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Abstract

This paper presents REWOrD, an approach to compute seman-
tic relatedness between entities in the Web of Data repre-
senting real word concepts. REWOrD exploits the graph na-
ture of RDF data and the SPARQL query language to ac-
cess this data. Through simple queries, REWOrD constructs
weighted vectors keeping the informativeness of RDF predi-
cates used to make statements about the entities being com-
pared. The most informative path is also considered to fur-
ther refine informativeness. Relatedness is then computed by
the cosine of the weighted vectors. Differently from previ-
ous approaches based on Wikipedia, REWOrD does not require
any preprocessing or custom data transformation. Indeed, it
can leverage whatever RDF knowledge base as a source of
background knowledge. We evaluated REWOrD in different
settings by using a new dataset of real word entities and in-
vestigate its flexibility. As compared to related work on clas-
sical datasets, REWOrD obtains comparable results while, on
one side, it avoids the burden of preprocessing and data trans-
formation and, on the other side, it provides more flexibility
and applicability in a broad range of domains.

1 Introduction
The ability to estimate relatedness lies at the core of cog-
nition and is an important pillar in processes such as mem-
ory, categorization, decision making, problem solving, and
reasoning (Schaeffer and Wallace 1969). In this paper we
focus on the following problem: given two words, com-
pute to what extent they are related form a semantic point
of view. Relatedness is exploited in many domains ranging
from NLP, where it is used to compare texts (Mihalcea, Cor-
ley, and Strapparava 2006) or perform word sense disam-
biguation (Patwardhan, Banerjee, and Pedersen 2003)), to
biomedical informatics where relatedness is used to com-
pare medical terms (Pedersen et al. 2007).

To emulate as much as possible the human behavior, when
computing relatedness it is necessary to lift words to the
level of concepts i.e., complex representations derived by
some kind of inference triggered by the words themselves.
Working with concepts enables to exploit relations that these
concepts bear with others and, more important, their seman-
tics. As an example, while the words Turing and Computer
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Science are unrelated if treated as strings, their lifting to the
level of concepts enables to discover perspectives (i.e., re-
lations) relating the original words. What is needed is some
form of background knowledge.

Computational approaches to relatedness have consid-
ered different forms of background knowledge, e.g., hand-
crafted lexical ontologies like WordNet (Resnik 1995; Bu-
danitsky A 2001), search engine indexes (Bollegala, Mat-
suo, and Ishizuka 2007; Turney 2001) or large corpora (Lan-
dauer and Dumais 1997). Although approaches à la Word-
Net feature accurate knowledge, they are limited in termi-
nology coverage and require a significant creation and main-
tenance effort. On the other hand, corpus-based techniques
provide a broader coverage but information is not structured.
A good trade-off is Wikipedia, where knowledge in differ-
ent domains is manually curated by thousands of contribu-
tors. Recently, many approaches started to consider knowl-
edge in Wikipedia for relatedness estimation. For instance,
ESA (Gabrilovich and Markovitch 2007), constructs an in-
dex of the whole text of Wikipedia and vectors containing
the relevance of articles, representing concepts, w.r.t. each
word appearing in Wikipedia. WikiWalk! (Yeh et al. 2009)
leverages PageRank-like scores assigned to articles by pre-
processing the whole structure of Wikipedia. Interestingly,
these techniques obtain more accurate results than those
based on WordNet, search engines or Latent Semantic Anal-
ysis as reported in (Gabrilovich and Markovitch 2007).

