
Towards Automated Choreographing of Web Services Using Planning

Guobing Zou†‡§, Yixin Chen‡, You Xu‡, Ruoyun Huang‡, Yang Xiang§
†School of Computer Engineering and Science, Shanghai University, China

‡Dept. of Computer Science and Engineering, Washington University in St. Louis, USA
§Dept. of Computer Science and Technology, Tongji University, China

guobingzou@gmail.com, {chen, yx2, rh11}@cse.wustl.edu, shxiangyang@tongji.edu.cn

Abstract

For Web service composition, choreography has re-
cently received great attention and demonstrated a few
key advantages over orchestration such as distributed
control, fairness, data efficiency, and scalability. Au-
tomated design of choreography plans, especially dis-
tributed plans for multiple roles, is more complex and
has not been studied before. Existing work requires
manual generation assisted by model checking. In this
paper, we propose a novel planning-based approach that
can automatically convert a given composition task to a
distributed choreography specification. Although plan-
ning has been used for orchestration, it is difficult to
use planning for choreography, as it involves decentral-
ized control, concurrent workflows, and contingency.
We propose a few novel techniques, including compi-
lation of contingencies, dependency graph analysis, and
communication control, to handle these characteristics
using planning. We theoretically show the correctness
of this approach and empirically evaluate its practica-
bility.

Introduction
Orchestration and choreography are two ways for Web ser-
vice composition. A WSC problem can be described from
the view of a single participant using orchestration or from
a global perspective using choreography (Barker, Walton,
and Robertson 2009). Service orchestration refers to an ex-
ecutable business process that has a central controller pro-
cess to coordinate all of the participating Web services (Peltz
2003). On the contrary, service choreography does not have
an orchestrator, but all of the participating Web services
collaborate with each other in order to achieve a shared
goal. The Web Services Choreography Description Lan-
guage (WS-CDL) is an XML-based W3C candidate lan-
guage for describing collaborations of service choreography.

It has been widely recognized that choreography has
certain key advantages over orchestration, including less
data transfer, robustness under server failure, fairness, and
avoidance of deadlocks. Although service choreography is
widely advocated, automated generation of service choreog-
raphy specification has not been studied. WS-CDL describes

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

choreography from a global view in a single master plan.
It is realized that such a global view is not sufficient and
choreography plans should be distributed (Qiu et al. 2007).
Although a global view such as defined by WS-CDL is help-
ful, at the execution end, each role should have a ”local plan”
such as the MAP protocol (Barker, Walton, and Robertson
2009) that specifies what it needs to do from its individual
perspective. Designers ensure that the collaboration of the
multiple roles correctly achieves the global goals.

Some recent research focuses on new languages for dis-
tributed plans in choreography, but relies on users to man-
ually write the specifications. Examples include the Mul-
tiagent Protocols (MAP) (Barker, Walton, and Robertson
2009), and WS-CDL+ (Kang, Wang, and Hung 2007). They
do not solve the problem of how to generate these specifica-
tions, although there are works that verify the protocol us-
ing model checking (Barker, Walton, and Robertson 2009;
Yang et al. 2008). Due to the complexity of decentralized
logics, manually completing such a specification for ser-
vice choreography can be tedious and error prone. Although
model checking can be used to verify the plan, designing by
trial-and-error is labor intensive.

In this paper, we propose a novel approach that can au-
tomatically generates a distributed choreography plan based
on automated planning. Although planning has been used
for orchestration, it is difficult for choreography for sev-
eral challenges. While planning is suitable for constructing
the composition plan from the view of a single party in or-
chestration, choreography needs distributed and coordinated
plans for multiple participants, making planning more dif-
ficult. Also, choreography needs to support asynchronous
communication between peers and contingent plans that de-
pend on the outcomes of Web services.

