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Abstract

In Online Social Networks (OSNs), participants can
conduct rich activities, where trust is one of the most
important factors for their decision making. This ne-
cessitates the evaluation of the trustworthiness between
two unknown participants along the social trust paths
between them based on the trust transitivity properties
(i.e., if A trusts B and B trusts C, then A can trust C to
some extent). In order to compute more reasonable trust
value between two unknown participants, a critical and
challenging problem is to make clear how and to what
extent trust is transitive along a social trust path.
To address this problem, we first propose a new com-
plex social network structure that takes, besides trust,
social relationships, recommendation roles and prefer-
ence similarity between participants into account. These
factors have significant influence on trust transitivity.
We then propose a general concept, called Quality of
Trust Transitivity (QoTT), that takes any factor with im-
pact on trust transitivity as an attribute to illustrate the
ability of a trust path to guarantee a certain level of qual-
ity in trust transitivity. Finally, we propose a novel Mul-
tiple QoTT Constrained Trust Transitivity (MQCTT)
model. The results of our experiments demonstrate that
our proposed MQCTT model follows the properties of
trust and the principles illustrated in social psychology,
and thus can compute more resonable trust values than
existing methods that consider neither the impact of so-
cial aspects nor the properties of trust.

Introduction

In recent years, social networking sites have been used as a
means for a variety of rich activities. For example, according
to a survey on 2600 hiring managers in June 2009 by Ca-
reerBuilder1 (a popular job hunting website), 45% of them
used social networking sites to investigate potential employ-
ees. In January 2010, the ratio increased to 72%. In addi-
tion, at IBM, an IT project manager can find knowledgeable
programmers using SmallBlue, a social networking site con-
structed for IBM staff (Lin et al. 2009). In each of the above
situations, trust is one of the most important factors for par-
ticipants’ decision making (Golbeck and Hendler 2006).

Copyright c© 2011, Association for the Advancement of Artificial
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1http://www.careerbuilder.com/

In social networks, a node represents a participant and
links between nodes correspond to physical or online inter-
actions between them. A participant can give a trust value
to another based on their interactions. If there is a trust path
linking two nonadjacent participants, the source participant
can evaluate the trustworthiness of the target one along an
existing path based on the trust transitivity property (i.e., if
A trusts B and B trusts C, then A trusts C to some extent)
under certain semantic constraints (Jøsang and Pope 2005).
The path with trust information linking the source partici-
pant and the target one is called a social trust path (Hang,
Wang, and Singh 2009).

In such a situation, the computation of the value of trust
for the target participant requires an understanding of how
trust is transitive along a social trust path, which is a crit-
ical and challenging problem in OSNs (Guha et al. 2004;
Golbeck and Hendler 2006). In the literature, several trust
transitivity models have been proposed (Gray et al. 2003;
Guha et al. 2004; Golbeck and Hendler 2006; Quercia,
Hailes, and Capra 2007; Walter, Battiston, and Schweitzer
2008), but they have the following drawbacks.

Firstly, as illustrated in social psychology (Adler 2001;
Lichtenstein and Slovic 2006; Miller, Perlman, and Brehm
2007), the social relationships between participants (e.g.,
the one between an employer and an employee), the rec-
ommendation roles of participants (e.g., a supervisor as a
referee in his postgraduate’s job application) and the pref-
erence similarity between participants (e.g., whether both
of them like to play badminton) have significant influence
on trust transitivity. However, to the best of our knowl-
edge, these impact factors are not fully considered by ex-
isting trust transitivity models. Secondly, a source partici-
pant may have different criteria in evaluating the trustwor-
thiness of the target participant (Mansell and Collins 2005),
impacting on trust transitivity results. However, the speci-
fication of evaluation criteria is not supported by any ex-
isting method. Finally, trust transitivity formalized in exist-
ing models does not follow the nature of trust decay illus-
trated in social psychology, namely, trust decays slowly in a
certain number of early hops (specified by a source partic-
ipant) from a source participant, and then decays fast until
the trust value approaches the minimum (Gimpel et al. 2008;
Jøsang, Gary, and Kinateder 2003).