Current approaches to relatedness are too knowledge-
source-specific and require a significant preprocessing and
data transformation effort, which may hinder their scalabil-
ity when adopting a different source of knowledge. Besides,
although some approaches based on Wikipedia look at the
link structure, they do not consider connectivity between the
entities being compared. Finally, none of these approaches
is grounded on Semantic Web technologies and languages
although a large amount of background knowledge is now
encoded in RDF and published in the Web of Data (Heath
and Bizer 2011). A notable example is DBPedia (Auer et al.
2008), the Web of Data counterpart of Wikipedia, which en-
codes facts about 8M of entities and their semantic relations
in 1 billion of RDF triples. It is interesting to observe that
the huge amount of knowledge in DBPedia and other RDF
knowledge bases can be accessed through powerful query
languages like SPARQL without any preprocessing.
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Contributions. The contributions of this paper are as fol-
lows. We propose REWOrD, a method for computing related-
ness between Web of Data entities representing real world
concepts. REWOrD exploits Web of Data knowledge sources
such as DBPedia and relies on the SPARQL query language
to access data on-the-fly with the aim to construct weighted
vectors containing the informativeness of RDF predicates
used to make statements about the entities being compared.
REWOrD also looks at paths between these entities to further
refine their relatedness. We collected a new dataset of 26
pairs of entities for which relatedness judgements have been
provided by 20 judges. The motivation for this new dataset is
that existing datasets contain couples of generic entities such
as Car-Automobile and miss couples of more specific enti-
ties such as Android-Linux. We evaluated REWOrD on differ-
ent scenarios by using DBPedia. To investigate its flexibility,
we considered another set of entities defined both in a gen-
eral source of background knowledge (i.e., DBPedia) and
in more specific one (i.e., LinkedMDB). Finally, by using
existing datasets we compared REWOrD with related work.
REWOrD obtains results comparable with the state of the art
even if: i) it avoids the burden of preprocessing and data
transformation and; ii) it is more flexible and widely appli-
cable as it is grounded on Semantic Web technologies and
languages.

2 Preliminaries
This section provides some background on RDF, presents
the underlying data model used by REWOrD and briefly intro-
duces the features of SPARQL exploited by REWOrD.

RDF and relatedness. Given a set of URIs U and a
set of literals L , an RDF triple is defined as: 〈s, p,o〉,
where s ∈ (U) is the subject, p ∈ U is the predicate (or
property), and o ∈ (U ∪L) is the object1. A triple states
that the property p holds between the subject s and the
object o thus identifying a precise perspective on which
the subject and the object are related. Hence, a triple
can be seen as the finest-grained level of relatedness be-
tween the subject and the object. For instance, the triple
〈dbp:EnricoFermi,dbp:birth-place,dbp:Italy〉 relates En-
rico Fermi to Italy from the perspective that he was born
in Italy. Different predicates enable a multidimensional re-
latedness space where each dimension (i.e., RDF predicate)
covers a particular relatedness perspective.

A triple can be graphically represented by two nodes (the
subject and the object) and a directed edge (representing the
predicate) from the subject to the object node. A collection
of RDF triples forms an RDF graph.

Data model. We consider RDF knowledge bases as source
of background knowledge for estimating relatedness. An
RDF knowledge base can be seen as a directed multi graph
Gw = 〈V ,E ,D,F 〉 where V is a finite set of nodes, E ⊆
V ×V if a finite set of edges. We denote with e(vi,v j) an
edge from node vi to node v j. D is a description function
D : v 7→ P(T ) mapping a node v ∈ V to a subset of the

1We do not consider the case in which s and o are blank nodes
as their usage is discouraged (Heath and Bizer 2011).

power set of T , which contains all possible triples in Gw.
The function F : e 7→ S associates to each edge a label from
a finite set S . Note that V may contain both URIs and lit-
erals. The function D simulates a SPARQL query, which
enables to obtain a set of triples about a node v represent-
ing a URI. The function F specifies the edge type, that
is, the RDF predicate belonging to the relatedness space
S containing all the predicates. A path between the nodes

v0 ∈ U and vn ∈ U in Gw is defined as p(v0,vn) = v0
e1
−

v1
e2
− ...vn−1

em
− vn with vi ∈ V ∀i ∈ [0,n], ei = (v j−1,v j) ∈

E ∀ j ∈ [1,m] and − ∈ {←,→}. The symbol − models the
fact that in a path we may have edges pointing in differ-
ent directions. As an example, in the graph depicted in Fig.
1 we have p(dbp:Enrico Fermi,dbp:Hideki Yukawa) =

dbp:Enrico Fermi
e1←− dbp:Hideki Yukawa where e1 =

dbp-owl:influencedBy.

Figure 1: An excerpt of the RDF graph associated to
dbp:Enrico Fermi in DBPedia.

