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Abstract

In recent years, social networks have surged in popularity as
one of the main applications of the Internet. This has gener-
ated great interest in researching these networks by various
fields in the scientific community. One key aspect of social
network research is identifying important missing informa-
tion which is not explicitly represented in the network, or
is not visible to all. To date, this line of research typically
focused on what connections were missing between nodes,
or what is termed the "Missing Link Problem". This pa-
per introduces a new Missing Nodes Identification problem
where missing members in the social network structure must
be identified. Towards solving this problem, we present an
approach based on clustering algorithms combined with mea-
sures from missing link research. We show that this approach
has beneficial results in the missing nodes identification pro-
cess and we measure its performance in several different sce-
narios.

Introduction

Social Networks, which enable people to share informa-
tion and interact with each other, have become a key In-
ternet application in recent years. These networks are typ-
ically formally represented as graphs where nodes repre-
sent people and edges represent some type of connection
between these people (Liben-Nowell and Kleinberg 2007),
such as friendship or common interests. Examples of these
social networks include popular websites such as Facebook
(www.facebook.com) and Myspace (www.myspace.com).

Because of their ubiquity and importance, various aspects
of these networks have been studied. One important fac-
tor that is often studied is the structure of these networks
(Clauset, Moore, and Newman 2008; Fortunato 2010; Leroy,
Cambazoglu, and Bonchi 2010; Liben-Nowell and Klein-
berg 2007; Porter, Onnela, and Mucha 2009). Previously, a
"missing link problem" (Liben-Nowell and Kleinberg 2007;
Clauset, Moore, and Newman 2008) was defined as attempt-
ing to locate which connections (edges) will soon exist be-
tween nodes. In this problem, the nodes of the network are
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known, and unknown links are derived from existing net-
work information, including complete node information. In
contrast, we consider a new Missing Nodes Identification
problem which attempts to locate and identify missing nodes
within the network. This problem is significantly more diffi-
cult than the previously studied missing link problem as both
the nodes and their edges are not known with certainty.

To understand the importance of the missing nodes iden-
tification problem we introduce, please consider the follow-
ing example. A hypothetical company, Social Games Inc.,
is running an online gaming service within Facebook. Many
Facebook members are subscribers of this company’s ser-
vices, yet it would like to expand its customer base. As a ser-
vice provider, Social Games maintains a network of users,
which is a subset of the group of Facebook users, and the
links between these users. The users of Facebook which are
not members of the service are not visible to their systems.
Social Games Inc. would like to discover these Facebook
nodes, and try to lure them into joining their service. The
company thus faces the missing nodes identification prob-
lem. By solving this problem, Social Games Inc. could im-
prove its advertising techniques and aim at the specific users
which haven’t subscribed to their service yet.

The above example exemplifies just one possible applica-
tion of the missing nodes identification problem. In addition
to entertainment applications, commercial companies might
want to identify new customers based on solutions to this
problem. These nodes might represent missing persons that
are sought after by family members or people wanted by
the police as suspects in a crime. As a result, solving the
missing nodes identification problem can be of considerable
importance.

We focus on a specific variation of the missing nodes
problem where the missing nodes requiring identification are
"friends" of known nodes. An unrecognized friend is asso-
ciated with a "placeholder" node to indicate the existence
of this missing friend. Thus, a given missing node may be
associated with several "placeholder" nodes, one for each
friend of this missing node. We assume that tools such as
image recognition software or automated text analysis can
be used to aid in generating placeholder nodes. For example,
a known user might have many pictures with the same un-
known person, or another user might constantly blog about
a family member who is currently not a member of the net-
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work. Image recognition or text mining tools can be em-
ployed on this and all nodes in the social network to obtain
indications of the existence of a set of missing nodes. Place-
holders can then be used to indicate where these missing
nodes exist. However, it is likely that many of these place-
holders are in fact the same person. Thus, our focus is on
solving the identification of the missing nodes, or given a
set of these placeholders, which placeholders do in fact rep-
resent the same person.