We propose a novel planning-based framework to address
the above challenges. Our framework compiles a repository
of related Web services, along with user-defined contingen-
cies, into a planning domain in Planning Domain Definition
Language (PDDL). This process compiles away the con-
tingency on action outcomes into a deterministic planning
problem. A planner is used to find a master plan which pro-
vides a global view of the choreography. We further propose
a decentralization scheme which uses a dependency analy-
sis to support the synthesis of local plans, one for each peer.
By addressing three main features in choreography, includ-

178

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

Figure 1: The interaction flow of the three roles.

ing choices, parallelism, and communication, our approach
is correct in the sense that all possible distributed execution
sequences carried out by the participating peers are valid un-
der the centralized master plan.

We implemented a prototype system and conducted ex-
tensive experiments on 81,464 WSDL services in 18 groups
of large scale service repositories. The experimental results
validated the feasibility and efficiency of our proposed work.

A Running Example
Our example has three Web services: customer, supplier and
warehouse. Figure 1 shows an ordering process.

The Customer sends a quote request to the Supplier
on a given product, and then the Supplier receives the re-
quest (ReceiveRFQ) and replies. After receiving it (Receive-
Quote), the Customer sends a request to the Supplier. Once
receiving an order (ReceivePO), the Supplier sends order
information to the Warehouse, who receives it (ReceiveOI),
checks its availability (CheckAvail), and replies to the Sup-
plier. When the Supplier receives it (ReceiveAvail) from
the Warehouse, it makes a decision for the order request.

There are two possibilities. If a product is unavailable, the
Supplier cancels it (CancelPO) and notifies the Customer.
Otherwise, the Supplier accepts it (ConfirmPO). After re-
ceiving the acceptance (ReceivePOAccept), the Customer
makes a payment (MakePayment) and replies a payment
confirmation to the Supplier. Meanwhile, after receiving a
shipping order request (ReceiveShipOrder), the Warehouse
sends a request to the Customer for shipping details. Once
the Customer receives it (ReceiveShipDetailR), it replies
shipping details to the Warehouse. After receiving a pay-
ment and shipping confirmation (ReceiveShipPayment), the
Supplier replies to a purchase confirmation to Customer.

Problem Formulation
We first formulate our problem using a simplified model.
In this paper, we focus on understanding the fundamen-
tal principles of automated choreography by planning, and
simplify or omit certain issues in Web service composition,
such as ontology (Agarwal et al. 2005) and background the-
ory (Hoffmann, Bertoli, and Pistore 2007). The theory and

algorithms can be readily incorporated with other techniques
and extended to more complex systems. In the experimen-
tal results section, we present an evaluation using real-world
WSDL Web services and MAP for choreography descrip-
tion. As we will see, the projection from our theoretical
model to these languages are straightforward.
Definition 1 (Web Service). A Web service w consists of
a set of operations, denoted as w = {op1,op2, · · ·}, where
∀op ∈ w is a 2-tuple 〈I,O〉, where I = {I1, I2, · · ·} is a set of
input interface parameters. Similarly, O = {O1,O2, · · ·} is a
set of output interface parameters. We use op.I and op.O to
denote I and O in op, respectively. For each interface pa-
rameter x, we use Dom(x) to denote its possible values and
x.value ∈ Dom(x) to denote the value of x.

Note that each Web service plays a role that can perform
a set of operations. A service repository is a set of services.
Definition 2 (Contingency). For an operation op with
op.I = {I1, I2, · · ·}, a contingency is a tuple c= (op, Ii, prei)
where prei ⊂ Dom(Ii).

A contingency c = (op, Ii, prei) means that to invoke op,
we need its input parameter Ii to take the values in prei,
instead of any value in Dom(Ii).

We define a service state as a set of interface parameters
Q = {x1,x2, · · ·} that are defined and assigned values. We
assume that parameters not in Q are unavailable at the state.
Definition 3 (Applicability). Without contingency, an op-
eration op is applicable at a service state Q if op.I ⊆ Q.
We denote this as Q � op. An operation op under contin-
gency c = (op, Ii, prei) (denoted as cB op) is applicable
at Q if op.I ⊆ Q and op.Ii.value ∈ prei. We denote this as
Q� cBop.