SPARQL. SPARQL is the W3C language for querying
RDF data. It features a set of constructs very similar to those
provided by SQL for relational databases. The more recent
SPARQL 1.1. provides aggregate operators and path expres-
sions among the other things. In this paper we are interested
in the most basic form of SPARQL queries that is Basic
Graph Patterns (BGP). Besides, we will make usage of ag-
gregate operators such as COUNT. Given a SPARQL query
q, a solution to q is defined in terms of the matching of a
BGP b, which can be seen as a subgraph, in the queried RDF
graph. According to the SPARQL specification2 query vari-
ables are bound to RDF terms (i.e, URIs and literals) via a
solution mappings µ that can be seen as a set of variable-
term-pairs with each variable not appearing in more than a
pair. In more detail, the application of a solution mapping µ
to a BGP b (i.e., µ[b]) means that each variable in the BGP b,
which is bound, is replaced by the RDF term in µ. Besides,
variables that are not bound must not be replaced. As an ex-
ample, the query SELECT ?pl WHERE {dbp:Enrico Fermi
dbp-owl:BirthPlace ?pl} executed over the graph in
Fig. 1 will bind the variable ?pl to dbp:Rome. On the
other hand, the query SELECT COUNT(?p) as ?count WHERE
{dbp:Enrico Fermi ?p ?o} counts the number of triples in
which dbp:Enrico Fermi is the subject.

2http://www.w3.org/TR/sparql11-query/
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Figure 2: An overview of REWOrD.

3 REWOrD: An overview
This section provides an overview of REWOrD. A more de-
tailed discussion will the subject of the subsequent sec-
tions. As considered before, an RDF predicate represents
the finest-grained level for expressing relatedness between
the subject and the object of a triple. As it is possible to
have several kinds of predicates, one can imagine a relat-
edness space S with each dimension (i.e., predicate) cov-
ering a particular relatedness perspective from the subject
toward an object. One may also think of as the inverse re-
lation holding in the reverse direction. Having or not such
relation depends on how data are defined. Identifying which
dimensions are relevant for a particular URI amounts at find-
ing the set of triples, and more specifically the predicates, in
which the URI appears. The relatedness space resembles the
feature space proposed by Tversky (Tversky 1977) in cog-
nitive science. Here, likeness between objects is estimated
by taking into account their “features” defined in a space
of features. A feature can be thought of as a property of
an object. As an example, having a steering wheel is a fea-
ture of a car and the underlying common-sense relation is
part-of. In RDF this piece of information can be encoded as
〈ns:steering wheel,ns:part-of,ns:car〉.

Fig. 2 depicts how REWOrD works in the Web of Data.
Given two words in input, the first step is to find URIs that
better correspond to the concepts triggered by these words.
REWOrD relies on lookup services such as that provided by
DBPedia. As an example, for the word USA, the look up ser-
vice returns the URI http://dbpedia.org/resource/United˙States.
In case of multiple URIs returned for the same word in in-
put, REWOrD takes the one with the highest rank. However,
this behavior is easily extensible to the case in which the
user chooses the most appropriate URI.

The relatedness space for a URI u (i.e., Su) is modelled
a k-dimensional weighted vector Vu, where each dimen-
sion represents the informativeness of a predicate. To con-
struct the relatedness space and compute the informative-

ness, REWOrD issues SPARQL queries to an endpoint. In the
figure, we consider the case of DBPedia although any other
endpoint (Freebase, The New York Times, DBLP, etc.) can
be considered. Note that as an RDF predicate can be relevant
for a URI u in two ways, that is, when u is the subject or the
object of a triple, REWOrD considers two different kinds: one
for the incoming predicates (V i

u) and the other for the outgo-
ing (V 0

u ). Relatedness is computed by considering the cosine
between the vectors associated to the URIs being compared
augmented with information about the most informative path
connecting them. Section 6 investigates different combina-
tions of predicate and path informativeness.