The significance of trust transitivity and the drawbacks
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of the existing methods motivate us to propose a new trust
transitivity model to compute more resonable trust values
between two unknown participants in OSNs. Our main con-
tributions are summarized below.

(1) We first propose a complex social network structure
that takes trust, social relationships, recommendation roles
and preference similarity into account. We then propose a
novel concept, Quality of Trust Transitivity (QoTT), taking
the above impact factors as the attributes to illustrate the
ability of a social trust path to guarantee a certain level of
quality in trust transitivity.

(2) Based on the properties of trust illustrated in social
psychology, we then propose a new Multiple QoTT Con-
strained Trust Transitivity (MQCTT) model.

(3) We have conducted experiments on several sub-
networks extracted from the Enron email dataset2. Experi-
mental results demonstrate that our trust transitivity model
follows both the principles in social psychology and the
properties of trust, and thus it computes more resonable trust
values than existing methods.

Related Work

In the literature, existing models can be classified into three
categories based on the types of trust transitivity strategies
they adopted. These strategies are 1) multiplication strategy,
2) averaging strategy, and 3) confidence-based strategy.

In the first category, the trustworthiness of a target par-
ticipant is computed as the multiplication of the trust values
between any two adjacent participants along a social trust
path. For example, if A trusts B with TAB and B trusts
C with TBC (TAB , TBC ∈ [0, 1]), then A trusts C with
TAC = TAB ∗TBC . This strategy has been used in many ex-
isting models, e.g., (Walter, Battiston, and Schweitzer 2008;
Li, Wang, and Lim 2009).

In the second category, the trustworthiness of a target par-
ticipant is computed based on averaging the trust values be-
tween any two adjacent participants along a social trust path.
i.e., TAC = (wi · TAB + wj · TBC)/2, where wi and wj

are the weights of TAB and TBC respectively, and wi +
wj = 1. The trust transitivity models in (Gray et al. 2003;
Golbeck and Hendler 2006) belong to this category.

In the third category, the confidence between participants
is considered in trust transitivity, i.e., TAC is calculated
based on TAB , TBC and the confidence of A on TBC (de-
noted as CA) . CA is computed based on the preference
similarity between A and B, and it is proportional to the
latter. This strategy has been adopted in (Guha et al. 2004;
Kuter and Golbeck 2007).

There are some drawbacks in the above three categories
of trust transitivity models. Firstly, they do not follow
the nature of trust decay illustrated in social psychology
(Jøsang, Gary, and Kinateder 2003; Gimpel et al. 2008). Sec-
ondly, social psychology (Christianson and Harbison 1996;
Adler 2001) also illustrates that trust is not transitive in all
situations. For example, Alice trusts Bob (a football player)
in playing soccer and Bob trusts Tom (a car mechanic) in re-
pairing a car. In such a situation, Alice may not trust Tom in

2http://www.cs.cmu.edu/enron/

Figure 1: Complex social network

playing soccer. Namely, participants have different recom-
mendation roles (e.g., a football player or a car mechanic) in
different domains (e.g., playing soccer or repairing a car),
which impact on trust transitivity. But existing methods do
not consider this impact factor. Moreover, the social rela-
tionships between participants have significant influence on
trust transitivity (Miller, Perlman, and Brehm 2007). How-
ever, they are not considered in existing trust transitivity
models either. Finally, a source participant should be able
to set certain constraints of the above impact factors as cri-
teria for the trust transitivity in different domains (Mansell
and Collins 2005; Wang and Varadharajan 2007). But this is
not supported by existing methods.

A Complex Social Network

In this section, we propose a new complex social network
structure, as depicted in Fig. 1. It contains the attributes of
four impact factors, i.e., trust, social intimacy degree, role
impact factor and preference similarity.

Trust

In the literature, many definitions of trust have been pro-
posed addressing different aspects of trust (Golbeck and
Hendler 2006; Mansell and Collins 2005). Inspired by these
definitions, in the context of this paper, trust between partici-
pants in social networks can be defined as “Trust is the belief
of one in another, based on their interactions, in the extent
to which the future action to be performed by the latter will
lead to an expected outcome.” Let TAB ∈ [0, 1] denote the
trust value that A assigns to B. TAB = 0 indicates that A
completely distrusts B while TAB = 1 indicates A com-
pletely believes B’s future action can lead to the expected
outcome.