When an applicable operation op or cB op is applied to
Q, the resulting state Q′ = Q⊕ op (or Q′ = Q⊕ cB op)
is Q′ = Q ∪ op.O, in which the values of the parameters
in op.O are set by executing op. An execution sequence
is an ordered list L = (o1, · · · ,om) where each element is
either an operation op or an operation with contingency
cB op. Applying a sequence L to a service state Q results
in Q′ = Q⊕L = (· · ·((Q⊕o1)⊕o2) · · ·⊕om) if every step is
applicable (otherwise Q⊕L is undefined).
Definition 4 (Service Choreography Problem (SCP)). A
SCP is defined by (W,C,rin,rout): 1) a service reposi-
tory W = {w1, · · · ,wN}, 2) a set of contingencies C =
{c1, · · · ,cNc}, 3) an input parameter set rin = {r1,r2, · · ·},
and 4) an output parameter set rout = {q1,q2, · · ·}.

Example 1. Following our running example, its
SCP has W = {Customer,Supplier,Warehouse}. An ex-
ample operation is ReceiveRFQ = {I,O}, where I =
{pid, pid name}, O = {pid price}. Another operation
is Con f irmPO = {I,O}, where I = {po avail}, O =
{po accept,shiporderR}. In particular, Dom(po avail) =
{avail,not avail}, while po accept and shiporderR repre-
sent an order acceptance and shipping order request, respec-
tively.

The contingency set consists of C = {c1,c2},
where c1 = (Con f irmPO, po avail,{avail}) and

179

c2 = (CancelPO, po avail,{not avail}). The initial
choreography inputs rin = {pid, pid name, pid quantity}.
The goal is rout = {purchase con f irm, po order re ject},
which has a purchase confirmation purchase con f irm and
an order rejection po order re ject. �

Note that here we assume that the user can specify mul-
tiple possible goal states he is interested in. Typically, the
users are knowledgeable of these multiple choreography
goals, because they are advanced model developers of Web
service composition (Ponnekanti and Fox 2002). A choreog-
raphy should consider all of the contingencies and give ser-
vice choreography plans that can handle the various goals.
In our example, the user specifies both purchase con f irm
and po order re ject as goals, so that the choreographer can
find plans contingent on the availability of the product.

Given a SCP=(W,C,rin,rout), a choreography master
plan is any expression P defined by the following language.

P ::= op (op ∈ w ∈W)

| talk(i, j) (role i talks to j)
| P;P (sequential)
| P ‖ P (parallel)
| cBP or P (c ∈C,choice)

where op is an operation in a Web service, and c is a con-
tingency. We allow only one contingency for each or choice
to simplify the presentation, although it is easy to extend
to multiple contingencies. Our language is similar to other
choreography description (Barker, Walton, and Robertson
2009; Qiu et al. 2007), except that we explicitly introduce
contingency in our definition. The talk action is applicable
to any service state and brings no change to the state.

Given a service state Q, let t(P) denote all of the possible
execution sequences from Q, we can define:

t(op) = {(op)}
t(talk(i, j)) = {(talk(i, j))}

t(P1;P2) = t(P1)◦ t(P2)

t(P1 ‖ P2) = t(P1) ./ t(P2)

t(cBP1 or P2) =

{
t(P1), if Q� cBP1;
t(P2), otherwise.

where ◦ denotes the concatenation of two trace sets (i.e. A◦
B = {(a,b)|a ∈ A,b ∈ B}), and ./ is the interleaving of two
trace sets (the definition is standard and omitted); Q� cBP1
should be understood as Q � cB op for any op that can be
the first operation in a sequence in t(P1).

Definition 5 (Centralized Solution). A centralized solu-
tion to a SCP=(W,C,rin,rout) is a choreography master plan
P such that for every sequence L ∈ t(P), rin⊕ L is defined
and rin⊕L⊇ rout .