In this paper, we present a general method of solving this
problem by using a spectral clustering algorithm previously
considered only for other problems (Ng, Jordan, and Weiss
2001; Almog, Goldberger, and Shavitt 2008). One key issue
in applying the general clustering algorithm is what specific
measure should be used for helping identify similar nodes
to be clustered together. Towards solving this point, we
present five measures for judging node similarity. One of
these measures is the Gaussian Distance Measure, typically
used over Euclidean spaces in spectral clustering (Ng, Jor-
dan, and Weiss 2001), while the other four measures are
non-Euclidean measures which have been adapted from a
related missing link problem (Liben-Nowell and Kleinberg
2007). We found that these measures helped solve the miss-
ing nodes identification problem significantly better than the
base Gaussian measure. We begin this study by further
describing these measures and the spectral clustering algo-
rithm.

Related Work
In solving the missing nodes identification problem, this pa-
per uses variations of two existing research areas – spectral
clustering algorithms and metrics built for the missing edge
problem. The spectral clustering algorithm of Ng, Jordan
and Weiss (Ng, Jordan, and Weiss 2001) is a well docu-
mented and accepted algorithm, with applications in many
fields including statistics, computer science, biology, social
sciences and psychology (von Luxburg 2007). Most simi-
lar to our paper is the previous work by Almog et. al, us-
ing spectral clustering to unite missing nodes in the Internet
(Almog, Goldberger, and Shavitt 2008). While the basis of
their solution was also Spectral Clustering, they focused on
a different problem - how to identify unknown unresponsive
router nodes in the Internet. The differences in the problem
settings generate different graph structures and locations of
the missing nodes in it. Perhaps a more important difference
is the availability of an inherent distance function between
internet nodes in the form of time delay, making the specifics
of their solution not applicable to the missing nodes identifi-
cation problem we consider for social networks. Thus, while
spectral clustering algorithms have been applied to many ar-
eas, its use in the missing nodes identification problem has
not been previously considered and cannot be directly ap-
plied from previous works. Consequently, our first goal was
to formally describe this new problem to facilitate study as
to how it may be solved.

The key challenge in applying the spectral clustering al-
gorithm to the missing nodes identification problem, is how
to compute the level of similarity between missing nodes,
or what Ng, Jordan and Weiss refer to as an affinity matrix.

Towards calculating this measure, we consider measures de-
veloped for a related problem, the missing link problem. In
the missing link problem there are a set of known nodes,
and the goal is to discover which connections, or edges, will
be made between nodes. In contrast, in the missing nodes
identification problem, even the nodes themselves are not
known, making the problem significantly harder. Nonethe-
less, we propose a solution where unknown nodes are repre-
sented as placeholders, after which we use measures created
to solve the missing link in order to form the affinity matrix
to help solve this significantly harder problem as well.

Various methods have been proposed to solve the missing
link problem. Approaches typically attempt to derive which
edges are missing by using measures to predict link sim-
ilarity based on the overall structure of the network. How-
ever, these approaches differ as to which computation is best
suited for predicting link similarity. For example, Liben-
Nowell and Kleinberg (Liben-Nowell and Kleinberg 2007)
demonstrate that the measures such as the shortest path be-
tween nodes, the Euclidean distance between two nodes,
and the number of common neighbors can all be useful.
They also considered variations of these measures, such as
using an adaptation of Adamic and Adar’s measure of the
similarity between webpages (Adamic and Adar 2003) and
Katz’s calculation for shortest path information that counts
short paths more heavily (Katz 1953) than the simpler short-
est path information. After formally describing the missing
nodes identification problem, we detail the spectral cluster-
ing algorithm and how these missing link methods can be
applied to more accurately solve the missing nodes identifi-
cation problem.

Formally Defining the Missing Nodes

Identification Problem

We formally define the new missing nodes identification
problem as follows. Assume that there is a social network
G =< V,E > in which e =< v, u >∈ E represents inter-
actions between people, or formally, an interaction between
v ∈ V and u ∈ V . Some of the nodes in the network are
missing and are not known to the system. We denote the set
of missing nodes Vm ⊂ V , and assume that the number of
missing nodes N = |Vm| is given. We denote the rest of the
nodes as known, i.e., Vk = V \ Vm and the set of known
edges is Ek = {< v, u > | v, u ∈ Vk, < v, u >∈ E}.