4 Informativeness in the Relatedness Space
As it will be discussed in the Related Work section, some
approaches for computing relatedness in Wikipedia (Yeh et
al. 2009) exploit PageRank and similar algorithms to assign
a popularity score to the nodes of the graph derived from
Wikipedia articles. This requires a huge preprocessing ef-
fort since the whole graph has to be processed as the score
of a node depends on the score of other nodes. Besides,
even changing a single edge, which is relatively frequent in
Wikipedia, can affect the PageRank score of many nodes.
REWOrD relies on a different strategy based on weighted

vectors of predicates. To construct these vectors, a simple
approach would be that of inserting 1 if the predicate is rel-
evant (i.e., appears in some triple with u) for a URI u and
0 otherwise. However, this approach does not take into ac-
count the relative importance of predicates. For instance,
p3 in Fig. 2 is used twice as an incoming predicate for us
whereas p1 twice as an outgoing predicate. As it happens
for words and documents in the vector space model, here it
has to be considered to what extent predicates are informa-
tive for a particular URI. Therefore, the notion of predicate
informativeness comes into play. Inspired by the TFIDF, we
introduce the Predicate Frequency (P F ) Inverse Triple Fre-
quency (I T F ) to model informativeness.
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Predicate Frequency (P F ). P F quantifies the informa-
tiveness of a predicate p in the context of a URI u. With
context we mean the RDF triples where p and u appear to-
gether. Note that p may be used as an incoming or outgoing
predicate w.r.t. u; therefore we distinguish between incom-
ing P F ( P F u

i (p)) and outgoing P F (P F u
o(p)). This co-

efficient, which resembles the Term Frequency used in the
vector space model (Salton, Wong, and Yang 1975) consid-
ers the number of times p is used with u as compared to the
total number of predicates linking u with other resources or
literals. In more detail we have:

P F u
x∈{i,o}(p) = |T u(p)|/|T u| . (1)

where |T u(p)| denotes the number of triples of the form
〈?s, p,u〉 for P F u

i (p) (resp., 〈u, p,?o〉 for P F u
o(p)) and |T u|

the total number of triples in which u appears.

Inverse Triple Frequency (I T F ). The inverse triple fre-
quency I T F (p), considers how many times a predicate is
used in some RDF triple w.r.t. the total number of triples,
and is defined as:

I T F (p) = log|T |/|T (p)| . (2)

where |T | is the total number of triples in the knowl-
edge base and |T (p)| the total number of triples having
p as a predicate. Finally, the incoming (resp., outgoing)
P F I T F is defined as P F I T F i(p)=P F i× I T F (resp.,
P F I T F o(p)=P F o× I T F ).

Hence, the vectors V i
u and V o

u (see Fig. 2) will contain
P F I T F i and P F I T F o values for each dimension (i.e.,
predicate) in the relatedness space, respectively. In order to
obtain predicates relevant for a URI and predicate counts,
REWOrD relies on SPARQL queries containing BGPs and the
COUNT operator. Further implementation details are available
at the REWOrD Web site.3

5 Path Informativeness
The second ingredient of REWOrD’s approach to relatedness,
as reported in Fig. 2, are paths between URIs. In knowl-
edge sources such as WordNet or Mesh, which feature a
tree-like structure, a natural approach to compute the relat-
edness between concepts is to look at paths between them
(see for instance (Budanitsky A 2001)(Pirró and Euzenat
2010)(Resnik 1995)). Besides, the most specific common
ancestor (msca) is exploited as a representative of the ratio
of commonalities between the concepts (Resnik 1995).

When dealing with RDF knowledge bases such as DBPe-
dia, since the underlying data forms a graph, the notion of
msca does not apply. However, paths between resources are
still useful to understand what these resource share. In gen-
eral, an RDF triple of the form 〈ui, p,u j〉 may be thought of
as a path of length 1 between the URIs ui and u j. By gener-
alizing this idea, a BGP of the form 〈u j,?p,?d〉 can be seen
as a path of length 1 between ui and the result of the binding
of the variables ?p and ?d. If this BGP is chained with an-
other one on the variable ?d, that is 〈ui,?p,?d〉〈?d,?p1,u j〉,
we are able to obtain a path of length 2 between ui and u j

3http://relwod.wordpress.com

and so forth. Note that SPARQL 1.1 supports property paths,
that is, a way to discover routes between nodes in an RDF
graph. However, since variables can not be used as part of
the path specification itself, this approach is not suitable for
our purpose. Therefore, we introduce k-BGP reachability.

k-BGP reachability. Given an integer k and two URIs
u0 and un, k-BGP reachability, denoted by R BGP(u0,un,k),
computes the set of paths of length at most k connecting u0
and un. For instance, if k = 3 then all the paths of length 1,
2 and 3 will be considered.