In SCP, there are multiple roles, each corresponds to a w∈
W . A local plan is any expression R defined by the following

language.

R ::= op (op ∈ wi)

| send(ch, i, j) (send to role j)
| recv(ch, j, i) (receive f rom role j)
| R;R (sequential)
| R ‖ R (parallel)

| cBR or R (c ∈Ci,choice)

where Ci ⊆ C is the set of contingencies related to wi (i.e.
Ci includes those c whose operation op is in wi); and ch is a
unique channel ID for each send/recv pair. Like talk, send
and recv are applicable to any service state.

Given a service state Q, for role wi with a local plan Ri,
we can similarly define t(Ri), the set of possible execution
sequences of wi from Q. A distributed choreography plan
R is a set of local plans Ri, one for each role wi ∈W . Then,
we can define the set of combination sequences as

C(R) = {./∗ (L1, · · · ,LN)|Li ∈ t(Ri), i = 1..N},

where ./∗ denotes any interleaving of N sequences subject
to one constraint: send(ch, i, j) is always before recv(ch, j, i)
for any ch, i and j.

Definition 6 (Distributed Solution). A distributed solution
to a SCP=(W,C,rin,rout) is a distributed choreography plan
R such that for every sequence L ∈ C(R), rin⊕L is defined
and rin⊕L⊇ rout .

Definition 7 (Equivalence). A centralized solution is
equivalent to a distributed solution when their sequence sets
contain identical sequences, ignoring talk, send, and recv.

A closely related equivalence has been studied in (Qiu et al.
2007). We comment that WS-CDL can be viewed as an ex-
tended language for master plans, while MAP (Barker, Wal-
ton, and Robertson 2009) and the Role Language in (Qiu et
al. 2007) are examples of languages for distributed plans.

Automated Choreography by Planning
We develop an approach that can correctly generate a dis-
tributed solution for a SCP. It has a few major steps. 1)
Translate an SCP into a PDDL planning problem, which
complies away action contingency. 2) Solve the planning
problem using an automated planner to obtain a solution
plan. 3) Perform a dependency analysis on the plan to build
a dependency graph (DP) and mark DP to generate a mas-
ter plan P. 4) Project P to a distributed plan R based on the
DP. We will also show that R is a distributed solution to the
SCP, by showing that P is a centralized solution and that R
is equivalent to P.

Planning formulation of SCP
A classical planning problem π is a tuple π = (A,F,I ,G),
where A is the set of actions, F the set of facts, I the initial
state, and G the goal state. Each action a has sets of precon-
ditions pre(a), add effects add(a), and delete effects del(a).
The planning task is to find a sequence of applicable actions
that transforms I into a state containing G.

180

Figure 2: The sequential plan for the running example (C:
Customer; S: Supplier; W: Warehouse).

Given a SCP=(W,C,rin,rout), we translate it into the fol-
lowing classical planning problem.

Actions. We develop actions in A in two steps. For each ac-
tion a ∈ A, we also define two properties: key(a) denotes the
operation or contingency a is representing; and host(a) de-
notes the Web service w that key(a) belongs to.

1) For each Web service w ∈ W , for each operation
op ∈ w, we introduce an operation action a with pre(a) =
op.I and add(a) = op.O. We also define key(a) = op and
host(a) = w.

2) For each contingency c∈C, let c= (op, Ii, prei), we in-
troduce a contingency action bc and define pre(bc) = {Ii},
add(bc) = {contc}, key(bc) = op, and host(bc) = w where
op∈w. Here, contc is a special fact introduced for each con-
tingency c. We also modify the action a for op by pre(a) =
pre(a) \ {op.Ii}∪ {contc}. This way, we compile away the
contingency on action outcomes.

Facts. The facts include all of the input and output param-
eters (op.I and op.O) for every operation op in all services
w∈W , and all of the special contingency fact contc for c∈C.

Initial and goal states. We set I = rin and G = rout .
Example 2. The SCP shown in Example 1 is
translated into a planning problem π with A =
{ReceiveRFQ,Con f irmPO, · · · ,bc1,bc2}.

