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Abstract

This work proposes new approaches to contingent planning
using alternative belief state representations extended from
those in conformant planning and a new AND/OR forward
search algorithm, called PrAO, for contingent solutions. Each
representation was implemented in a new contingent planner.
The important role of belief state representation has been con-
firmed by the fact that our planners all outperform other state-
of-the-art planners on most benchmarks and the comparison
of their performances varies across all the benchmarks even
using the same search algorithm PrAO and same unsophisti-
cated heuristic scheme. The work identifies the properties of
each representation method that affect the performance.

Contingent Planning and Previous Approaches

Contingent Planning is the task of generating conditional
plans in the presence of incomplete information, uncertain
action effects, and sensing actions (Peot and Smith 1992). It
is known as one of the most general and hardest problems
considered in planning (Haslum and Jonsson 1999).

Significant progress has been made as various contingent
planner can solve problems at different level of hardness,
e.g., contingent-FF (Hoffmann and Brafman 2005), POND
(Bryce et al. 2006), and CLG (Albore et al. 2009).

One of the most efficient approaches to contingent plan-
ning is to encode the problem into an AND/OR search prob-
lem in the belief state space. To deal with incomplete in-
formation about the world, the notion of belief state has
been introduced—defined as a set of possible states. This
notion is convenient for capturing the semantic of incom-
plete information and uncertain action effects and for defin-
ing a transition function between belief states. The use of
belief states themselves in the implementation of a planner,
however, is inefficient and impractical due to their expo-
nential size. The question is then how to represent belief
states and, given a representation, how to define a transi-
tion function for computing successor belief states under
conditional action effects in presence of incomplete infor-
mation. To address this, (Bertoli et al. 2001) proposed the
use of binary decision diagrams (BDDs) (Bryant 1992) to
represent belief states in a model checking based planner
MBP. Later, (Bryce et al. 2006) used BDDs to represent
literals and actions in the planning graph for computation
of heuristics used to search for solutions in their planner
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POND. The use of the BDD is advantageous since it is more
compact than the belief state itself and it allows to check
whether a literal holds in a world state easily. Nonetheless,
the size of a BDD representation is still very large and sen-
sitive to the order of the variables. Moreover, computing
successor belief states in BDDs form during the search is
very expensive, requiring intermediate BDDs formulae of
exponential size. This explains why MBP and POND do
not scale well as shown in (Hoffmann and Brafman 2005;
Albore et al. 2009).

At the other extreme of belief state representation, the
proposal in (Brafman and Hoffmann 2004; Hoffmann and
Brafman 2005) represents belief states indirectly through
the action sequences that lead to them from the initial be-
lief state, and uses forward search in the belief space for
solutions. The advantage of this method is easily seen as
it requires very little memory, scaling up pretty well on a
number of problems. The trade-off is that it incurs an exces-
sive amount of repeated computation. Moreover, checking
whether a proposition holds after the execution of an action
sequence is co-NP-hard. This is, as we believe, one of the
main reasons for their planners using this method to hardly
find a solution for even small instances of harder prob-
lems, e.g., many instances are given in (Albore et al. 2009;
To et al. 2010a).

(Son and Baral 2001) brought a different perspective to
deal with incomplete information that approximates a belief
state by the intersection of the states it contains. The advan-
tage of this approach lies in the low-complexity: the succes-
sor (approximated) belief state can be computed in polyno-
mial time. The approximation is, however, incomplete. To
address this, (Son and Tu 2006) identifies a complete con-
dition for the approximation and develops the technique in
their conformant planner, called CPA. The advantage of this
approach is that the computation of the successor belief state
is still very simple. However, the approximated formula, as
shown in the experiments, explodes in many problems.

Our Approaches and Up-to-date Results

To address the issues of the aforementioned approaches, we
firstly proposed a novel approach to dealing with incomplete
information by using a compact DNF formula, called min-
imal DNF, to represent belief states and defining a direct
complete transition function for computing the successor
belief states encoded in this representation in the presence
of incomplete information efficiently, i.e., polynomial un-
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der reasonable assumptions (To et al. 2009). The advantage
of this method is confirmed by the fact that our conformant
planner DNF can solve much larger instances of a majority
of domains, including the most challenging ones in the lit-
erature. However, the performance of DNF is not as good
on the problems where the size of disjunctive formulae en-
coding the belief states is too large even in a very compact
(disjunctive) form. To address this, we proposed a compact
CNF formula, called minimal-CNF, (To et al. 2010a) and
prime implicates as other representations (To et al. 2010b).

Recently, in (To et al. 2011a), we proposed a new ap-
proach to contingent planning using the minimal-DNF and
a novel AND/OR forward search algorithm PrAO, which al-
lows to prune the search space significantly in many cases.
We extended the function defined in (To et al. 2009) for
computing successor belief states to handle uncertain action
effects and sensing actions required in contingent planning.
We deployed the ideas in a planner, called DNFct, and com-
pared DNFct with other state-of-the-art contingent planners.
The superior performance of DNFct in most benchmarks
available in the literature validates the effectiveness of our
representation method and the usefulness of PrAO.

Following this direction, we continued to investigate the
effectiveness of minimal-CNF in contingent planning. To
this end, we again extended the function developed in (To
et al. 2010a) for non-deterministic and sensing actions in
a new planner, called CNFct, using the AND/OR forward
search algorithm PrAO and a same heuristic function, that
based on the number of satisfied sub-goals and the num-
ber of known literals in the belief state. For a better un-
derstanding of the effectiveness of representation in contin-
gent planning, we modified DNFct to use the same heuristic
function as for CNFctand compared CNFct with DNFct and
other state-of-the-art contingent planners. The importance
of representation is again confirmed by the fact that CNFct
also offers very competitive performance in a wide range of
benchmarks, like DNFct, and the comparison of their per-
formances varies across all the benchmarks even using the
same search algorithm and same unsophisticated heuristic
scheme. We identified the properties of these representations
that affect the performance of the planner, investigated the
advantages and disadvantages of each representation, and
identified the classes of problems that promote or degrade
each representation (To et al. 2011b).

The investigation in (To et al. 2011b) shows that DNFct is
fastest, able to solve most problems within the shortest time,
but poor in the problems where the size of disjunctive formu-
lae encoding the belief states explodes. In contrast, CNFct is
able to solve more instances in most benchmarks in the lit-
erature but with a longer time, in general, due to the higher
complexity of the transition function defined for minimal-
CNF compared with that for minimal-DNF. This motivated
us to consider a compromise of the two approaches which
extended the use of prime implicates in (To et al. 2010b)
to be used for contingent planning in a new planner PIct
in the same search framework as for CNFct and DNFct.
Again, PIct is very competitive, faster than CNFct and more
scalable than DNFctin a large pool of benchmarks. An in-
depth investigation on the effectiveness of prime implicates

in comparison with minimal-CNF have been introduced in
(To et al. 2011c)

It is worth noting that the study of different representa-
tions is useful and beneficial as each representation is strong
or weak in certain classes of problems. Moreover, the results
obtained from this study can also be applied in other areas,
since logical formulae are also widely used in various areas.
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