Towards identifying the missing nodes, we focus on the
visible part of the network, Gv =< Vv, Ev >, that is known.
In this network, each of the missing nodes is replaced by a
set of placeholders. Formally, we define a set Vp of place-
holders and a set Ep for the associated edges. For each miss-
ing node v ∈ Vm and an edge < v, u >∈ E, u ∈ Vk, we
add a placeholder for v as v′ to Vp and for the original edge
< v, u > we add a placeholder for < v′, u > to Ep. We
denote the origin of v′ ∈ Vp with o(v′). Putting all of these
components together, Vv = Vk ∪ Vp and Ev = Ek ∪ Ep.
The problem is that for a given missing node v there may be
many placeholders in Vp. The challenge is to try to deter-
mine which of the placeholders are associated with v. This
will allow us to reconstruct the original social network G.
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Formally, we define the missing nodes identification prob-
lem as: given a known network < Vk, Ek >, a visible net-
work Gv =< Vv, Ev > and the number of missing nodes N ,
divide the nodes of Vv \ Vk to N disjoint sets Vv1

, . . . , VvN

such that Vvi
⊆ Vp are all the placeholders of vi ∈ Vm.

To better understand this formalization, consider the fol-
lowing example. Assume Alice is a Facebook member, and
thus is one of the visible nodes in Vv . She has many so-
cial links within the network, but her cousin Bob is not a
member of Facebook. Bob is represented by a missing node
w ∈ Vm. From analysis of text in her profile we might find
phrases like "my long lost cousin Bob", indicating the ex-
istence of the missing node representing Bob. Alternately,
from examining pictures from Alice’s profile pictures, an
image recognition software package identifies 10 pictures
of Alice with an unknown male person, resulting in a dif-
ferent indication of the existence of a missing node. Each
indication is represented by a placeholder node v′ ∈ Vp and
a link (u, v′) ∈ Ep, where u is the known node (e.g., Alice)
which contains the indication. By solving the missing nodes
identification problem we aim to identify which of these in-
dications point to the same missing node, representing Bob,
and which represent other missing nodes.

The Spectral Clustering Based Algorithm

Our proposed solution is to use a spectral clustering based
algorithm as follows: We first cluster the placeholder nodes,
thus creating disjoint groups of placeholders, which hope-
fully have a high chance of representing the same missing
node. We then classify the placeholders according to their
clusters and unite all the placeholders in each cluster to a
predicted missing node that represents that cluster, in hopes
of creating a graph that is as similar as possible to the orig-
inal graph G. In this section we briefly introduce spectral
clustering and focus on how we apply it to the missing nodes
identification problem.

Spectral clustering is a general algorithm used to cluster
data samples using a certain similarity between them. This
algorithm accepts as its input a set of sample coordinates in
a multi-dimensional space, described by a matrix S. In its
original form, the algorithm constructs an affinity matrix
which describes the affinity between each pair of samples
based on the Euclidean distance on the multi-dimensional
space. While the reader is encouraged to review the algo-
rithm in its entirety (Ng, Jordan, and Weiss 2001), a brief
description of this algorithm is as follows:

1. Define si to be the coordinates of every sample i in the
multi-dimensional space and calculate an affinity matrix
A ∈ �M×M , where M is the number of samples. A de-
fines the affinity between all pairs of samples (i,j) using
the Gaussian distance function:

Aij = exp(−||si − sj ||2/2σ2)

The parameter σ is used to tune the function to only con-
sider points that are closer than a certain threshold.

2. Define D to be the diagonal matrix whose (i,i) element is
the sum of A’s i-th row, and construct the matrix L:

L = D−1/2AD−1/2

3. Find x1,x2,...,xN , the N largest eigenvectors of L (cho-
sen to be orthogonal to each other in the case of re-
peated eigenvalues), and form the matrix X = [x1x2...xN ]
∈ �M×N by stacking the eigenvectors in columns.

4. Form the matrix Y from X by renormalizing each of X’s
rows to have unit length.

5. Treating each row of Y as a point in �N , cluster them into
N clusters via K-means or any other clustering algorithm.

6. Finally, assign the original sample i to cluster j if and only
if row i of the matrix Y was assigned to cluster j.
The key to the success of this algorithm is constructing the