For action a from operation ReceiveRFQ, pre(a) =
{pid, pid name}, add(a) = {pid price}. The action bc1
for contingency c1 = (Con f irmPO, po avail,{avail}) has
pre(bc1) = {po avail} and add(bc1) = {contc1}. The action
a′ for Con f irmPO has pre(a′) = {contc1} and add(a′) =
{po accept,shiporderR}.

F = {pid, pid name, po avail, · · · ,contc1,contc2},
I = {pid, pid name, pid quantity}, and finally,
G = {purchase con f irm, po order re ject}. �

After compilation, we use a planner to find a solution plan
for π, which is a sequence of actions A = (a1, · · · ,am) trans-
forming I to G. A solution to π in Example 2 found by
FF (Hoffmann and Nebel 2001) is in Figure 2.

Generation of the master plan
Given a solution plan A = (a1, · · · ,am), we build a depen-
dency graph as follows.

Definition 8 (Dependency). Given a solution plan A =
(a1, · · · ,am), an action a j depends on ai (denoted as ai ` a j)
if and only if, i < j and there exists a fact f ∈ pre(a j) such
that f /∈ I and ai is the last action in a1, · · · ,a j−1 such that
f ∈ add(ai).

Figure 3: The DG for the example. The goal states (G1 and
G2) are also added to the graph for better illustration.

Note that the above definition is general for both operation
actions and contingency actions.
Definition 9 (Dependency Graph (DG)). Given a solution
plan A = (a1, · · · ,am), a dependency graph is a directed
graph DG = (V,E) such that V = A and there is an edge
(ai,a j) ∈ E if and only if ai ` a j.
Example 3. Figure 3 shows the DG for the plan in Figure
2. The DG discovers structures, including sequential, paral-
lel and conditional ones, of the master plan. We observe that
there is a choice of making a decision based on contingency
actions (bc1 and bc2) after the Supplier receives the availabil-
ity information of an order. Moreover, once a product order
is accepted (Con f irmPO), roles work in parallel in order to
make payment and arrange shipping. �

A choreography master plan can be derived from the DG.
• For every operation action a in the DG whose out degree

is 1, we mark a by ”;”.
• For every contingency action bc in the DG, we mark it by

the contingency sign ”B”.
• For every action a whose out degree is more than 1, we

mark a by ”‖” if its successors do not include contingency
action and mark a by ”or” otherwise.

• For every edge (ai,a j), if host(ai) 6= host(a j), we mark
the edge by talk(i, j).
After such marking, we can write out the choreography

master plan by viewing the marked DG as the parsing graph
for the master plan language.
Example 4. Figure 3 shows the marking of DG (talk’s are
not shown). The master plan derived from the DG is:
ReceiveRFQ; talk(S,C); ReceiveQuote; · · · ; (c1B (Con-
firmPO; (talk(S,C); ReceivePOAccept; · · ·) ‖ (talk(S,W);
ReceiveShipOrder; · · ·); ReceiveShipPayment; talk(S, C);
ReceiveBuyConfirm)) or (c2B (CancelPO; talk(S, C); Re-
ceivePOReject)) �

Generation of the distributed plan
To generate the distributed plan, we partition DG = (V,E).
We partition the vertex set V into multiple, disjoint sets, one
for each role w ∈W . That is, V =V1∪·· ·∪VN , where a ∈Vi
if and only if host(a) = wi. It is illustrated in Figure 4.

Since ai ` a j only when i < j, the DG is acyclic. Hence, a
node a j is an offspring of ai if there is a path from ai to a j in
DG. We define that an action ai depends on a contingency
c if ai is an offspring of bc in DG.

181

Figure 4: The collaborative interactions between three roles.

Definition 10 (Lead Operation) Given a solution sequence
A = (a1, · · · ,am), for a given contingency c ∈ C and role
w ∈W, the lead operation lead(c,w) is the first action a
in A such that host(a) = w and a depends on c. w may not
contain a lead operation if no action in w depends on c.

