
Generating Explanations for Complex Biomedical Queries

Umut Oztok and Esra Erdem
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Abstract

We present a computational method to generate explanations
to answers of complex queries over biomedical ontologies
and databases, using the high-level representation and effi-
cient automated reasoners of Answer Set Programming. We
show the applicability of our approach with some queries re-
lated to drug discovery over PHARMGKB, DRUGBANK, BI-
OGRID, CTD and SIDER.

Introduction
Representing biomedical knowledge in structured forms,
like ontologies, in different formal languages, constructing
them independently from each other, and storing them at dif-
ferent locations have brought about many challenges for an-
swering queries over these ontologies. One challenge is, for
the experts, to be able to represent a complex query in a natu-
ral language, and get its answers in an understandable form.
Another challenge is to be able to answer complex queries
that require appropriate integration of relevant knowledge
stored in different places and in various forms. In addition,
explaining why the complex query has such an answer is
challenging.

The first two challenges are addressed in (Erdem and Yen-
iterzi 2009) and (Bodenreider et al. 2008), by developing
a controlled natural language, called BIOQUERYCNL, to
represent biomedical queries, and an algorithm to convert
queries in BIOQUERYCNL to a program in Answer Set Pro-
gramming (ASP) (Lifschitz 2008)—a declarative program-
ming paradigm with a high-level representation language
and efficient solvers. The idea is to compute answers to com-
plex biomedical queries automatically using ASP solvers,
considering relevant parts of ontologies and the “rule layer”
that integrates these ontologies. In this paper, we address
the third challenge, generating explanations for complex
queries, also using computational methods of ASP.

Explanation Generation
A normal (ASP) program is a finite set of rules of the form

A0 ← A1, . . . , Ak, notAk+1, . . . , notAm

where m ≥ k ≥ 0 and each Ai is an atom. For a rule
r, we denote the head of a rule r by H(r). Also, the set

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

{A1, ..., Ak} of atoms is denoted by B+(r), and the set
{Ak+1, ..., Am} of atoms is denoted by B−(r).

In following, let Π be a normal ASP program, X be an
answer set for Π that contains an atom x. The goal is to
understand why x is in X .

Explanations: Let us first define the positive dependency
graph of a program: The positive dependency graph of a nor-
mal ASP program Π is a directed graph, whose vertices de-
note the atoms in Π, and edges 〈x, y〉 denote the existence
of a rule r in Π where x ∈ H(r) and y ∈ B+(r).

An explanation for x with respect to Π and X is a finite
sequence 〈R1, . . . , Rn〉 of rules in Π such that the following
hold:
• H(Ri) ∪ B+(Ri) ⊆ X and B−(Ri) ∩ X = ∅ for 1 ≤
i ≤ n;
• H(Ri) �= H(Rj) for 1 ≤ i < j ≤ n;
• H(Rn) = x;
• for every Ri, for every atom a ∈ B+(Ri), there exists a

rule Rk (i �= k) such that H(Rk) = a;
• for every Ri (1 ≤ i < n), H(Ri) ∈ B+(Rj) for some
j �= i;
• The positive dependency graph of the ASP program
{R1, . . . , Rn} is acyclic.

Informally, an explanation for an atom is a sequence of rules
which are the reasons of that atom being in an answer set.
There may be different explanations for an atom. Among
them, we are interested in shortest explanations, with the
minimum number of rules.

Finding shortest explanations: To compute shortest ex-
planations, we use “explanation trees ” whose vertices cor-
respond to atoms/rules and edges describe dependencies be-
tween atoms/rules. An explanation tree whose root corre-
sponds to an atom x represents all possible explanations for
x; the idea is then to extract a shortest explanation among all
explanations.

Let us now summarize our algorithm to find a shortest
explanation for an atom x with respect to Π and X .

First, it generates an explanation tree T . For every vertex
v in T that denotes an atom x, it finds every rule R in Π
that support x (i.e., every rule R ∈ Π such that H(R) = x,
B+(R) ⊆ X , and B− ∩X = ∅) and assigns these rules as
the children of v in T . For every vertex v in T that denotes a
rule R, it assigns the atoms in B+(R) as the children of v.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1806

Next, our algorithm assigns weights to the vertices of T
so that we can find a shortest explanation. Since the length
of an explanation depends on the number of rules it contains,
we need to assign weights to the vertices of the tree in such a
way that the weight of a vertex v ∈ X in the tree corresponds
to the number of rules in a shortest explanation for v and the
weight of a vertex u ∈ Π in the tree corresponds to the sum
of the weights of its children. As child of a vertex u ∈ Π is
a vertex u′ ∈ X and the weight of u′ is the number of rules
in a shortest explanation of u′, the weight of u becomes the
least number of rules needed to explain atoms in its body. So,
starting at a vertex v ∈ X and traversing a path by moving
towards the vertex which has the smallest weight until every
branch reaches a leaf, we can find a shortest explanation of
v (vertices v′ ∈ Π on the path). Thus, the weight W (v) of a
vertex v can be defined as follows:
• If v ∈ Π, W (v) =

∑i=n
i=1 W (ci) + 1;

• If v ∈ X , W (v) = min1≤i≤n(W (ci))

where ci is the i’th child of v.
Finally, our algorithm extracts a shortest explanation for x

with respect to Π and X from T . The explanation computed
by our algorithm is indeed the shortest.
Proposition 1. Let Π be a normal ASP program, X be an
answer set for Π, and x be an atom in X . Above algorithm
finds a shortest explanation for x with respect to Π and X .