Semantics. The interpretation of R BGP(u0,un,k) over the

graph Gw are all the paths of the form p(u0,un) = u0...
pq
−un

with q ≤ k. We say that an edge e(vi,v j) ∈ Gw matches a

subpath ui
pi+1
− u j ∈ p if ui, u j and pi+1 are variables that have

been bound in the evaluation of the (i+1)-BGP or constants.

Path Informativeness. For a given q ≤ k, several paths
may exist. The problem now is to identify the most informa-
tive one among them. We propose the following approach:
given a path of length 1 of the form p(us,ut) = us

p−→ ut , the
informativeness of the predicate p in the path p, denoted by
Ip(p(us,ut)) is computed as:

Ip(p(us,ut)) = [P F I T F us
o (p)+P F I T F ut

i (p)]/2 (3)

It is considers the predicate p as outgoing from us and in-
coming to ut . An analogue formula can be built for the case
p(us,ut)= us

p←− ut , where p is incoming in us and outgoing
from ut . Paths of length greater than 1, can be decomposed
into a set of sub-paths of length 1, for which the informa-
tiveness can be computed. The informativeness of the whole
path is computed as [Ip1(p(us,uk))+ ...+ Ipm(p(ur,uq))+
Ipn(p(uq,ut))]/|p|. It is basically the sum of the informa-
tiveness of the sub-paths divided by the length of the path.
Path informativeness enables to discover the most informa-
tive chain of RDF predicates, which connect us and ut . The
informativeness of these predicates is summed to that of the
predicates in the vectors VUs and VUt (see Fig. 2). If these
predicates were not present, then a new shared dimension is
added in both vectors.

6 Evaluation
We implemented REWOrD in Java by using Jena4. In our ex-
periments, the DBPedia5 and LinkedMDB6 SPARQL end-
points have been used. Recall that REWOrD does not need
any preprocessing of data as compared to Wikipedia-based
approaches such ESA, where authors reported that is was
necessary to process almost 3GBs of text (Gabrilovich and
Markovitch 2007). Moreover, although we used only two
SPARQL endpoints in this evaluation, REWOrD can exploit
any other endpoint. Finally, note that if data was locally
available then SPARQL queries could be locally issued with-
out any network communication.

4http://incubator.apache.org/jena
5http://dbpedia.org/snorql
6http://www.linkedmdb.org/snorql
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(a) ρ with P F (b) ρ with P F I T F (c) ρ with path info (k=3) (d) ρ on different sources (k=3)

Figure 3: Evaluation of REWOrD in different scenarios.

Datasets and evaluation methodology. To evaluate tech-
niques for computing relatedness, a common approach is to
compare the scores they provide with the scores provided by
humans performing the same task. This approach provides
an application-independent way for evaluating measures of
relatedness. In particular, three de facto standard datasets are
used: i) R&G (Rubenstein and Goodenough 1965) that con-
tains 65 pairs of words; ii) M&C (Miller and Charles 1991)
that contains 30 pairs of words; iii) WSIM-3537 that con-
tains 353 pairs of words. These datasets only contain couples
of general entities such as Car-Automobile or Planet-Sun,
while more specific couples such as Android-Linux are miss-
ing. Therefore, a new dataset, referred to as G26, has been
constructed, which contains 26 pairs of entities for which
relatedness judgements have been provided by 20 computer
science master students on a scale from 1 to 4. Word pairs in
G26 have been manually selected by considering different
domains such as Sport, Music and Technology.

Figure 4: The G26 dataset.

The word pairs along with the average human judgements
(normalized between 0 and 1) are reported in Fig. 4. The
inter-annotator agreement reported was of 0.75. In all the

7http://www.cs.technion.ac.il/gabr/resources/data/wordsim353

experiments, the accuracy of computational methods is as-
sessed by computing the Spearman correlation coefficient ρ

between their scores and the gold standard.
Evaluation 1: evaluating REWOrD on G26. In the first
evaluation setting only the predicate frequency P F has been
considered in order to build the weighted vectors associated
to the concepts being compared. We considered three cases:
i) P F on incoming RDF predicates (P F i); ii) P F on outgo-
ing predicates (P F o); iii) their average. Results are reported
in Fig. 3 (a). As it can be observed, the P F alone gives poor
results, especially when only outgoing RDF predicates are
considered. The value of correlation is ρ = 0.14. P F i brings
better result with ρ = 0.4. When considering the average of
the two values the correlation is of almost 0.3.