Based on the marked DG, for every role we generate a
local plan in the language R defined in Section 3. The entire
algorithm is long and omitted, and we give the key rules for
generation below. For each role wk ∈W,k = 1, · · · ,N, we
consider the actions in partition Vk following the order in A.

• For every two actions ai and a j in Vk where i < j, if a j is
an offspring of ai, they are arranged sequentially (”;”); if
not, they are arranged in parallel (”‖”) if they depend on
the same contingency or by choice (”or”) otherwise.

• For every edge from an operation action in Vk to an action
in a different partition Vl , we insert send(ch,k, l).

• For every edge from an operation action in a different par-
tition Vl to an action in Vk, we insert recv(ch, l,k).

• For every contingency action bc in Vk, we insert
send(ch,k, l) to every other partition Vl that contains a
lead operation.

• For every action a such that a = lead(c,wk), where
host(bc) = l, l 6= k, we insert recv(ch, l,k) before a.

Example 5. Based on the partitioned DG in Figure 4, the lo-
cal plans are, for Customer: recv(ch0,S,C); ReceiveQuote;
send(ch1,C,S); recv(ch2,S,C); (c2B recv(ch3,S,C); Re-
ceivePOReject) or (c1B ((recv(ch4,S,C); ReceivePOAccept;
MakePayment; send(ch5,C,S)) ‖ (recv(ch6,W,C); Receive-
ShipDetailR; send(ch7,C,W))); recv(ch8,S,C); ReceiveBuy-
Confirm).

Supplier: ReceiveRFQ; send(ch0,S,C); recv(ch1,C,S);
ReceivePO; send(ch10,S,W); recv(ch11,W,S); Re-
ceiveAvail; (send(ch2,S,C) ‖ send(ch8,S,W)); (c2B Can-
celPO; send(ch3,S,C)) or (c1B ConfirmPO; (send(ch4,S,C)
‖ send(ch12,S,W)); (recv(ch5,C,S) ‖ recv(ch9,W,S));
ReceiveShipPayment; send(ch8,S,C)).

Warehouse: recv(ch10,S,W); ReceiveQI; CheckAvail;
send(ch11,W,S); recv(ch8,S,W); (c1B (recv(ch12,S,W);
ReceiveOrder; send(ch6,W,C); recv(ch7,C,W); Receive-
ShipDetails; send(ch9,W,S))). �

The correctness of our distributed plan can be established
by showing its equivalence to the master plan, which satis-

Figure 5: Local plan of Customer in MAP specification.

fies the user’s need as it solves the planning problem π mod-
eling the logical constraints and contingencies of the SCP.
Theorem 1. For a SCP, the distributed plan generated by
our algorithm is equivalent to the master plan.

Due to space limit, we only sketch the key idea of proof
here. Our proof constructs an one-to-one correspondence be-
tween any possible sequence in the master plan to a sequence
in the distributed plan, ignoring the communication primi-
tives. (Qiu et al. 2007) studied necessary conditions for such
equivalence and concluded that a natural projection from a
master plan does not always give an equivalent distributed
plan. There is a key difference: their work considers any pos-
sible master plan, while in our approach, only those master
plans and local plans that can be generated from our plan-
ning method are considered. Our planning work, although
more restrictive, ensures the equivalence of local and mas-
ter plans by analyzing the dependency and contingency and
using communication to enforce actions’ partial orders.

A counterexample in (Qiu et al. 2007) is a master plan
(a1

1 ‖ a2
1);a1

2, where a1
1 and a1

2 are in role 1 and a2
1 in role

2. The distributed plan is a1
1;a1

2 for role 1 and a2
1 for role

2, which allows a1
1;a1

2;a2
1, a sequence the master plan does

not allow. In our planning approach, however, such a non-
equivalence will not occur. If a1

2 depends on a2
1, then there

will be a send/recv pair that restricts the order; if a1
2 does

not depend on a2
1, then the master plan will be (a1

1;a1
2) ‖ a2

1,
which is equivalent to the distributed plan.

