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Abstract 
In current search engines, ranking functions are learned 
from a large number of labeled <query, URL> pairs in 
which the labels are assigned by human judges, describing 
how well the URLs match the different queries. However in 
commercial search engines, collecting high quality labels is 
time-consuming and labor-intensive. To tackle this issue, 
this paper studies how to produce the true relevance labels 
for <query, URL> pairs using clickthrough data. By analyz-
ing the correlations between query frequency, true relevance 
labels and users’ behaviors, we demonstrate that the users 
who search the queries with similar frequency have similar 
search intents and behavioral characteristics. Based on such 
properties, we propose an efficient discriminative parameter 
estimation in a multiple instance learning algorithm (MIL) 
to automatically produce true relevance labels for <query, 
URL> pairs. Furthermore, we test our approach using a set 
of real world data extracted from a Chinese commercial 
search engine. Experimental results not only validate the ef-
fectiveness of the proposed approach, but also indicate that 
our approach is more likely to agree with the aggregation of 
the multiple judgments when strong disagreements exist in 
the panel of judges. In the event that the panel of judges is 
consensus, our approach provides more accurate automatic 
label results. In contrast with other models, our approach ef-
fectively improves the correlation between automatic labels 
and manual labels. 

 Introduction   

For a given query and the retrieved URLs, search engines 
order URLs via a ranking function that produces a score 
for each URL, indicating how well the URL matches the 
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query. By training ranking function with training data and 
then evaluating its performance with test data, learning to 
rank plays an important role in commercial search engine. 
Usually, the typical training data includes the following 
triples <query, URL, label>, where the label is assigned by 
human judges (editors), indicating the relevance of a URL 
to a query from highly relevant to not relevant, e.g., Perfect, 
Excellent, Good, Fair or Bad. As previous works have 
shown (Xun et al. 2010; Sheng et al. 2008), the retrieval 
accuracy of a ranking function depends both on the quality 
of the training labels and on the number of training exam-
ples. Consequently, increasing the number of training ex-
amples is the most common method to improve the accura-
cy of a ranking function. 

However, researchers found that the retrieval accuracy 
of a ranking function stops after the number of training ex-
amples reaches a certain threshold (Sheng et al. 2008). 
When more training examples are not able to further im-
prove the retrieval accuracy, improving the quality of la-
bels is a promising solution: the quality of the training la-
bels heavily influences the quality of a ranking function 
(Yang et al. 2010; Agrawal et al. 2009).  

In commercial search engines, collecting high quality 
labels is time-consuming, labor-intensive and costly. Since 
the labels of training data are collected using human judges, 
label quality depends both on the expertise of editors and 
on the number of editors. The manually generated labels 
may contain a personal bias since it is very hard for an edi-
tor to capture all the intents of a query, and hence create 
unreliable labels (Joachims et al. 2002; Bailey et al. 2008; 
Sheng et al. 2008). To alleviate such errors, a panel of 
judges are used to obtain multiple judgments for the same 
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<query, URL> pair. The final label of the pair is then de-
rived by aggregating the multiple judgments. However, 
commercial search engines require a large number of train-
ing data, which requests a relatively larger number of re-
peated labels for each sample. Accordingly, the high cost 
makes this approach impractical. In this case, relevance la-
bels are usually conducted by a few, even one judgment. 
Such kind of relevance labels is prone to contain errors. 

Therefore, there is a pressing need to automate the labe-
ling process as much as possible in commercial search en-
gines (Agrawal et al. 2009). Especially for Chinese search 
engines, as far as we know, few previous works investigate 
how to automatically produce the true relevance labels for 
<query, URL> pairs. To tackle this issue, clickthrough data 
is utilized in this paper to perform automatic labeling 
process—where the task is to build a classifier to predict 
whether a URL is ‘Perfect’, ‘Excellent’, ‘Good’, ‘Fair’ or 
‘Bad’ with respect to a given query.  