affinity matrix in the first step of the algorithm as accurately
as possible. Note that this algorithm assumes data nodes
residing in some Euclidian space and thus defines affinity
between samples accordingly. However, in the case of so-
cial network graphs, it is very difficult to embed the nodes
of the graph in a Euclidean space as defined by the original
algorithm. It is unclear if such a space can be defined in
a way which represents the actual distance between nodes
in the graph. To understand this difficulty, consider the tri-
angle inequality which is one of the basic characteristics of
a Euclidean space. This inequality may not hold for many
reasonable distance metrics between nodes. For instance,
consider a distance metric that incorporates the number of
common neighbors between two nodes. While nodes a and
b may not have any common neighbors, causing their dis-
tance to be infinite, they both may have common neighbors
with node c. This common neighbors measure for this ex-
ample does not obey the triangle inequality because under
this measure d(a,b) > d(a,c) + d(c,b). In general, defining
a space which obeys the triangle inequality is difficult be-
cause it requires an examination of more than two nodes
at once when defining the distances. One distance metric
which obeys this inequality is the shortest path length be-
tween two nodes, which we define later. Nonetheless, as we
have found, even this measure does not necessarily yield the
best results.

In order to bypass the Euclidean space difficulty, we have
decided to alter the first step of the algorithm and to de-
fine direct measures for building the affinity matrix A, rather
than using the Euclidean space. In order to apply this algo-
rithm to missing nodes identification, we need to address
how this measure can be calculated to represent affinity be-
tween nodes in a social network. Due to the complexity of
social networks, and the need to compute this measure in
a multi-dimensional space, calculating this measure is far
from trivial. We considered several different methods, most
of which have been proven to be useful when solving the
missing links problem in social networks. We have empiri-
cally compared these methods with a Euclidean method de-
scribed in the original algorithm. These methods are dis-
cussed in detail in the next section.

Incorporating Missing Link Measures

We propose that affinity measures be constructed based
on general graph measures or previously developed mea-
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sures for the related missing edge problem (Liben-Nowell
and Kleinberg 2007; Adamic and Adar 2003; Katz 1953).
Specifically, we discuss how five such measures can be po-
tentially applied to the spectral clustering algorithm (Ng,
Jordan, and Weiss 2001):

1. Gaussian Distance: Define Dij to be the length of the
shortest path between nodes i,j. Define Di to be the vector
of the length of shortest paths from node i to all other
nodes. Calculate Aij as in step 1 of the original spectral
clustering algorithm:
Aij = exp(−||Di −Dj ||2/2σ2)

2. Graph Distance:
Aij = 1/(length of the shortest path between nodes i, j)2

3. Relative Common Friends:
Aij = |Γ(i)⋂Γ(j)|/min(|Γ(i)|, |Γ(j)|)
where Γ(i) is defined as the group of neighbors of node i
in the network graph.

4. Adamic / Adar:
Aij =

∑
k∈Γ(i)

⋂
Γ(j) 1/log(|Γ(k)|)

5. Katz Beta:
Aij =

∑∞
k=1 β

k· (number of paths between i and j of
length exactly k)

All five of these measures present possible similarity val-
ues for creating the affinity matrix, Aij , in the spectral clus-
tering algorithm. The Gaussian Distance is based on the
standard distance measure often used in spectral clustering
(von Luxburg 2007). In our experiments the value for σ was
set to 1. The Graph Distance measure is the inverse square
between two points i and j, here representing two nodes in
the social network. This measure presents an alternative to
the original Gaussian Distance used to measure Euclidean
distances, and is not inspired by the missing link problem.
In contrast, the next three measures were directly inspired
by this literature. The Relative Common Friends measure
checks the number of neighbors nodes i and j have in com-
mon (|Γ(i)⋂Γ(j)|). We divide by min(|Γ(i)|, |Γ(j)|) in
order to avoid biases towards nodes with a very large number
of neighbors. Similarly, the Adamic / Adar measure also
incorporates the common neighbor measure (Γ(i)

⋂
Γ(j)),

checking the overall connectivity of each common neighbor
to other nodes in the graph and giving more weight to com-
mon neighbors who are less connected. Since the nodes that
act as placeholders for missing nodes only have one neigh-
bor each, the common neighbors and the Adamic/Adar mea-
sures do not represent these nodes well. Therefore, for these
measures only, we also consider them to be connected to
their neighbor’s neighbors. Last, the Katz measure (Katz
1953) directly sums the number of paths between i and j,
using a parameter β which is exponentially damped by the
length of each path. Similar to common neighbor measure,
this measure also stresses shorter paths more heavily. Fi-
nally, we considered a baseline Random Assignment algo-
rithm that assigned each placeholder to a random cluster and
represents the most naive of assignment algorithms.