Social Intimacy Degree

The following principle in social psychology illustrates the
impact of the social relationships between participants on
trust.

Principle 1. A participant can trust participants with
whom he/she has more intimate social relationships than
those with whom he/she has less intimate social relation-
ships (Miller, Perlman, and Brehm 2007).

Therefore, Social Intimacy Degree (SID) between partic-
ipants should be defined. Let rAB ∈ [0, 1] denote the Social
Intimacy Degree (SID) between A and B. When rAB = 0,

1223



A and B have the least intimate social relationship. When
rAB=1 they have the most intimate social relationship.

Role Impact Factor

The recommendation role of a participant also has signifi-
cant influence on trust.

Principle 2. The effective growing knowledge-intensity
indeed is a trend towards greater reliance on trust, especially
relevant to particular social positions where one’s actions
weigh heavily on one’s social position (Adler 2001).

Let ρDm

A ∈ [0, 1] denote the Role Impact Factor (RIF),
illustrating the impact of A’s recommendation role on trust
transitivity in domain m (denoted as Dm). When ρDm

A =1,
A is a domain expert. When ρDm

A =0, A has no knowledge
in Dm.

Preference Similarity

The following principle in social psychology illustrates the
impact of preference similarity on trust.

Principle 3. A participant can trust another with whom
he/she has higher preference similarity (e.g., both of them
like to play badminton) more than those with whom he/she
has a lower preference similarity (Luhmann 1979).

Let SDm

AB ∈ [0, 1] denote the Preference Similarity (PS)
between A and B in Dm. When SDm

AB = 0, A and B have
no similar preference. When SDm

AB = 1, they have the same
preference in that domain.

Though it is difficult to build up comprehensive social re-
lationships, recommendation roles and preference similarity
hierarchies in all domains, it is feasible to build them up
in particular applications. For example, in the work by Mc-
callum et al. (2007), through mining the subjects and con-
tents of emails in Enron Corporation2, the social relation-
ship (e.g., the partnership in funding application) between
each email sender and receiver can be discovered and their
roles (e.g., a department manager) can be obtained. In ad-
dition, at Facebook3 the preference similarity between two
participants can be mined from their profiles (Mislove et al.
2007). Detailed mining methods are out of the scope of this
paper.

Since T , r, ρ and S values are not subjectively specified
by a source participant, these factors are called objective im-
pact factors.

Trust Properties and the Quality of Trust

Transitivity

In this section, we first analyze trust properties and then pro-
pose a novel concept Quality of Trust Transitivity (QoTT).

The properties of Trust

As illustrated in social psychology, trust has the following
properties:

Property 1: Subjective. As illustrated in social psychol-
ogy (Hardin 2002; Mansell and Collins 2005), trust is a sub-
jective phenomenon that is defined by the psychological ex-

3http://www.facebook.com/
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Figure 2: General trust decay with the increase of transitivity
hops

periences of the individual who bestows it, reflecting sub-
jective attitudes that affect participants’ thinking based on
subjective evaluation criteria which can vary in different do-
mains.

Property 2: Transitive. Trust can be transitive from
one to another with a discount (Christianson and Harbison
1996). In addition, trust transitivity needs certain constraints
(Christianson and Harbison 1996; Jøsang and Pope 2005).
Namely, if A trusts B in the domain of teaching C++, and
B trusts C in the domain of repairing a car, then the trust
cannot be transitive from A to C via B in the domain of
teaching C++. However, if A also trusts B in repairing a
car (in the same domain that B trusts C), then trust can be
transitive from A to C in this domain.