Unlike previous works, we first analyze the correlations 
between query frequencies, true relevance labels, and the 
users’ behavior characteristics (e.g., the ratio of turning to 
the search results in the 2nd page, the ratio of clicking the 
1st, 2nd, 3rd or other URLs). Following this analysis, we 
propose an efficient discriminative parameter estimation by 
a multiple instance learning algorithm (MIL) to automati-
cally generate the true relevance labels of <query, URL> 
pairs. In particular, the proposed approach is performed so 
that: 1) it utilizes the correlations between query frequency, 
users’ behavioral characteristics and true relevance labels; 
and 2) unlike other methods (Agrawal et al. 2009; Cao et al. 
2010), our approach focuses on automatically producing 
the true relevance labels, rather than the pairwise prefe-
rences. By doing so, the proposed approach may be more 
applicable for several ranking functions which are directly 
derived from the training data with true relevance labels 
(Burges et al. 2006; Michael et al. 2008). Furthermore, we 
test our approach using a set of real world data extracted 
from a Chinese commercial search engine. Manually la-
beled data is used as the ground truth to evaluate the preci-
sion of the proposed approach. Experimental results not 
only validate the effectiveness of the proposed approach, 
but also indicate that our approach is more likely to agree 
with the aggregation of the multiple judgments when 
strong disagreements exist in the panel of judges. In the 
event that the panel of judges is consensus, our approach 
provides more accurate label accuracy. In contrast with se-
quential dependency model (SDM) and full dependency 
model (FDM) (Xun et al. 2010), our approach effectively 
improve the correlation between automatic label results 
and manual label results. 

Related Work 

As a powerful signal about users’ preference and latest 
tendency on search results, the terabytes of users’ click-
through data can be collected at very low cost in a com-
mercial search engine. Clickthrough data contains a large 
amount of valuable information about users’ feedback, 
which could be considered as complementary information 
to describe the relevance of URLs with respect to a given 
query: clicked URLs are most likely relevant to the users’ 
intent, while skipped URLs are most likely not. 

Recently, many studies have attempted to automatically 
generating labels from click-through data (Joachims et al. 
2007; Agrawal et al. 2009; Bailey et al. 2008; Cao et al. 
2010). For these approaches, a common assumption is that 
the relative order of the retrieved URLs in terms of the per-
formance obtained with training labels is quite stable even 
if remarkable disagreement exists among human judgments. 
Accordingly, these approaches mainly focus on generating 
the pairwise preferences to train ranking function, instead 
of predicting the true relevance labels (Xun et al. 2010). 
When applying these approaches, many contradicting 
pairwise preference must be reconciled to obtain a consis-
tent labeling. 

The work most related to ours (Carterette et al. 2007; 
Xun et al. 2010) tried to model the relationship between 
true relevance labels and clickthrough data. Differing from 
the previous work, the method in (Carterette et al. 2007) 
revealed the important impact of true relevance labels on 
ranking functions. The true relevance label of an URL with 
respect to a given query is then defined as the regression 
function of probability distribution of the query, the true 
relevance labels of other retrieved URLs and their respec-
tive clickthrough rates.  

More recently, the approach proposed in (Xun et al. 
2010) proves that errors in training labels can significantly 
degrade the performance of ranking functions. Furthermore, 
Xun et al. proposes two new discriminative models, SDM 
and FDM, to detect and correct the errors in relevance la-
bels using click-through data. As conditionally dependent 
models, SDM and FDM assume that the relevance label of 
a search result (e.g., URL, documents) is conditionally de-
pendent on the relevance labels of other search results. The 
basic assumption means that the search intent of a query is 
explicit and the contents of the related URLs are compara-
ble. And only thus can the appropriate label be given to a 
<query, URL> pair after editors compare the retrieved 
search results.  

This assumption seems to be too strong for the queries in 
which users’ intent is ambiguous and very general. For ex-
ample, given a query ‘machine learning’, it is very hard for 
editors to judge what the real intention is, to buy a book, to 
submit a paper or to browse relevant knowledge. In this 
case, the URLs content with respect to different search in-
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tents are incomparable. Hence, determining the appropriate 
relevance label depends more on the quality of the URL 
content than the comparisons among URLs.  

Therefore, our approach assumes that the true relevance 
label of a <query, URL> pair is conditionally independent 
of the true relevance labels of other retrieved results. In our 
opinion, this assumption is valid since it is derived from 
the real labeling process. Especially when judging the true 
relevance label of a < query, URL> pair where the intent of 
the query is ambiguous, the impact of the content quality 
of the URL is much larger than the impacts imposed by 
other URLs’ labels. 

Effect of Query Frequency 

In this section, we study the correlations between query 
frequency, user behavioral characteristics and true relev-
ance labels. Figure 1 (a) shows the label distribution of the 
manually labeled data set1 with respect to query frequency. 
In order to make a fair comparison, the query frequency is 
partitioned into seven intervals (IntervalQF), as marked at 
the x-coordinate in Fig. 1. Here, the tail queries in Inter-
valQF 1, on the average presenting 28% of total query fre-
quency per day, cannot be further divided. The query num-
ber in other six intervals is more or less evenly distributed, 
amounting for 14%, 15%, 15%, 12%, 9%, and 7.0% of to-
tal query frequency per day, respectively. 

