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Abstract

Automatic semantic annotation of structured data enables un-
supervised integration of data from heterogeneous sources
but is difficult to perform accurately due to the presence of
many numeric fields and proper-noun fields that do not al-
low reference-based approaches and the absence of natural
language text that prevents the use of language-based ap-
proaches. In addition, several of these semantic types have
multiple heterogeneous representations, while sharing syn-
tactic structure with other types. In this work, we propose
a new approach to use conditional random fields (CRFs) to
perform semantic annotation of structured data that takes ad-
vantage of the structure and labels of the tokens for higher
accuracy of field labeling, while still allowing the use of ex-
act inference techniques. We compare our approach with a
linear-CRF based model that only labels fields and also with
a regular-expression based approach.

Introduction

Semantic annotation is the problem of assigning user-
defined semantic labels to fields and tokens in structured
data. It allows automatic joining of different sources on com-
mon attributes by identifying and comparing their values
even when they are in different syntactic formats. Auto-
matic semantic annotation is difficult due to heterogeneity
in the formats of semantic types, as well as similarity be-
tween different semantic types. For example, Temperature
can be written as 56◦F , 56 F , 56◦, or 56, whereas Humidity
and Chance of Precipitation look very similar (e.g., 40%).

Conventional language-based methods cannot be applied
to this problem due to the lack of well formed sentences
and the presence of many numeric and string literal val-
ues prevents the use of a reference-set. The primary evi-
dence of a semantic type is its token-level syntactic struc-
ture and the identity of the neighboring fields. Our contribu-
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Table 1: A sample data tuple, its fields, tokens and semantic labels.
Fields Field Tokens Token

labels labels

90292 Zip 90292 ZipValue
76◦F TempF 76 TempFValue

◦ DegreeSymbol
F TempFUnit

50% Humidity 50 HumidityValue
% PercentSymbol

5mph WindSpeed 5 WindSpeedValue
mph WindSpeedUnit

Figure 1: CRF graph generated for data tuple shown in Table 1.

tion in this paper is an approach to perform semantic anno-
tation of structured data using CRFs (Lafferty, McCallum,
and Pereira 2001) that take advantage of the label interde-
pendencies between a field label and its token’s labels, the
label interdependencies between consecutive tokens, and the
dependence of these labels on the features of the tokens to
achieve higher field labeling accuracy, while still allowing
us to use exact inference techniques.

Semantic annotation using a CRF-based model

We automatically construct the CRF graphs (e.g., Figure 1)
from tuples (e.g., Table 1) using our algorithm, which is as
follows: Construct a node for each field and connect them
in a chain. Split each field into tokens and add nodes cor-
responding to them as children to the field node. Connect
neighboring token nodes. Our parser tokenizes the fields into
continuous strings of alphabets, pure numbers and single
symbol characters as shown in the example tuple.
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Figure 2: Junction tree constructed from CRF graph in Figure 1.

We then attach some of the following syntactic features to
each token: capitalization, length of token, starting character
or digit, number of digits after decimal, digit at units place,
sign of the number, and identity of the token itself.

We use seven types of feature functions to capture the re-
lationships between the following: (1) the label and feature
on a token node, (2) the label of a token node and feature of
its previous token, (3) the label of a token node and feature
of its next token, (4) the label of a field node and presence of
a feature on any of its tokens, (5) the labels of two adjacent
token nodes and their features, (6) the labels of a field and
its token node and features of the token, and (7) the labels of
two adjacent field nodes and presence of a feature each on
any of their respective tokens. We use binary feature func-
tions, that return either zero or one. For example, a feature
function of the third type defined above can take as inputs the
label of a token node and the feature list of next token and
return the value one only if the first node is labeled House-
Number and the next token has the feature Capitalized.

Training of a model and labeling of a new tuple, both in-
volve performing inference on the CRFs. Since our CRFs
have loops, we use the junction tree algorithm (Lauritzen
and Spiegelhalter 1988) to convert our CRF graphs into
acyclic junction trees (JT) (Figure 2). Each node in the JT
represents a clique in the CRF graph. Figure 2 shows the JT
for the CRF graph shown in Figure 1. It is the property of
our CRF graph structure that it leads to a linear chain JT,
which makes using belief propagation (BP) (Pearl 1988) on
it very easy. Since BP calculates the beliefs for all possible
label assignments and one node of JT represents a clique in
the CRF, the maximum number of label assignments to a JT
node is exponential in the size of the largest clique, which is
three in our CRFs. This keeps the complexity low and avoids
the need for approximate inference methods.

Experiments

We collected data by extracting 15 tuples each from four
websites in three domains. In each domain, we ran four ex-
periments, each time training on data from three websites
and testing on the fourth website. The details of the domains
and the results are reported in Table 2. Field labeling accu-
racy is more than 80% for 10 out of the 12 websites and
token labeling accuracy is around 80% for all the three do-
mains. The average accuracy across all domains is 88%. We
compared our performance with a regular-expression-based
approach and a linear-CRF-based approach, where the fields
are not split into tokens and found their accuracy to be 75%
and 48%, respectively.

Table 2: Performance of our approach on 12 websites.
Domain Website Field Token
(field types, URL labeling labeling
token types) accuracy accuracy

Weather wunderground.com 0.89 0.92
forecast weather.unisys.com 0.43 0.75
(15, 36) weather.com 0.70 0.79

noaa.gov 1.00 0.86
average 0.75 0.83

Flight flytecomm.com 0.89 0.82
status flightview.com 0.96 0.97
(8, 17) delta.com 0.81 0.78

continental.com 0.96 0.55
average 0.90 0.79

Geocoding geocoder.us 1.00 0.85
(5,12) geocoder.ca 1.00 0.82

geonames.com 0.98 0.68
worldkit.com 1.00 0.89
average 0.99 0.81

Related Work

Zhu et al. (2005) used two-dimensional CRFs and (Tang et
al. 2006) used tree-structured CRFs to exploit spatial rela-
tionships between elements on webpages and documents,
respectively. Our hierarchical-CRF exploits the semantic re-
lationship between field and token labels in data tuples.

Schema matching techniques (Doan, Domingos, and
Levy 2000) can be used to perform semantic annotation by
column-wise matching between labeled and unlabeled rela-
tional tables. These techniques assume that there are a large
number of rows in each table. Although we train our model
on multiple tuples, we only label one tuple at a time. This
allows us to label variable length tuples.

Conclusion

In this paper, we presented a CRF-based approach to exploit
the token-level structure of the fields to perform accurate se-
mantic annotation of structured data. We showed that this
approach achieves about 13% higher accuracy than a linear-
CRF model that assigns labels to fields only.
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