
Medical Treatment Conflict Resolving in Answer Set Programming

Forrest Sheng Bao
Department of Computer Science

Texas Tech University
Lubbock, Texas 79409

forrest.bao @ gmail.com

Zhizheng Zhang
School of Computer Science

and Engineering
Southeast University

Nanjing, China 210096
zzzhang.gm @ gmail.com

Yuanlin Zhang
Department of Computer Science

Texas Tech University
Lubbock, Texas 79409

y.zhang @ ttu.edu

Abstract

Medical treatment decision making is a good application of
knowledge representation and reasoning. We are particularly
interested in using them to resolve treatment conflicts, a com-
plicated condition when two treatments cannot be given si-
multaneously to a patient suffering from multiple symptoms.
The logic system is required to reason on cases with and with-
out treatment conflicts. Thanks to the nonmonotonicity of
Answer Set Programming (ASP), we give an elegant solu-
tion for resolving a medical treatment conflict on an exam-
ple problem and show the importance of nonmonotonicity in
medical reasoning.

Introduction

Making medical treatment decisions is very challenging and
sophisticated. Physicians make mistakes sometimes due to
negligence. Logic programming provides a natural way to
represent medical knowledge into logic rules and reasoning
on top of them. The declarative property of logic program-
ming makes problem modeling effective. Therefore, logic
programming can help physicians make medical treatment
decisions. Compared with human reasoning, another advan-
tage of logic programming here is that the knowledge used in
reasoning can come from more than one experienced physi-
cians.

One difficult situation in medical treatment decision mak-
ing is treatment conflict when a patient has multiple symp-
toms. By treatment conflict, we mean the treatments to
at least two symptoms have opposite effects on a patient.
For example, hemoptysis (i.e., coughing up blood) can
be relieved by increasing coagulation (i.e., blood clotting)
whereas hypertension (i.e., high blood pressure) can be re-
lieved by decreasing coagulation. It is very easy to decide
a treatment for either one of the two symptoms. But when
a patient suffers from both, it is impossible to relieve both
by increased and decreased coagulation simultaneously. For
such a case, a physician may prioritize symptoms and treat
the one that is most life-threatening. In other words, treat-
ments are prioritized according to priority ranking of symp-
toms. Additionally, when treatment conflict happens, the
treatment to the most life-threatening symptom may be dif-
ferent from that when there is no treatment conflict.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Answer Set Programming (Gelfond 2008), a kind of logic
programming, is a Prolog-style knowledge representation
tool with powerful nonmonotonic reasoning ability. Many
efficient ASP inference engines (i.e., solvers) have been de-
veloped and used widely. We are very interested in using
ASP to resolve treatment conflicts in medical problems by
using prioritized symptoms of patients provided by physi-
cians. Exceptions happen frequently in most statements in
the medical domain (e.g., allergies or incomplete informa-
tion). ASP provides a good support for reasoning on defaults
with exceptions.

An ASP program consists of rules in the form:
l0 : − l1, . . . , lm, not lm+1, . . . , not ln

where each li for i ∈ [0..n] is a logic literal. The reasoning
result of an ASP program is called an answer set. The rule
means “l0 is believed if l1, . . . , lm are believed, and there is
no reason to believe lm+1, . . . , ln.” The not is called nega-
tion as failure, which brings us great convenience to express
defaults with exceptions. For instance, to express the idea
that “increase patient X’s coagulation, if he/she is suffering
from hemoptysis and there is no reason not to do so,” we can
write an ASP rule
should(increase, X) :- hemoptysis(X),

not -should(increase, X).

Normally, if hemoptysis(X) is true, we will have
should(increase,X). This is the default case. The
condition “there is no reason not to do so” is called
an exception (e.g., increasing coagulation could worsen a
more life-threatening symptom). When exception happens,
not -should(increase, X) is false, and we will not
have should(increase,X), even though patient X is
suffering from hemoptysis.

In the rest of the paper, we will use an example to demon-
strate how ASP can be employed to model medical treatment
decision making that involves treatment conflict, and how an
ASP solver can resolve the conflict and generate the proper
treatment. The example we will use is very simple. But
in reality, the problem could be way more complex and we
hope ASP can help physicians on those difficult cases.