From Fig. 1 (a), we can see that the numbers of ‘Good’, 
‘Excellent’ and ‘Perfect’ <query, URL> pairs monotonical-
ly increase when the query frequency increases. On the 
contrary, the number of ‘Bad’ <query, URL> pairs has an 
obvious decreasing trend. For ‘Fair’ <query, URL> pairs, 
the variation trend is not obvious. This is mainly because it 
is sometimes hard to distinguish the slight differences be-
tween ‘Fair’ and ‘Good’, especially for the top queries.  

Fig. 1 (a) shows a strong correlation between the query 
frequency and the distributions of true relevance labels. By 
checking the queries with different frequencies, we find 
that the query frequency, to great extent, is closely related 
to query type in the Chinese commercial search engine. For 
example, the top queries (IntervalQF  32,769 times/day) are 
composed principally of navigational queries and strong 
time-effective entertainment queries; the tail queries (Inter-
valQF =1 times/day) consists mainly of the informational 
queries in which the number of query terms is larger than 5. 
In practice, query type is always considered as the direct 
embodiment of search intent. From this perspective, we 
can make a reasonable assumption that the users who 
search certain queries with similar frequency have similar 
search intents.  

                                                 
1 Data set information is introduced in section 4. 

Furthermore we calculated the ratio of turning to the 
search results in the 2nd page and the ratio of clicking URL 
at different sites, which describe user behaviors from dif-
ferent aspects. Fig. 1 (b) demonstrates that, the ratio of 
turning to the search results in the 2nd page and the ratio of 
clicking other URLs (non-top 3 URLs) significantly de-
crease with the query frequency increases. These changes 
in the statistical information of user behaviors mean that 
the users who search the queries with low frequency prefer 
to browsing more retrieved results.  Compared with the ra-
tio of clicking the 2nd and 3th URLs which remain compara-
tively stable, the ratio of clicking the 1st URL exhibits 
staircase increase over the query frequency intervals. This 
means query frequency seems to have a substantial impact 
on user behaviors, with the most frequent queries resulting 
in more clicks on the 1st URLs than infrequent queries. 

 
Figure 1: (a): The label distribution with respect to query 

frequency. (b): Statistical Information of users’ behavior with 
respect to query frequency. 

The Proposed Approach 

The above analysis result shows that there are correlations 
between query frequency, true relevance labels and user 
behavioral characteristics. Based on this property, we 
present an effective solution to automatically label <query, 
URL> pairs using clickthrough data. 

Motivation 
As aforementioned in Section 1, the quality of labels great-
ly depends on expertise of the labelers, which makes the 
human-judged labels have inherent ambiguity. In most cas-
es, this ambiguity is caused by the lack of criteria which 
quantitatively define the difference between ‘Perfect’, ‘Ex-
cellent’, ‘Good’, ‘Fair’ or ‘Bad’ URL(s). Therefore, when 
constructing a classifier for automatic labeling process, it is 
necessary to deal with this ambiguity using learning algo-
rithms. For this reason we suggest the use of a MIL algo-
rithm proposed in (Dietterich et al., 1997).  
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(a)  Label distribution with respect to query frequency
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(b) Statistical information of user behaviors with respect to query frequency
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As a natural framework to model many real-life tasks, 
the basic idea of MIL framework is that during training, in-
stances are presented in bags, and labels are provided for 
the bags rather than individual instances. If a bag is labeled 
positive, it is assumed to contain at least one positive in-
stance. A negative bag means that all instances in the bag 
are negative. From a collection of labeled bags, the clas-
sifier tries to figure out which instance in a positive bag is 
the most “correct”. Although one could argue that this 
learning problem is more difficult in the sense that less in-
formation is provided to the classifier, in some ways it is 
actually easier because the classifier is allowed some flex-
ibility in finding a decision boundary. In (Ray et al., 2005; 
Viola et al., 2005), convincing results have shown that a 
MIL outperforms some state of the art supervised algo-
rithms when it is used for many real-life tasks. 