Property 3: Decay. In trust transitivity, trust decays with
the increase of transitivity hops along a social trust path
(Christianson and Harbison 1996). In addition, the gen-
eral decay is non-linear (Jøsang, Gary, and Kinateder 2003;
Mansell and Collins 2005) and can be divided into three
phases. Phase 1: (Slow Decay Phase) In this phase, trust
decays slowly in transitivity along a social trust path from
a source participant within a certain number of hops (e.g.,
from 1 to 3 hops in Fig. 2). This is because the source partic-
ipant may consider the familiarity with the trustee to extend
no more than a certain number of transitivity hops. Phase 2:
(Fast Decay Phase) With the increase of transitivity hops,
the trust decay speed increases in trust transitivity until the
trust value approaches the minimum (e.g., from 4 to 6 hops
in Fig. 2). This is because that in this phase, the trustee is
becoming stranger to the source participant than the case in
Phase 1. Phase 3: (Slow Decay Phase) When the trust value
between the source participant and the trustee is approach-
ing the minimum, the trust decay speed changes from fast
to slow (e.g., from the 6th hop in Fig. 2). This is because in
this phase, the trustee has become a stranger to the source
participant.

Let λ1 denote the number of hops of trust transitivity in
Phase 1 (e.g., λ1 = 3 in Fig. 2) and λ2 denote the num-
ber of the hops where trust approaches to zero in Phase
3 (e.g., λ2 = 8 in Fig. 2). Their values can be specified
by participants based on their own trust evaluation crite-
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ria in a certain domain (Jøsang, Gary, and Kinateder 2003;
Mansell and Collins 2005). Then even the trust transitivity
follows the general trust decay trend along a social trust
path, based on different λ1 and λ2 values specified by the
source participants, they can obtain different trust transitiv-
ity results of the target along the social trust path.

Quality of Trust Transitivity (QoTT)

In Service-Oriented Computing (SOC), QoS embodies a set
of attributes to illustrate the ability of services to guarantee a
certain level of performance (Franken 1996). Similar to the
QoS, we propose a novel concept, Quality of Trust Transitiv-
ity, which in general incorporates any attribute that impacts
on trust transitivity.

Definition 4. Quality of Trust Transitivity (QoTT) is the
ability of a social trust path to guarantee a certain level of
quality of trust transitivity, taking trust (T ), social intimacy
degree (r), role impact factor (ρ) and preference similarity
(S) as attributes.

QoTT Constraint

Based on Property 1 of trust, in our model, a source par-
ticipant can specify multiple end-to-end QoTT constraints
for QoTT attributes as the requirements of the Quality of
trust transitivity along a social trust path. Let QoTTμ de-
note the QoTT constraints for the aggregated QoTT attribute
μ (μ ∈ {T, r, ρ, S}) in a social trust path. In the follow-
ing, we introduce a method for the aggregation of QoTT at-
tributes in our model.

The Aggregation Method for QoTT Attributes

Trust Aggregation Since trust is discounted with the
increase of transitivity hops (Christianson and Harbison
1996), if there are n participants a1, ..., an in order in
a social trust path (denoted as p(a1, ..., an)), the aggre-
gated trust value is calculated by Eq. (1). This strategy has
been widely used in the literature as a feasible trust ag-
gregation method (Walter, Battiston, and Schweitzer 2008;
Liu, Wang, and Orgun 2010; Liu et al. 2010).

Tp(a1,...,an) =
∏

ai,ai+1∈p(a1,...,an)

Tai ai+1
(1)

This aggregated trust value of a path will be regarded as a
reference together with the social intimacy degree, the role
impact factor and the preference similarity to illustrate the
quality of trust transitivity.

Social Intimacy Degree Aggregation Firstly, social in-
timacy between participants decays with the increase of
the number of hops between them in a social trust path
(Levinger 1983). In addition, the intimacy degree decays fast
when it is approaching one, and decays slowly when it is ap-
proaching zero (Miller, Perlman, and Brehm 2007). Namely,
the decay speed of the social intimacy degree is non-linear in
social networks. The aggregated r value in path p(a1, ..., an)
can be calculated by Eq.(2) whose function image is a hy-
perbolic curve, fitting the characteristic of social intimacy

attenuation.

rp(a1,...,an) =
∏

ai,ai+1∈p(a1,...,an)

rai ai+1
(2)

Role Impact Factor Aggregation As illustrated in social
psychology (Merton 1957), A social role (e.g., a professor
in the field of data mining) is the position of an individual
in a given society. Therefore in the same society, the role
impact factor of a participant does not decay with the in-
crease of transitivity hops. Thus, the aggregated ρ value of
path p(a1,...an) in domain m can be calculated by Eq. (3).