Problem Modeling in ASP
The ASP program to resolve treatment conflict can be par-
titioned into two parts, the knowledge part and the patient

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1752



part. The knowledge part contains general medical knowl-
edge independent from the patient. The patient part is a col-
lection of facts about the patient, including symptoms and
priority ranking of symptoms. Treatments will be priori-
tized (by physicians or an ASP solver) according to ranking
of symptoms.

Knowledge Part

The knowledge in our running example can be abstracted as
follows.

1. A patient’s coagulation should be increased (decreased),
if he/she is suffering from hemoptysis (hypertension), un-
less it should not.

2. A patient will be prescribed medication A (B) and should
take it, if his/her coagulation should be increased (de-
creased) unless hemoptysis (hypertension) is not a prior-
ity. “Unless” here expresses an exception.

3. Medications A and B cannot be taken at the same time.

4. If a patient’s coagulation should be increased (decrease)
while being prescribed medication B (A), half the dose.

Knowledge 1 can be represented as:

should(increase, X) :- hemoptysis(X),
not -should(increase, X).

should(decrease, X) :- hypertension(X),
not -should(decrease, X).

where X refers to a patient.
Knowledge 2 and 3 can be combined into:

takes(X, a) :- should(increase, X),
not takes(X, b),

not -priority(hemoptysis, X).

takes(X, b) :- should(decrease, X),
not takes(X, a),

not -priority(hypertension, X).

where priority(hemoptysis, X) can be interpreted
as “the treatment to hemoptysis should be given (first).”

Knowledge 4 can be expressed as:

half_dose(X,a) :- should(decrease, X),
takes(X, a).

half_dose(X,b) :- should(increase, X),
takes(X, b).

Patient Part

We create a patient Tom, who has both symptoms and
hemoptysis is the priority. These information can be explic-
itly specified as:

hemoptysis(tom).
hypertension(tom). % rule r1
priority(hemoptysis, tom). % rule r2
-priority(hypertension, tom). % rule r3

Case Analysis

We consider two cases here, without and with treatment con-
flict, respectively. The program defined above is solved
by lparse, smodels and mkatoms. We set the solver
to show only literals with predicates takes, should and
half dose below.

In the first case, we comment out rules r1− r3 in patient
part, such that there is no treatment conflict on Tom. A sim-
ple answer set is found:
takes(tom,a)
should(increase,tom)

In the second case, we first introduce treatment conflict
by uncommenting r1 only. Two answer sets are found:
half_dose(tom,a)
takes(tom,a)
should(increase,tom)
should(decrease,tom)

and
half_dose(tom,b)
takes(tom,b)
should(increase,tom)
should(decrease,tom)

The ASP solver gives one treatment in each answer set be-
cause it does not know which symptom is the priority for
Tom. Hence, a treatment conflict happens. Please note that
in both answer sets, the coagulation of Tom should be in-
creased and decreased.

Now we further uncomment rules r2 and r3 to introduce
symptom priority information. Then only the first answer set
is left. It correctly tells that Tom should take medication A
because his hemoptysis is the priority, but in half of normal
dose. Therefore, the treatment conflict is resolved.

Comparing the results above, we can see that with the
change of given information (the availability of prioritized
symptoms), the answer set (i.e., believes) changes. This is
nonmonotonicity.

The experimental results show that our approach can re-
solve treatment conflict as expected and can also reason cor-
rectly when there is no treatment conflict.

Discussions

In this paper, we exploit the nonmonotonicity of ASP to au-
tomate medical treatment conflict resolving. We will extent
our method for problems with more than two symptoms in
the future.

Acknowledgment

Zhizheng Zhang’s contribution in this work was supported
by Chinese NSF under grant 60803061. Yuanlin Zhang’s
contribution in this work was supported by NSF under grant
IIS-1018031.

References

Gelfond, M. 2008. Answer sets. Handbook of Knowledge
Representation. Elsevier. 285–316.

1753