In addition, under contingencies, it is suggested that
equivalence relies on the existence a dominant role (Qiu et
al. 2007), which makes choices that all other roles will fol-
low. In our method, we essentially have a dominant role for
each contingency (whoever generates the output parameter),
and the dominant role sends the decision to the lead opera-
tions in other roles.

Experimental Results
We developed a prototype system in Java. It takes service
repositories in WSDL as input, allows user to specify initial
state and choreography goals, and applies our approach to

182

generate a distributed choreography plan in the MAP spec-
ification (Barker, Walton, and Robertson 2009). Two plan-
ners FF (Hoffmann and Nebel 2001) and SatPlan06 (Kautz,
Selman, and Hoffmann 2006) are integrated in our system.
We ran our experiments on a PC with Intel Pentium(R) dual
core processor 2.4 GHz and 1G RAM.

Currently a user needs to specify contingencies the first
time a Web service is published. In fact, this involves only
a slight enhancement to a Web service description language
such as WSDL or OWL-S. In our experiment, we have en-
hanced WSDL by some special annotations to describe the
contingencies. Since typically only a small number of Web
services involve contingencies, it does not require much
work as most Web services do not need any change. Then,
the translation from the WSDL repository to the planning
formulation is completely automated and does not involve
any manual work. That is, our planning translation algo-
rithm will automatically generate the correct planning do-
main specification in the PDDL language. It can parse the
special annotations for contingencies and correctly translate
them into contingency actions.

Taking the choreography dependency graph in Figure 3
as an example, we convert it into three MAP specifications.
Figure 5 shows the MAP plan for Customer. Supplier and
Warehouse are omitted. The translation from our language
R to MAP is direct from the example. Details of MAP can
be found in (Barker, Walton, and Robertson 2009).

We tested and compared our approach with WSPR (Oh,
Lee, and Kumara 2007) on 81,464 Web services in 18
groups of large scale service repositories from the ICEBE05
Web services composition challenge. We compared against
WSPR since it is a well-known solver for automated com-
position of Web services using AI planning techniques, i.e.,
forward search and regression search algorithm. Note that
WSPR solves orchestration, a much simpler problem than
the choreography problem that our approach solves. Since
the most time-consuming components in our approach are
SCP translation and choreography plan generation, we re-
port the timing of these two parts in Table 1. The response
time of finding a choreography plan is the duration from sub-
mitting a chorography task until receiving the output of the
final solution or failing to find a plan.

Although the most difficult repository with the largest
number of services and I/O parameters (Composition2-100-
32) takes more than 1,100 seconds for the SCP translation,
it can be performed offline only once. Each time when a
user wants to find a service choreography, he only needs to
specify the inputs and possible goals. The system will au-
tomatically generate the adjusted planning formulation very
quickly. In other words, once we translate operations in a
large Web service repository into planning actions, we do
not need to parse a service repository again when a user sub-
mits a choreography task.

Comparing to WSPR, we can see that although our ap-
proach solves the more complex choreography problem and
handles distributed coordination, communication, and con-
tingency, it is more efficient than WSPR in finding a solution
plan on the average response time. The reason is that our
translation to PDDL allows us to leverage on the advances

Table 1: The SCP translation time and average response time of
finding a choreography plan using FF and SatPlan06 and WSPR.
There are 18 groups of service repositories on the ICEBE05. Each
repository has 11 choreography goals. Column ‘|P|’ is the size of
input and output parameters in an operation. Column ‘|W|’ is the
number of services. Column ‘Trans. time’ gives the time for SCP
translation. Column ‘Generation time’ is the average response time
of finding a plan for all 11 choreography goals in seconds.