ρDm

p(a1,...,an)
=

∑n−1
k=2 ρak

n− 2
(3)

Preference Similarity Aggregation As illustrated in so-
cial psychology (Lichtenstein and Slovic 2006), if two par-
ticipants have the same preference to an object, they have
a high preference similarity which does not decay with the
increase of the number of transitivity hops. Thus, the aggre-
gated S value of path p(a1,...an) in domain m can be calcu-
lated by Eq. (4).

SDm

p(a1,...,an)
=

∑n−1
k=2 Sak

n− 2
(4)

Then based on our model, a reliable trust transitivity re-
sult can be computed along a social trust path, if and only if
each aggregated QoTT attribute value of the social trust path
satisfies the corresponding end-to-end QoTT constraint.

Since the QoTT constraints, λ1 and λ2 in trust transitiv-
ity are subjectively specified by source participant in trust
transitivity, these parameters are called subjective impact pa-
rameters.

Multiple QoTT Constrained Trust Transitivity

(MQCTT) Model

In this section, we propose a novel Multiple QoTT Con-
strained Trust Transitivity (MQCTT) model, where both
subjective impact parameters and objective impact factors
are considered.

In a social trust path p(a1,...,an), with the λ1 and λ2 speci-
fied by the source participant a1, we take aj+1 (where there
are j hops between a1 and aj+1 (j ≤ n − 1)) as an exam-
ple to introduce the calculation of the trust transitivity result
Ta1,aj+1

by our MQCTT model.
Step 1 (average trust decay speed): Based on Property

3 of trust, trust decays to zero when the number of transitiv-
ity hops is greater than λ2 (λ2 > 1). As depicted in Fig. 3,
we draw a Base Line that starts from coordinate (1, Ta1,a2

),
which corresponds to the first hop of trust transitivity with
the initial trust value Ta1,a2 and ends at (λ2 + 1, 0), where
the number of trust transitivity hops is greater than λ2, lead-
ing to the trust value of zero. This line and its slope can
illustrate the average trust decay speed along p(a1,...,an) in
trust transitivity.

Step 2 (intersection angle θ): After identifying the aver-
age trust decay speed, based on Property 3 of trust, if j ≤
λ1, the trust decay speed should be slower than the average
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Figure 3: Trust transitivity model

trust decay speed. Therefore, (j, Ta1,aj+1) should be above
the Base Line (i.e., Situation 1 in Fig. 3). If λ1 < j ≤ λ2

(j, Ta1,aj+1) should be under the Base Line (i.e., Situation 2
in Fig. 3). A Deviation Line that starts from (1, Ta1,a2

) and
ends at (j, Ta1,aj+1

) can be drawn, where an intersection
angle θ is formed (i.e., θ1 < 0 in Situation 1 or θ2 > 0 in
Situation 2). Since the Ta1,aj+1

is determined by θ, λ1 and
λ2, in the following steps, we will introduce how to com-
pute the value of θ, and further compute Ta1,aj+1

along path
p(a1,...,an).

Step 3 (the scope of θ): Before computing the value of θ,
we first determine the scope of θ. Since trust decays in tran-
sitivity from a source participant (Christianson and Harbison
1996), the minimal value of θ is equal to the interaction an-
gle from the Base Line to the horizontal axis (i.e., ϕ1 in Fig.
3), which can be calculated by Eq. (5). In addition, based on
Property 3 of trust, if and only if j > λ2, Ta1,aj+1

decays
to zero. We draw a Decay Boundary Line that starts from
(1, Ta1,a2

) and ends at (j, 0) j > λ1 to indicate the trust
decay boundary. Then the maximal value of θ is equal to the
interaction angle from Decay Boundary Line to the horizon-
tal axis (i.e., ϕ2 in Fig. 3) minus ϕ1, i.e., ϕ2 −ϕ1, where ϕ2

can be calculated by Eq. (6). Then θ ∈ (ϕ1, ϕ2 − ϕ1)

ϕ1 = arctan(
Ta1,a2

λ2
), λ2 > 1 and ϕ1 ∈ (0,

π

2
) (5)

ϕ2 = arctan(
Ta1,a2

j − 1
), 1 < j ≤ λ2 and ϕ2 ∈ (0,

π

2
) (6)