Notation 
In our approach, each <query, URL> pair is considered 

as an instance and described by a feature vector .  
describes a set of statistical information of user behaviors, 
which are obtained by parsing and accounting the click-
through log file. According to MIL formulation, we denote 
a positive bag as  and the   instance in  as 

. Similarly, , , and  represent a negative bag, 
the  instance in  and the number of instance in , re-
spectively. Note that, the bag (or ) indicates the dif-
ferent set of instances for the different labeling require-
ments. When labeling ‘Bad’ instances,  means that none 
of ‘Bad’ instances is contained in the bag;  indicate a 
‘Bad’ bag. Similarly, when labeling ‘Perfect’ instances,  
means none of ‘Perfect’ instances contained in the bag;  
indicates a ‘Perfect’ bag.  

Furthermore, seven positive bags and seven negative 
bags are defined over the query frequency domain, which 
correspond to the partitioned seven query frequency inter-
vals, respectively. Diverse density (DD) (Maron et al. 1998) 
and expectation-maximization diverse density (EM-DD) 
(Zhang et al. 2002) have proved that a single target concept 

 can be used to label individual instance correctly. 
Following this basic assumption, constructing the classifier 
for automatic labeling process is to estimate the target con-
cept  by maximizing the joint probability of the training 
samples defined in Eq.(1), 

       (1) 
If we assume a uniform prior on , for given training 

bags, Eq.(1) can be written as, 
=                (2) 

Considering the concept of bag in MIL, the posterior 
probabilities of a negative bag and positive bag are respec-
tively written as, 

=                 (3) 

=                 (4) 

where  represents the probability of an instance pre-
dicted to be the positive or negative, described as, 

(5)

Formulation 
Based on the definitions in Eq. (3)-(5), DD and EM-DD 
assume that the instance distribution is subject to a Gaus-
sian distribution, and apply gradient descent method to es-
timate  by maximizing the likelihood in Eq. (2).  

However, DD and EM-DD are not applicable to auto-
matic labeling process because the instances (<query, URL> 
pairs) with different labels are not subject to Gaussian dis-
tribution, as shown in Fig.1 (a). In this case, we assume 
that the distribution of instance features is subject to mix-
ture Gaussian distribution. Accordingly, the feature distri-
bution of an instance is respectively defined as, 

=            (6) 
where  indicates the jth instance in the ith bag.  
represents the weight coefficients.  is the Gaus-
sian distribution with mean  and covariance matrix . 
Thus, the parameter set needed to be updated is 

. Once Eq. (6) is given, the label of the in-

stance  is calculated as the following decision rule, 

              (7) 

where 
.  is a 

positive threshold. The label of bag  can be determined 
by fusing the labels of the multiple instances in , 

           (8) 

Eq.(8) means that the bag label is determined according 
to the maximum log-likelihood ratio over all instances in 
the bag. Since Eq. (8) is not differential, the gradient des-
cent method can not be applied. Therefore, we define Eq.(9) 
to approximate Eq. (8), 

=               (9) 

where  is a positive coefficient to control the fusion. 
When  is close to positive infinite,  is equal to Eq. 
(8). Thus if ,  is labeled as positive; otherwise, 

 is labeled as negative. As prior probability, Eq. (9) gives 
one score to each bag. The absolute value of   indi-
cates how confidently the bag  is truly positive or nega-
tive.  

Once the prior probability of a positive (or negative) is 
calculated, the posterior probability of the bag in Eqs. (3)-
(4) will be approximated and updated as, 

   =                (10) 

 =                (11) 

where is a constant. By substituting Eqs. (10) and (11), 
the objective function Eq. (2) is rewritten as, 

        (12) 
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Eq. (12) embeds the model parameters through the likelih-
ood ratios defined in Eqs. (6)-(11). Therefore, discrimina-
tive training can be used to estimate the parameters, which 
is described in the next section. 

Estimation of parameters 
Assuming the parameter set at the t-th iteration is   , 
then  at the -th iteration  is updated as, 

                                (13) 
where  is learning rate;  indicates the gradients over 
all parameters which are described as, 

=
                                                                   

In Eq. (14),  is described as,  

 (15)  
In particular, we derive the gradients of positive model 

with respect to its parameters ( ), 
               (16) 

          (17) 
  

(18) 

In Eq. (17) and (18), 

                        (19) 

                           (20) 
Similarly,  is also computed by the 

similar formulations as Eqs. (16)-(20) 

Experiments 

Dataset and Evaluation Metrics 
All the experiments are based on the clickthrough data col-
lected from Baidu.com in October 2010. Baidu.com is one 
of the largest commercial search engines in Chinese Wed 
environment.  