Repository |P| |W| Trans. Generation time
time FF SatPlan06 WSPR

Composition1-20-4
4-8

2156 74.03 0.306 0.800 8.674
Composition1-50-4 2656 109.77 0.344 0.980 11.242
Composition1-100-4 4156 250.92 0.491 1.539 17.665
Composition1-20-16

16-20
2156 75.641 1.149 2.334 17.753

Composition1-50-16 2656 112.25 1.198 3.565 22.478
Composition1-100-16 4156 253.00 1.873 5.419 36.278
Composition1-20-32

32-36
2156 77.20 3.224 5.076 29.988

Composition1-50-32 2656 112.95 3.422 7.910 37.726
Composition1-100-32 4156 260.172 4.792 14.221 62.629
Composition2-20-4

4-8
3356 164.92 0.569 2.672 14.878

Composition2-50-4 5356 400.14 0.845 4.391 24.046
Composition2-100-4 8356 964.03 1.214 7.373 38.934
Composition2-20-16

16-20
6712 625.45 4.359 30.210 63.430

Composition2-50-16 5356 412.31 3.817 18.307 49.776
Composition2-100-16 8356 972.47 5.320 32.235 81.791
Composition2-20-32

32-36
3356 175.74 7.819 26.609 50.719

Composition2-50-32 5356 417.44 11.098 49.489 86.794
Composition2-100-32 8356 1,103.38 14.833 92.536 148.807

of automated planners, while WSPR uses its own planning
model and composition solver.

Conclusions
Automatic and efficient Web service composition (WSC)
can potentially simplify the implementation of business pro-
cesses. Web service choreography is an important paradigm
for WSC with many advantages over Web service orches-
tration. This paper presents a method to generate distributed
plans for Web service choreography. Based on an AI plan-
ning approach and dependency graph analysis, the method is
efficient and fully automated, and also ensures correct col-
laboration of multiple peers.

In this paper, we focus on finding a feasible choreography
plan that can correctly achieve choreography goals under
distributed collaboration and contingencies. For our future
work, we will further consider the optimization of choreog-
raphy plan quality, by considering important non-functional
property metrics, such as multiple QoS of Web services.

Acknowledgment
We would like to thank Jörg Hoffmann, Henry Kautz and
Bart Selman for providing open source of Metric-FF and
SatPlan06. This work was supported by an NSF grant
IIS-0713109, a Microsoft Research New Faculty Fellow-
ship, a Shanghai Leading Academic Discipline Project grant
J50103 and an Innovation Program of Shanghai Municipal
Education Commission grant 11ZZ85.

183

References
Agarwal, V.; Chafle, G.; Dasgupta, K.; et al. 2005. Synthy:
A system for end to end composition of Web services. JWS
3(4):311–339.
Barker, A.; Walton, C. D.; and Robertson, D. 2009.
Choreographing Web services. IEEE Trans. Serv. Comput.
2(2):152–166.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. J. of AI
Research 14(1):253–302.
Hoffmann, J.; Bertoli, P.; and Pistore, M. 2007. Web service
composition as planning, revisited: In between background
theories and initial state uncertainty. In Proc. of AAAI.
Kang, Z.; Wang, H.; and Hung, P. 2007. WS-CDL+: an
extended WS-CDL execution engine for Web service col-
laboration. In Proc. of ICWS.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In Abstracts IPC5.
Oh, S. C.; Lee, D.; and Kumara, S. R. T. 2007. Web Ser-
vice Planner(WSPR): An effective and scalable Web service
composition algorithm. Int. J. Web Serv. Res. 4(1):1–22.
Peltz, C. 2003. Web services orchestration and choreogra-
phy. Computer 36(10):46–52.
Ponnekanti, S. R., and Fox, A. 2002. Sword: A developer
toolkit for web service composition. In Proc. of WWW.
Qiu, Z.; Zhao, X.; Cai, C.; and Yang, H. 2007. Towards the
theoretical foundation of choreography. In Proc. of WWW.
Yang, H.; Zhao, X.; Cai, C.; and Qiu, Z. 2008. Model-
checking of web services choreography. In Proc. of SOSE.

184