Step 4 (logistic function): As illustrated in Property 3 of
trust, the general trust decay follows the curve plotted in Fig.
2. Therefore, the increase of θ is non-linear and follows the
curve depicted in Fig. 4. In mathematics, the logistic func-
tion is known to be the most accurate one to model phe-
nomenons possessing non-linear increases with such a trend,
and has been widely used in the real-world, e.g., modeling
the non-linear population growth in ecology, the non-linear
growth of tumors in medicine and the nonlinearity of clamp
signals in neural networks (Kingsland 1995). Therefore, to

compute an accurate θ value and further obtain an more rea-
sonable trust transitivity result, we use the logistic function
as in Eq. (7) to model the increase of θ. The function curve
is plotted in Fig. 4.

θ =

⎧⎨
⎩

[ 2∗ϕ1

1+e(ξ−j) ]− ϕ1 for 1 < j ≤ λ1

[ 2∗(ϕ2−ϕ1)
1+e(ξ−j) ]− (ϕ2 − ϕ1) for λ1 < j ≤ λ2

(7)
where ξ is the argument controlling the function curve.

Step 5 (computing θ value): After modeling the increase
of θ by using Eq. (7), it is necessary to calculate the argu-
ments of Eq. (7), and further compute θ value. From Fig. 4,
we can see that ξ is the argument controlling the number of
transitivity hops when θ = 0. Then based on Property 2 of
trust, if 0 < j ≤ λ1, then ξ > λ1, which ensures θ < 0
(i.e., Situation 1 in Fig. 3). Otherwise if λ1 < j ≤ λ2, then
ξ < λ1, which ensures θ > 0 (i.e., Situation 2 in Fig. 3).
Then ξ can be calculated by Eq. (8) and Eq. (9).

τ = rp(a1,...,aj+1) + ρDm
ρp(a1,...,aj+1)

+ SDm

p(a1,...,aj+1)
+ Tp(a1,...,aj+1)

(8)

ξ =

⎧⎨
⎩

λ1 +
τ

1−τ for 1 < j ≤ λ1

λ1 − 1−τ
τ for λ1 < j ≤ λ2

(9)

Note that Eq. (8) and Eq. (9) have the following charac-
teristics:

Characteristic 1: if 1 < j ≤ λ1 and τ → 0, then ξ → λ+
1

and thus θ → 0. In such a situation, the Deviation Line
tends to coincide with the Base Line. Namely, the trust de-
cay speed approaches the average trust decay speed when all
QoTT attribute values approach zero.

Characteristic 2: If 1 < j ≤ λ1 and τ → 1, then ξ → ∞
and thus θ → ϕ. In this situation, the Deviation Line tends to
be parallel with the horizontal axis. Namely, the trust decay
speed approaches zero, when all the QoTT attribute values
approach one.

Similarly, we can obtain the same characteristics above
when λ1 < j ≤ λ2, following the principles in social psy-
chology and the properties of trust.

Step 6 (computing Ta1,aj+1 based on θ): After comput-
ing θ based on Eq. (7) and the slope of Base Line (denoted
as k1) based on Eq. (10) respectively,

k1 =
Ta1,a2

λ2 + 1
, (10)

the slope of Deviation Line (denoted as k2) can be calculated
with Eq. (11).

tan(θ) = (
k1 − k2
1 + k1k2

), θ ∈ (−ϕ1, ϕ2 − ϕ1) (11)

After obtaining k2, Ta1,aj+1
can be calculated by Eq. (12).

Ta1,aj+1
= Ta1,a2

+ k2 · j, 1 < j ≤ λ2 and k2 < 0 (12)

Ta1,aj+1
is computed based on both objective impact fac-

tors (i.e., T , r, ρ and S), and subjective impact parameters
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Table 1: Extracted sub-networks
ID Max hops Number of nodes Number of links
1 4 61 155
2 4 104 237
3 5 158 389
4 5 215 619
5 6 228 667
6 6 445 1418
7 7 551 3265
8 7 750 3301

(i.e., QoTT constraints, λ1 and λ2), thus it is different from
Tp(a1,...,aj+1)

which is only one of the above factors impact-
ing on Ta1,aj+1 value.