Finding Data Clusters

As opposed to general clustering problems where all the data
must be clustered in an unsupervised manner, in our case
most of the nodes are known and the challenge is finding
a correct clustering for the placeholders. Despite this, the
affinity between the known nodes and the placeholders con-
tains important information which should be utilized. For
this reason, we have decided to embed all the nodes in the
affinity matrix. In other words, the affinity matrix represents
the affinity between each pair of nodes in Gv . In step 5
of the algorithm, we do not cluster all the nodes, because
the known nodes need not be identified. Instead, we cluster
only the rows of Y which match the placeholder nodes. No-
tice that the information obtained from the known nodes in
the embedding process is still present in the matrix Y in the
form of the coordinates matching the place-holders, but the
known nodes themselves are simply removed from the final
step of the clustering process. In this manner, each cluster
output can represent a missing node from the original graph.

As input, the spectral clustering algorithm typically re-
quires that the number of clusters, equal to the number of
missing nodes (N), be known in advance. While we have fo-
cused on a problem setting where the number of clusters is
assumed to be known, in many real-world cases this assump-
tion may be false. For example, assume once again that the
fictitious company Social Games Inc. is looking for more
subscribers by using the clustering approach we present in
order to identify missing nodes. The base assumption of
the algorithm requires us to know exactly how many poten-
tial new subscribers exist in the social network, something
which is hardly realistic for Social Games Inc. to know. To
address this shortcoming, we propose the following method
for estimating the number of clusters: Let d be the average
degree of a node in Vv . The expected number of clusters
is then |Vp|/d. This estimation is based on the assumption
that the predicted nodes should have the same average de-
gree as the nodes in the visible graph Vv . As we show in the
results section, this estimation leads to similar results when
compared to running the algorithm with a known number of
clusters.

Data Preparation

The goal of this research is to study which of the above mea-
sures will help best solve the missing nodes identification
problem. To empirically study this point, we have used a
previously developed social networking dataset - the Face-
book MHRW dataset (Gjoka et al. 2010). This dataset con-
tains structural information sampled from Facebook, con-
taining over 900,000 nodes and the links between them. For
each node certain social characteristics are stored, such as
network membership within Facebook. These networks in-
cluse academic networks (e.g. Harvard University), corpo-
rate networks (e.g. workers in AIG), geographical networks
(e.g. members from Idaho), or people who share similar in-
terests (e.g. love of chocolate). All nodes and networks are
stored as numbers without any indication of their true iden-
tity, ensuring the privacy of people’s data.

The main challenge we had to address in dealing with a
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dataset of this size was implementing and testing the spectral
clustering algorithm within a tractable period. In order to
create more tractable datasets1, we considered two methods
of creating subsets of the Facebook data (Gjoka et al. 2010).
In the first method, we created a subset based on naturally
occurring similarities between nodes according to users’ net-
work membership characteristics within the social network.
Each subset was created by sampling all the nodes in a spe-
cific user network and the links between them. Nodes with
only one link or no links at all were removed. The advan-
tage to this method of creating the subsets is that there is
a higher chance of affiliation between the nodes in the user
network in comparison to random nodes selected from the
entire social network. However, the disadvantage is that the
nodes composing the user network may not be completely
connected. In fact, the subgraph of nodes that are part of a
specific user network may be very sparse. In contrast, for
the second method of creating the subset, we began with the
entire dataset, and extracted a subset based on a BFS walk
starting from a random node in the dataset. Here no previ-
ous information about the social network is necessary, but
the BFS generated subset may not accurately represent the
actual topology of the entire network.

In order to synthesize the missing nodes within these two
subsets, we randomly marked N nodes as the missing nodes,
Vm. We then removed these nodes from the network, and
replaced each link (v,u) between v ∈ Vm and u ∈ Vk with
a placeholder node v’ ∈ Vp and a link (v’,u) ∈ Ep. The
resulting network, Gv is the visible network used as input to
the missing nodes algorithm.

Results
Overall, we found that the four affinity measures inspired
by work from the missing link problem allowed us to solve
the missing nodes identification problem significantly bet-
ter than the baseline Random Assignment algorithm or even
the Gaussian Measure in the basic Spectral Clustering al-
gorithm. The results presented in this section suggest that
better affinity measures, specifically the Graph Distance and
Common Neighbor measures, were most successful in facil-
itating better solutions.

