
Braudi§ and Loup Gailly 2011; Enzenberger and Miiller
2009), and the proposed scheme should be evaluated on this
domain. This is non-trivial, since Go programs typically use
“non-pure” versions of UCT, extended with domain-specific
knowledge. For example, Pachi (Braudi§ and Loup Gailly
2011) typically re-uses information from rollouts generated
for earlier moves, thereby violating our underlying assump-
tion that information is only used for selecting the current
move. In early experiments not shown here (disallowing re-
use of samples, admittedly not really a fair comparison) the
VOI-aware scheme apears to dominate UCT. Nevertheless,
it should also be possible to adapt the VOI-aware schemes to
take into account expected re-use of samples, another topic
for future research.
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