Experiments

Experiment Settings

Firstly, in order to evaluate the performance of our proposed
MQTTC model, we conduct experiments on sub-networks
of different scales and structures, extracted from the Enron
email dataset4 which contains 87,474 nodes and 30,0511
links. This dataset has been widely used in the studies of
social networks (Mccallum, Wang, and Corrada-Emmanuel
2007; S. Yoo and Moon 2009). We randomly select 8 pairs
of source and target participants, and then extract the corre-
sponding 8 sub-networks between them by using an exhaus-
tive search method. Among these sub-networks, the maxi-
mal length of a social trust path varies from 4 to 7 hops,
following the small-world characteristic (Gray et al. 2003)5.
These sub-networks are listed in Table 1.

Secondly, to compare MQCTT with existing trust transi-
tivity models, we select one model from each of the cate-
gories introduced in the section of related work (see Table
2). In addition, we select three domains in our experiments,
including (1) product sales, (2) hiring employees and (3)
making friends. The values of the subjective impact param-
eters specified by a source participant are listed in Table 3.

4http://www.cs.cmu.edu/enron/
5The average path length between any two nodes is about 6.6

hops in a social network

Table 2: Selected trust transitivity models
Model Number Category Strategy Authors
model 1 first multiplication Walter et. al (2008)
model 2 second average Golbeck et. al (2006)
model 3 third confidence-based Guha et. al (2004)

Table 3: Subjective impact parameters of three domains
Domain (NO.) QoTTT QoTTr QoTTρ QoTTS λ1 λ2

product sales (1) 0.1 0.05 0.05 0.05 3 4
hiring employees (2) 0.05 0.05 0.1 0.05 4 5
making friends (3) 0.05 0.05 0.05 0.1 5 6

Furthermore, the values of r, ρ and S can be mined in social
networks by using data mining techniques. But this is out of
the scope of this paper. Without loss of generality, the values
QoTT attributes are randomly generated by using rand() in
Matlab.

Finally, as all trust transitivity models including MQCTT
are used to compute the trust value along a social trust path,
we compare the most reliable trust transitivity results of all
models obtained from the optimal social trust path in a sub-
network. The optimal social trust path without QoTT con-
straints is selected by using the existing optimal algorithm
in (Hang, Wang, and Singh 2009), and the path with QoTT
constraints in MQCTT is selected by using the optimal al-
gorithm in (Liu, Wang, and Orgun 2010).

All four trust transitivity models are implemented using
Matlab R2008a running on an IBM ThinkPad SL500 lap-
top with an Intel Core 2 Duo T5870 2.00GHz CPU, 3GB
RAM, Windows XP SP3 operating system and MySql 5.1.35
database.

The Performance of MQCTT Model

Scenario 1: trust transitivity based on different subjec-
tive impact parameters To investigate the performance
of the MQCTT model with different subjective impact pa-
rameters, we set the same T , r, ρ and S values in the three
domains.

From the experimental results plotted in Fig. 5, we can
see that each of the existing trust transitivity models yields
the same trust values in the three domains (e.g. S1 in Fig. 5).
However, based on Property 1 of trust, a source participant
may have different evaluation criteria in the trust transitivity
of different domains, leading to different trust values along
the same social trust path. Thus, existing trust transitivity
models neglect this property.

In contrast, our MQCTT model considers different val-
ues of subjective impact parameters specified by the source
participant. Therefore, the trust values computed by our
MQCTT model are different in the three domains based
on the source participant’s different trust evaluation criteria
(e.g., S2 in Fig. 5), following Property 1 of trust. In addition,
if no social trust path can satisfy the QoTT constraints in the
sub-network, or the number of transitivity hops is greater
than λ2, the source participant will not establish a trust rela-
tion with the target participant. Then the trust values of the
target participant are equal to zero (e.g., T = 0 in S3 in
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Figure 6: The results of Tr − T ′r

Fig. 5). This follows Properties 2 and 3 of trust. However,
existing methods neglect these properties.

Scenario 2: trust transitivity with different social rela-
tionships To investigate the performance of all models in
trust transitivity with different social relationships, r value is
decreased to r′ = r/1.5, and the rest of the QoTT attributes
have the same values with those in scenario 1.