In the second evaluation setting only the P F I T F has
been considered. Correlation results are reported in Fig. 3
(b). Here, there is no significant improvement when consid-
ering P F I T F o instead of P F o while in the case of ingoing
predicates (i.e., P F I T F i) there is a significant improve-
ment, with correlation reaching the value 0.7. When consid-
ering the average of the two values the correlation is 0.6.
This suggests two things. First, the informativeness of out-
going predicates is a less accurate estimator of relatedness
than that of incoming predicates. Second, considering the
I T F pays in terms of performance in both cases but with a
significant improvement in the case of ingoing predicates.

We performed an additional set of tests (see Fig. 3 (c))
by considering the shortest path (SP) between the URIs of
the concepts being compared and the most informative path
(MIP). Besides, a combination of MIP with the P F I T F i

was also considered. This combination is refereed to as
REWOrD in Fig. 3 (c). In these experiments we looked at
paths of length at most 3 (i.e., k = 3). As it can be noted,
the SP strategy brings poor results. This is because in some
cases there are no paths between the URIs compared. A bit
of improvement can be observed when using the MIP, which
looks at the most informative path by considering the infor-
mativeness of RDF predicates. Combining the MIP with the
P F I T F i brings the best results with a value of correlation
of about 0.76.

The last experiment was performed on a set of 10 couples
of actors defined both in DBPedia and LinkedMDB. The
dataset along with human ratings are available at the REWOrD
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website.8 In this evaluation we considered the REWOrD con-
figuration with MIP and P F I T F i. As it can be observed
in Fig. 3 (d), the correlation is higher when using Linked-
MDB as source of knowledge. This is probably due to
the fact that in LinkedMDB the set of predicates and their
links to resources better capture relations among actors. In-
deed, LinkedMDB is a rich source of background knowl-
edge about movies and actors.

Evaluation 2: comparison with other approaches. In
this experiment, REWOrD has been compared with related
work on three commonly used datasets (see Table 1). The
scores for WikiRelate! are reported in (Ponzetto and Strube
2007), for ESA in (Gabrilovich and Markovitch 2007), for
WLM in (Milne and Witten 2008) and for WikiWalk in (Yeh
et al. 2009). As it can be observed, REWOrD on all datasets
approaches ESA while overcomes WikiRelate!.

Table 1: Correlation on existing datasets
Spearman Correlation

Measure M&C R&G WSIM-353
WikiRelate! 0.45 0.52 0.49

ESA 0.73 0.82 0.75
WLM 0.70 0.64 0.69

WikiWalk 0.61 - 0.63
REWOrD 0.72 0.78 0.73

Note that ESA relies on a huge amount of text obtained
by parsing the whole Wikipedia content to build an in-
verted index whereas REWOrD only relies on on-the-fly in-
formation obtained by querying a SPARQL endpoint. In-
terestingly, REWOrD performs better than other approaches
based on links (i.e., WLN, WikiWalk), which require a much
higher preprocessing effort. These approaches are mostly
ad-hoc, in the sense that their applicability to other sources
of background knowledge is not immediate. ESA was also
evaluated on the Open Directory Project but even in this
case, the preprocessing effort was quite high. Authors re-
ported of having processed 3 million of URLs and 70GBs of
data (Gabrilovich and Markovitch 2007).