We sampled 4,723 unique queries and 12,3474 unique 
URLs randomly. Considering the related clickthrough data 
are absolutely necessary for our approach, we filter out the 
<query, URL> pairs without click activity (2,3717 <query, 
URL> pairs) by parsing the one-month click logs. Finally, 
each refined <query, URL> pair was manually labeled by 3 
well-trained editors for relevance. On the average, 21.12 

   Table 1: Detailed Information about the Dataset 
 
 
 
 
 
 

URLs per query are labeled. The ordinal judgments are 
converted into numeric values by assigning the scores 1-5 
to the labels ‘Bad’-‘Perfect’ respectively. If there was a 
disagreement, a consensus was made by a group discussion. 
The detailed information about the dataset is summarized 
in Table 1. 

We note that the distribution of query frequency in the 
sample set is different from that in population (discussed in 
Section 3) slightly. This difference mainly results from fil-
tering out the <query, URL> pairs without click activity. In 
our experiments, we don’t consider the effect imposed by 
the difference between the sample set and population. Fi-
nally, we randomly divide the dataset into training set and 
test set, and perform 10-fold cross validation. 

Due to the lack of publicly available datasets, manually 
labeled data is used as the ground truth to evaluate the la-
bel accuracy (Cao et al, 2010) of the proposed approach 
which is defined as, 

                      (21) 

where  is the number of <query, URL> pairs with label 
i.  is the number of correctly predicted relevance labels. 

To facilitate the comparison with model SDM and FDM 
(Jingfang et al. 2010), we also adopted the correlation 
(Carterette et al. 2007) between predicted and actual relev-
ance labels, which is defined as, 

       (22) 

 where  is the number of <query, URL> pairs.  and  
are predicted and actual relevance label of the  <query, 
URL> pair respectively. 

Features 
Table 2 lists a part of features that are used to describe 
<query, URL> pairs in our experiments. These features are 
categorized into three classes: Query, URLs and Feature 
Mixture, which capture the characteristics of queries, 
URLs and the relationships between a query and the asso-
ciated URL respectively. It is worth mentioning that some 
statistical variables, which are less common in other mod-
els, are used in our experiments, such as skewness of query 
occurrences (representing the query timeliness), etc. 

In our opinion, the broad range of features enables us to 
capture many aspects of aggregated user behaviors.  
These features are generated for each <query, URL> pair 
and used to construct the aforementioned classifier. 

 
 
 
 
 
 

 
 

 Data  
Set 

                                                   Query Frequency 
1 2~8 9~64 65~512 513~4096 4097~32768 32769 

Number (rate%) 99757 16379 15731 21258 16080 13177 10285 6847 
Perfect (rate%) 11916 1296(7.92%) 1481(9.42%) 2882(13.56%) 2117(13.17%) 2272(17.24%) 1303(12.67%) 561(8.2%) 

Excellent (rate%) 20882 3302(20.17%) 2873(18.27%) 3715(17.48%) 3414(21.24%) 3468(26.32%) 2753(26.77%) 1353(19.76%)  
Good ( rate%) 22957 3237(19.77%) 3199(20.34%) 4714(22.18%) 4157(25.85%) 3272(24.83%) 2381(23.15%) 1994(29.11%) 
Fair ( rate%) 23448 4066(24.83%) 4452(28.31%) 5534(26.04%) 3868(24.06%) 1626(12.34%) 2020(19.64%) 1878(27.44%)  
Bad (rate%) 20536 4456(27.21%) 3721(23.66%) 4408(20.74%) 2521(15.68%) 2539(19.27%) 1828(17.77%) 1060(15.49%) 
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Experimental Results 
First, we summarize the label accuracy of our approach 
and compare it with three editors’ judgments in Table 3. 

Table 3 shows that the individual editor’s judgments dif-
fer from the consensus of all judges involved. This result is 
concordant with the previous work proposed in (Yang et al. 
2010). But for the dataset extracted from the Chinese 
search engine, the individual editor’s judgments on top (In-
tervalQF  32,769 times/day) and tail queries (IntervalQF=1 
time/day) have greater consistency to the consensus of all 
judges. This difference about consistency mainly results 
from the fact that the rules are much clearer and easier to 
be performed for editors when labeling the URLs asso-
ciated with top or tail queries.  