Fig. 6 plots the trust transitivity results computed based
on r (denoted as Tr) minus those computed based on r′ (de-
noted as T ′r), i.e., Tr − T ′r. We can see that in some cases,
Tr − T ′r > 0 in the MQCTT model (e.g., S4 in Fig. 6).
Namely, the trust value computed by our MQCTT model
decreases with the decrease of r value when the social trust
path satisfies QoTT constraints, which follows Principle 1.
In contrast, the trust values computed by each of the three
existing trust transitivity models are the same, neglecting the
influence of social relationships.

In addition, in MQCTT, if the aggregated r and r′ values
in a path do not satisfy the corresponding QoTT constrains,
Tr = T ′r = 0 (e.g., S5 in Fig. 6). This follows Property 3 of
trust.

Scenario 3: trust transitivity with different recommen-
dation roles To investigate the performance of these mod-
els in trust transitivity with different recommendation roles,
ρD3 is decreased to ρ′D3 = ρD3/1.5. The rest of the QoTT
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attributes have the same values with those in scenario 1.
Fig. 7 plots the trust transitivity results computed based

on ρD3 (termed as Tρ) minus those computed based on ρ′D3

(termed as T ′ρ), i.e., Tρ − T ′ρ. We can see that in some cases
in domain 3, Tρ − T ′ρ > 0 in our MQCTT model (e.g.,
S6 in Fig. 7). Namely, the trust value decreases with the
decrease of ρ value when the social trust path satisfies the
QoTT constraints, which follows Principle 1. In contrast, the
trust values computed by each of three existing trust transi-
tivity models are the same in each domain, neglecting the
influence of recommendation roles.

In addition, in MQCTT, if the aggregated ρD3 and ρ′D3

value in a path do not satisfy the corresponding QoTT con-
strains, Tρ = T ′ρ = 0 (e.g., S7 in Fig. 7). This follows Prop-
erty 3 of trust.

Scenario 4: trust transitivity based on different prefer-
ence similarity To investigate the performance of these
models in trust transitivity with different preference simi-
larity, SD3 is decreased to S′D3 = SD3/1.5. The rest of the
QoTT attributes have the same values with those in scenario
1.

Fig. 8 plots the trust transitivity results computed based
on SD3 (termed as TS) minus those computed based on ρ′D3

(termed as T ′S), i.e., TS −T ′S . We can see that in some cases
in domain 3, TS −T ′S > 0 in our MQCTT model (e.g., S8 in
Fig. 8). Namely, the trust value computed by our proposed
MQCTT model decreases with the decrease of S value when
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the social trust path satisfies the QoTT constraints, which
follows Principle 1. In contrast, only the work in (Guha et al.
2004) follows this principle (e.g., S9 in Fig. 8), while other
two models neglect the influence of the preference similarity
between participants.

In addition, in MQCTT, if the aggregated SD3 and S′D3

values in a path do not satisfy the corresponding QoTT con-
strains, TS = T ′S = 0 (e.g., S10 in Fig. 8). This follows
Property 3 of trust. However, the existing methods, includ-
ing the model in (Guha et al. 2004) do not follow this trust
property.

Based on the above experimental results and our analysis
in the four scenarios, we can see that our proposed MQCTT
model not only follows the principles in social psychology,
but also follows the trust properties. Therefore, MQCTT can
compute a more resonable trust value of the target partici-
pant than existing models.

Conclusion

In this paper, we have proposed a complex social network
structure that takes trust, social relationship, recommenda-
tion roles and preference similarity into account. In addition,
we proposed a novel general concept of Quality of Trust
Transitivity (QoTT) and proposed a novel Multiple QoTT
Constrained Trust Transitive (MQCTT) model in complex
social networks. Furthermore, we have conducted experi-
ments on a real social network. Experimental results have
demonstrated that our MQCTT model follows the principles
in social psychology and properties of trust, and thus it com-
putes more resonable trust transitivity results than existing
methods.

In our future work, we plan to conduct extensive experi-
ments with some other real social network datasets and de-
velop a visualization tool for trust transitivity analysis in
complex social networks.
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