To measure the accuracy of different affinity measures, we
ran the clustering algorithm with each of the two datasets
and used the purity measure often used in evaluating clus-
tering algorithms (Ng, Jordan, and Weiss 2001). The purity
measure is calculated in the following manner:

1. Classify each cluster according to the true classification
of the majority of samples in that cluster. In our case,
we classify each cluster according to the most frequent
true original node v ∈ Vm of the placeholder nodes in that
cluster.

2. Count the number of correctly classified samples in all
clusters and divide by the number of samples. In our case
the number of samples (nodes) that are classified is |Vp|.
1We have not yet been successful in creating algorithms that

can process all 900,000 nodes in the dataset within a tractable time.
Nonetheless, we do report on methods that can deal with relatively
large datasets with up to 40,000 nodes.

Figure 1: Comparing the Clustering Accuracy (Purity) of
Five Affinity Measures in first Facebook data subset

Formally, purity is defined as:

purity(C) =
1

|Vp|
∑

k

maxvj∈Vm
|ck∩{v′ ∈ Vp | o(v′) = vj}|

Where ck is defined as the set of placeholders which were
assigned to cluster k. Note that as the number of missing
nodes increases, correct clustering becomes more difficult,
as there are more possible original nodes for each place-
holder. As our results show, the purity indeed decreases as
the number of missing nodes increases.

First, we considered the results from the first dataset with
full subsets of the Facebook data. To create these results, we
considered three user networks within Facebook, marked by
the numbers 264, 275 and 284 in our dataset. As described
above, for each of these user networks we began by creating
a graph consisting of all of the users in the dataset who are
network members and the links between them. From each
graph we removed the nodes with only one link or no links
at all. After this process, the network 264 graph consisted of
2301 nodes and 3200 edges. The graph of network 275 con-
tained 2087 nodes and 2905 edges, and the graph of network
285 contained 2754 nodes and 4118 edges. For each graph
we then randomly removed sets of 5, 10, 15, 20, 25 and 30
nodes from the three networks. Each trial involved select-
ing a different group of random points. For each network
and each number of missing nodes we ran the clustering al-
gorithm with the five previously described affinity measures
plus the random clustering baseline.

Figure 1 displays the results from this first set of data. To
ensure the validity of the results, each point represents a total
of 30 iterations (10 iterations over each user network graph).
Note that the Random Clustering algorithm, as expected,
clearly performs the worst, with a purity measure often be-
ing 30% worse than that of the algorithms based on spectral
clustering. This indicates the overall effectiveness of this ap-
proach in solving the missing nodes identification problem.
Within the five affinity measures we considered, the basic
Gaussian measure clearly did not perform well in compari-
son to others, again demonstrating the need for considering
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measures specifically geared for this problem. Specifically,
the Relative Common Friends measure achieved the best pu-
rity result.

We also considered a second dataset created with a BFS
extraction from the entire Facebook corpus, creating 15 net-
works of 2000 nodes each. We again ran the clustering al-
gorithms with the same five measures plus the random base-
line, and randomly removed 5 to 30 nodes in the same fash-
ion. The results of these experiments are presented in Figure
2.

Figure 2: Comparing the Clustering Accuracy (Purity) of
Five Affinity Measures in second Facebook data subset

Note that in these results, the Random Clustering algo-
rithm again performed significantly worse, and the base
Gaussian measure performed the worst of the 5 variations
based on spectral clustering. We did not find a significant
difference between the remaining 3 measures. One possible
reason why the Common Neighbor measure did worse than
the Shortest Graph distance in this dataset is as follows. The
second dataset was engineered with a BFS search, and was
thus guaranteed to have connectivity between all nodes be-
fore removing the missing nodes. After removing the miss-
ing nodes, there was still a high probability of remaining
with a connected graph. In contrast, the natural topology of
the first dataset included data which was sparse (e.g. had
very few edges), such that removing the missing nodes usu-
ally resulted in the network losing its connectivity. As a re-
sult, the graph distance measure in the first dataset was often
not a good measure, as the distance between unconnected
elements was infinitely large. Thus, we posit that measures
focused on smaller areas, such as the Common Neighbors
measure, were more effective.