 
Table 2:  Feature List 

Table 3: Comparison with the manually generated labels 
 #1, #2 and #3 represent three editors respectively; #P represents the proposed approach 

For tail queries, editors’ judgments perform better than 
our approach, both on consistency and accuracy. It is main-
ly because that the click data of the URLs associated with 
tail queries is insufficient for the proposed approach to re-
veal the relationship between click activity and actual re-
levance labels.  

However, for non-tail queries (amounting for 83.7% of 
the dataset), our approach provides comparable or better 
consistency and accuracy than human judges. This result 
not only validates the effectiveness of our approach but al-
so indicates that our approach more likely agrees with the 
aggregated multiple judgments when strong disagreements 
exist in the panel of judges. When the panel of judges is 
consensus, our approach improves the label accuracy. 

Furthermore, we calculate the correlations between the 
predicted labels and the actual labels. Figure 2 shows the 
correlations with respect to different query frequency in-
tervals. Experiments #1, #2 and #3 respectively perform 
1000, 1250 and 1500 iterations with the randomly initia-
lized parameter set . Table 4 summarizes the other para-
meters involved in the training process and compares the 
performance of SDM, FDM and our approach in terms of 
the correlation. 

In statistics, the closer the correlation is to 1, the strong-
er relationship between the predicted labels and the  
actual labels. From this perspective, Table 4 indicates that 
the proposed approach outperforms the baseline model 
SDM and FDM. 

 
Figure 2: Correlations with different iterations 

 
Table4: Comparison of Correlation 

 
 
 
 
 

Summary and Future Work 
In this paper, we study how to automatically produce 
true relevance labels, instead of pairwise preferences 
for <query, URL> pairs using clickthrough data. By 
analyzing the correlations between query frequency, 
user behavioral characteristics and true relevance la-

bels, we demonstrate that the users who search the queries 
with similar frequency most likely have similar search in-
tents and behavioral characteristics. Based on this property, 
an effective method to estimate the parameters in a MIL is 
proposed for automatic labeling process. Experiments on 
real world data validate the effectiveness of our approach.   

The future challenge for this approach is to improve the 
effectiveness on tail queries, which is a common problem 
for data mining. In addition, improving the performance of 
ranking functions, to some extent, requires the automatic 
label results with high quality. To tackle this issue, it is 
maybe useful to score automatic labels by the confidence. 
Such a scoring could be used to determine which automatic 
labels to use while training ranking functions. 
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Correlation with respect to query frequencies in #1

Correlation with respect to query frequencies in #2

Correlation with respect to query frequencies in #3

Query 
QUERYWORDLENGTH Number of words in a query 
RATIOCLICKEDFREQ Ratio of the query click  number  to its occurrence number 
AVGCLICKPOS Average click position for the query 
SKEWQUERY Skewness of query occurrences 
CVQUERY Coefficient of variation of query occurrences 

URLS 
URLFIRSTENTROPY For a given query, click entropy of the URL as the first choice  
URLLASTENTROPY For a given query, click entropy of the URL as the last choice 
RATIOURLDWELLS For a given query, ratio of the average dwelling time on a URL 

to the average dwelling time on all clicked URLs associated 
with the query 

SKEWURL Skewness of URL clicks 
CVURL Coefficient of variation of a URL clicked 

Feature Mixture 
CLICKENTROPY  Entropy of click number of a URL to the click number of all 

URLs associated with the query  
RATIOSKEWURLQUERY Ratio of  skewness of a URL clicks to the  skewness of the 

query clicks 

Query 
 Frequency 

Consistency to the consensus  Accuracy 
#1 #2 #3 #P #1 #2 #3 #P 

1 75.4% 77.3% 72.7% 61.2% 81.1% 82.8% 77.4% 68.7% 
2~8 67.5% 63.2% 67.4% 68.3% 73.7% 69.7% 68.4% 71.5% 
9~64 48.8% 48.6% 51.2% 52.7% 56.2% 56.4% 58.3% 60.3% 
65~512 54.2% 56.9% 55.3% 57.4% 63.5% 67.2% 67.6% 68.1% 
513~4096 42.3% 43.8% 47.2% 61.3% 58.5% 56.1% 61.4% 75.7% 
4097~32768 48.5% 51.3% 55.2% 63.8% 56.1% 58.7% 63.5% 68.1% 

32769 73.1% 71.4% 74.2% 75.1% 80.4% 79.6% 81.1% 80.7% 

 Parameter Correlation 
SDM  NA 0.69 
FDM  NA 0.75 
#1 =0.182; 

=2; 
=0.25; 

0.72 0.021 
#2 0.75 0.014 
#3 0.78 0.023 
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