The time complexity of generating a weighted explana-
tion tree and extracting a shortest explanation from that
tree, in the worst case, is h × b, where h is the maximum
height of the tree and b is the maximum branching factor
of a vertex in the tree. Since the set of vertices of the ex-
planation tree is a subset of X ∪ Π, h = |X| + |Π| and
b = max{|X|, |Π|}. So, the time complexity of our algo-
rithm is O((|X|+ |Π|)×max{|X|, |Π|}).
Example: After translating the BIOQUERYCNL query

What are the genes that are targeted by the drug
Epinephrine and that interact with the gene DLG4?

into an ASP program, and extracting the relevant parts of
ontologies and the rule layer, we can find answers to this
query using the ASP solver CLASP (Gebser et al. 2007). One
of the answers is ADRB1. At this stage, to better understand
the relationships between genes and drugs, the experts may
ask for an explanation as to why ADRB1 is an answer. Our
algorithm above can generate a shortest explanation:

drug gene ctd(Epinephrine,ADRB1).
drug gene(Epinephrine,ADRB1)←

drug gene ctd(Epinephrine,ADRB1).
gene gene biogrid(DLG4, ADRB1).
gene gene(DLG4, ADRB1)←

gene gene biogrid(DLG4, ADRB1).
gene gene(ADRB1, DLG4)←

gene gene(DLG4, ADRB1).
answer(ADRB1)←

drug gene(Epinephrine,ADRB1),
gene gene(ADRB1, DLG4).

Moreover, we can translate this explanation into
BIOQUERYCNL:

the drug Epinephrine targets the gene ADRB1 accord-
ing to CTD and the gene ADRB1 interacts with the gene
DLG4 according to BIOGRID.

Discussion
The most recent work related to explanation generation in
ASP are (Pontelli, Son, and El-Khatib 2009) and (Brain and
De Vos 2005), in the context of debugging normal ASP pro-
grams. (Brain and De Vos 2005) studies the question “why
is an atom x in an answer set X for an ASP program Π.”
As an answer to this question, the authors find the rule in
Π that supports x with respect to X; whereas we compute
a shortest explanation (a sequence of rules) to answer this
question. (Pontelli, Son, and El-Khatib 2009) studies also
the same question, and, as an answer, finds a “justification”,
which is a labeled graph that provides an explanation for the
truth values of atoms with respect to an answer set. There
is a provable correspondence between a justification and an
explanation as we defined above:
Proposition 2. Let Π be a normal ASP program, X be
an answer set for Π, and x be an atom in X . An of-
fline justification of x with respect to X and some U ∈
Assumptions(Π, X) can be translated into an explanation
for x with respect to Π and X . An explanation for an atom
x with respect to Π and X can be transformed into a sub-
graph of an offline justification of x with respect to X and
some U ∈ Assumptions(Π, X).
The reason for not being able to transform an explanation
into a complete justification is the lack of information about
why an atom is not in the given answer set. Although there
is such a correspondence between a justification and an ex-
planation, (Pontelli, Son, and El-Khatib 2009) finds an ex-
planation whereas we find a shortest explanation.

Extending our definitions and algorithms to ASP pro-
grams with aggregates, improving our algorithm with some
search heuristics, and a detailed experimental evaluation are
part of our ongoing work.

Acknowledgments This work has been supported by
TUBITAK Grant 108E229.

References
Bodenreider, O.; Coban, Z.; Doganay, M. C.; Erdem, E.; and
Kosucu, H. 2008. A preliminary report on answering com-
plex queries related to drug discovery using answer set pro-
gramming. In Proc. of ALPSWS’08.
Brain, M., and De Vos, M. 2005. Debugging logic programs
under the answer set semantics. In Proc. of ASP’05.
Erdem, E., and Yeniterzi, R. 2009. Transforming controlled
natural language biomedical queries into answer set pro-
grams. In Proc. of BioNLP’09, 117–124.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. clasp: A Conflict-Driven Answer Set Solver. In Proc.
of LPNMR, 260–265.
Lifschitz, V. 2008. What is answer set programming? In
Proc. of AAAI.
Pontelli, E.; Son, T. C.; and El-Khatib, O. 2009. Justifica-
tions for logic programs under answer set semantics. Theory
and Practice of Logic Programming 1–56.

1807