We also considered how these algorithms scale in the
missing nodes identification problem. We constructed a
dataset of 5000 nodes, again taken as a subset of the en-
tire Facebook corpus through BFS search. We then ran the
same 5 spectral analysis algorithms plus the random base-
line on 10 randomly selected nodes. The results from this
experiment are found in Figure 3. Note that, as was the case
in Figure 1, the Graph Distance measure yielded the highest
clustering accuracy (purity) with all measures being signifi-

Figure 3: Considering how Performance (Purity) is Effected
by Scaling to a 5000 Node Dataset

Figure 4: Considering how Larger-Scale Datasets (40,000
nodes) effects the Clustering Accuracy (Purity) in the second
Facebook data subset

cantly better than the baseline random classifier.
In order to scale our algorithm to larger graphs, we have

employed sparse matrix representations of the graph and the
resulting affinity matrices. In these sparse representations,
only non-zero values are saved. While the initial graph struc-
ture is very sparse, some of the affinity measures, such as
Graph Distance and Katz Beta, induce dense affinity matri-
ces. These methods must be approximated in order to main-
tain a sparse matrix. For instance, we have altered the Katz
Beta method to only include paths up to length 4, thus creat-
ing a sparse affinity matrix. The Adamic / Adar method re-
quired no change since the affinity matrix generated by this
method is sparse enough. Figure 4 displays the success of
scaling these two methods in comparison to a random clus-
tering. These methods were tested on datasets with 40,000
nodes, again generated through BFS of the MHRW dataset.

Figure 5 illustrates the results of estimating the number of
missing nodes, as described above, in comparison to work-
ing with a known number of N clusters in advance. Specifi-
cally, we use our implementation of spectral clustering using
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Figure 5: Comparing the Purity when the Number of N
Nodes Requiring Identification is Known versus when an
Estimate is Used

the Adamic/Adar measure and input both a known value for
N and an estimation for N derived from the average degree
for nodes in the visible network, Vv . Note that, in general,
using the estimation yielded only slightly worse accuracy
(purity). In fact, in some cases using the estimator for the
number of missing nodes produced even better results. We
found that this typically occurred when the estimate was in
fact an overestimate of the actual value for N. This is based
on the definition of purity that determines the classification
of each cluster according to the majority of samples within
that cluster. Thus, having an overestimate can actually in-
crease the purity measure of each cluster and, as an impli-
cation, increase the overall purity across the entire network.
While we present a comparison between using an estimate
for N and the actual value for N within the Adamic/Adar
measure, we similarly observed that relaxing the require-
ment for using the actual value for N does not significantly
degrade the algorithms’ performance for the other measures
as well.

Conclusions and Future Work

In this paper we introduce the missing nodes identification
problem, where nodes representing people must be identi-
fied within social networks. This problem has not been pre-
viously considered and is likely to be of importance within
a wide variety of applications. For example, this work is im-
portant in entertainment domains where people wish to find
new social contacts outside of their known network; com-
mercial applications whereby new customers can be iden-
tified; and security applications where police enforcement
members can find wanted individuals.

This paper makes several contributions to addressing this
new problem. First, we formally present this problem. Sec-
ond, based on this formalization we describe how the ex-
isting spectral clustering algorithm can be applied to solve
this problem (Ng, Jordan, and Weiss 2001). However, one
key issue in implementing this algorithm for the missing
nodes identification problem is the similarity between nodes
in the network, a measure needed to form the affinity matrix

within this algorithm. Third, we present one possible so-
lution inspired by previous work (Almog, Goldberger, and
Shavitt 2008) which focuses on a Gaussian measure to mea-
sure possible node similarity. Last, we also present four
additional affinity measures based on Missing Edge litera-
ture (Liben-Nowell and Kleinberg 2007). We empirically
compared these five possibilities within two types of prob-
lem subsets from a Facebook repository (Gjoka et al. 2010).
We have shown that all five methods provide for good so-
lutions in comparison to a random clustering baseline solu-
tion. In addition, we have found that the measures based on
the missing link problem typically yielded significantly im-
proved performance and aid in better solving this problem.

For future work several directions are possible. This work
proposes a simple method to estimate the number of missing
nodes. In the short term, we have begun researching how as-
sumptions on the number of missing nodes can be further re-
laxed, specifically by using lazy clustering algorithms which
do not need advance knowledge of this value. We also hope
to study what new metrics can be introduced to further im-
prove the accuracy of the algorithms presented here. Finally,
we plan to study additional datasets and domains.
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