To further compare these approaches with REWOrD it
would be interesting to investigate their results on the G26
dataset or on other sources of background knowledge. One
advantage of REWOrD over these approaches is that it is
immediate to compute relatedness between entities in a
new domain. What is needed is just the address of a new
SPARQL endpoint. For instance, if one wanted to compute
relatedness between proteins, a SPARQL endpoint such that
provided by UniProt could be exploited.9

7 Related Work
In this paper we focused on semantic relatedness, which
generalizes similarity by considering not only specializa-
tion relations between words. The application of semantic
relatedness span different areas from natural language pro-
cessing (Patwardhan, Banerjee, and Pedersen 2003) to dis-
tributed systems (Pirró, Ruffolo, and Talia 2008). In the Se-

8http://relwod.wordpress.com
9http://uniprot.bio2rdf.org/sparql

mantic Web context, some initiatives consider RDF predi-
cates for vocabulary suggestion (Oren, Gerke, and Decker
2007) while other (Freitas et al. 2011) exploit relatedness
for query answering over Linked Data. However, differently
from REWOrD none of them is specifically focused on com-
puting relatedness in the Web of Data.

Generally speaking, computational approaches to relat-
edness exploit different sources of background knowledge
such as WordNet (e.g., (Resnik 1995; Budanitsky A 2001)),
MeSH (e.g., (Rada, Mili, and Bicknell 1989; Pirró and
Euzenat 2010)) or search engines (e.g., (Bollegala, Mat-
suo, and Ishizuka 2007; Turney 2001)). Recently, Wikipedia
has been shown to be the most promising source of back-
ground knowledge for relatedness estimation (Gabrilovich
and Markovitch 2007). Therefore we’ll consider approaches
exploiting Wikipedia as baseline for comparison.

WikiRelate! (Ponzetto and Strube 2007), given two words
first retrieves the corresponding Wikipedia articles whose ti-
tles contain the words in input. Then, it estimates related-
ness according to different strategies among which compar-
ing the texts in the pages or computing the distance between
the Wikipedia categories to which the pages belong.

Explicit Semantic Analysis (Gabrilovich and Markovitch
2007) compute relatedness both between words and text
fragments. ESA derives an interpretation space for con-
cepts by preprocessing the content of Wikipedia to build
an inverted index that for each word, appearing in the cor-
pus of Wikipedia articles, contains a weighted list of ar-
ticles relevant to that word. Relevance is assessed by the
TFIDF weighting scheme while relatedness is computed by
the cosine of the vectors associated to the texts in input.
WLM (Milne and Witten 2008) instead of exploiting text
in Wikipedia articles, scrutinizes incoming/outgoing links
to/from articles. WikiWalk (Yeh et al. 2009) extends the
WLM by exploiting not only link that appear in an article
(i.e., a Wikipedia page) but all links, to perform a random
walk based on Personalized PageRank.

The most promising approach, in terms of correlation, is
ESA. However, ESA requires a huge preprocessing effort to
build the index, only leverages text in Wikipedia and does
not consider links among articles. Therefore, it may suffer
some problems when the amount of text available is not large
enough to build the interpretation vectors or when changing
the source of background knowledge.
REWOrD is more flexible as it only needs a SPARQL end-

point to get the necessary information. WikiRelate! looks
at paths but only from the point of view of categories while
REWOrD looks at the level of data. WLM looks at links among
Wikipedia articles but does not consider paths connecting
them. Finally, WikiWalk requires to preprocess of the whole
Wikipedia graph to obtain PageRank scores. Overall, al-
though these approaches are very promising they require a
huge preprocessing effort and are not flexible since chang-
ing the source of background knowledge implies to restart a
new preprocessing phase. On the other hand, REWOrD being
based on Semantic Web technologies only needs to query
a (local or remote) SPARQL endpoint to get the necessary
background knowledge.

134



8 Concluding Remarks and Future Work
This paper presented REWOrD an approach to compute relat-
edness exploiting SPARQL to construct vectors containing
the informativeness of RDF predicates used to make state-
ments about the concepts being compared. Informativeness
is computed by the Predicate Frequency Inverse Triple Fre-
quency (P F I T F ). REWOrD also considers paths between
concepts to refine relatedness. An experimental evaluation
showed that REWOrD obtains results comparable with the
state of the art while being more flexible. In fact, it does
not require preprocessing of data and can exploit any source
of knowledge for which a SPARQL endpoint is available.

An interesting line of future research is the combination of
knowledge from different sources. For instance, when com-
paring Stanley Kubrick with David Lynch using DBPedia, it
would be interesting to exploit links that DBPedia has with
LinkedMDB (via owl:sameAs) to get information from both
sources. Exploiting REWOrD for text relatedness and word
sense disambiguation are other interesting challenges.
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