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Abstract

Opponent modeling is a critical mechanism in repeated
games. It allows a player to adapt its strategy in order to better
respond to the presumed preferences of its opponents. We in-
troduce a modeling technique that adaptively balances safety
and exploitability. The opponent’s strategy is modeled with
a set of possible strategies that contains the actual one with
high probability. The algorithm is safe as the expected payoff
is above the minimax payoff with high probability, and can
exploit the opponent’s preferences when sufficient observa-
tions are obtained. We apply the algorithm to a robot table-
tennis setting where the robot player learns to prepare to re-
turn a served ball. By modeling the human players, the robot
chooses a forehand, backhand or middle preparation pose be-
fore they serve. The learned strategies can exploit the oppo-
nent’s preferences, leading to a higher rate of successful re-
turns.

Introduction

Opponent modeling allows to exploit the opponents’ prefer-
ences or weaknesses in repeated games. It has been success-
fully used for computer poker games (Saund 2006), soccer
robot games (Butler and Demiris 2009), etc. In practice, in-
accurate models are inevitable for a limited number of ob-
servations, which exposes the player to the risk of adopting
hazardous strategies. To address the safety issue, Markovitch
and Reger (2005) proposed to infer a weakness model in-
stead of estimating the precise model. Johanson et al. (2008)
proposed an ε-safe learning algorithm that chooses the best
counter-strategy from a set of safe strategies. Strategies in
the set do not lose more than ε in the worst case.

In this paper, we propose a different idea that models an
opponent’s strategy with a set of possible strategies that con-
tains the actual one with high probability. We apply this
modeling idea to repeated two-player games. Given a pa-
rameter δ that controls the trade-off between safety and ex-
ploitability, the proposed algorithm can provide a counter-
strategy whose expected payoff is lower-bounded by the
minimax payoff with probability no less than 1 − δ. There-
fore, the learned strategy can mildly exploit the observed
preferences, and converge to the best-response if the oppo-
nent uses a stationary strategy for all games. To cope with
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(a) forehand pose (b) middle pose (c) backhand pose

Figure 1: Three pre-defined preparation poses. They are op-
timized for hitting points in different regions.

non-stationary opponent’s strategies, statistical hypothesis
tests are used to detect changes in observed preferences.

The proposed modeling technique allows a table-tennis
playing robot to improve its response to balls served by hu-
man opponents. The used robot setting (Muelling, Kober,
and Peters 2010) has three possible high-level actions, i.e.
setting to one of its forehand, backhand and middle prepa-
ration poses before the opponent starts serving. Each action
has a relatively high success rate when the ball is served to
its corresponding region (Figure 1). However, the robot is
limited in its acceleration, resulting in low success rate for
incoming balls far away from the preparation pose. Assum-
ing that the opponent uses a stationary strategy, this algo-
rithm generates counter-strategies such that the robot can be
more likely to successfully return the served ball. We use the
low-level planner to verify the feasibility of the plans.

Opponent Modeling and Strategy Learning

We consider two-player normal-form games. The two par-
ticipants are indicated by player i and player j, and the al-
gorithm learns the strategy for player i. The reward matrix
for player i is denoted by R. In each game, the two players
choose their own actions ai, aj independently from action
spaces Ai, Aj according to their respective strategies. The
strategies πi ∈ Δ|Ai| and πj ∈ Δ|Aj | are probability distri-
butions over all possible actions, where Δn is the n-simplex
set. Thus, the expected reward for player i is πT

i Rπj .
Assume the opponent’s strategy π∗

j (aj) is stationary dur-
ing recent N games. With probability no less than 1 − δ,
the Kullback-Leibler (KL) divergence between the empirical
distribution π̃j , which is obtained from observed opponent’s
actions, and π∗

j is bounded by ε(δ) = ((|Aj |−1) ln(N+1)−
ln(δ))/N . Using this inequality, we model the opponent’s
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(a) Opponent with an uniform strategy.
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(b) Opponent with a strong preference.
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(c) Opponent with changed strategies.

Figure 2: The curves show the average expected reward, where the pure strategy 1 and 3 always choose the forehand and middle
pose. They are the optimal strategy respectively in (b) and (a). The learned strategies converge to them for stationary opponent’s
strategy, and can adapt to changes of the opponent’s strategy.

strategy by Ω(δ) = {πj ∈ Δ|Aj ||KL(π̃j ||πj) ≤ ε(δ)},
which contains the actual strategy with probability no less
than 1 − δ. However, the player has no additional informa-
tion to choose the actual strategy among all possible strate-
gies in this set. To ensure safety of the counter-strategy,
we aim for the maximal expected payoff in the worst case:
π∗

i = argmaxπi∈Δ|Ai| minπj∈Ω(δ) πT
i Rπj . Finding the

counter-strategy can be solved efficiently using sub-gradient
methods.

When the model Ω contains the actual strategy π∗
j , the

expected payoff of the best-response strategy has a lower-
bound above the minimax payoff. Therefore, the counter-
strategy is safe with probability no less than 1 − δ. The
learned strategy will converge to the best-response counter-
strategy if the opponent’s strategy converges. In this case, the
cumulative expected regret bound with respect to the best-
response strategy has a growth rate of O(

√
T lnT ), where

T is the number of played games so far.
The learned strategy is δ-safe only if observed N actions

are selected from the same strategy. However, the opponent
may change its strategy during the games. Therefore, an
adaptive learning algorithm is required to deal with the strat-
egy changes. The proposed algorithm maintains two sets of
samples: a set X that contains observed actions for learning
a counter-strategy, and a set Y that serves as a validation set.
We test the hypothesis that the probability of executing any
action aj is the same in the local strategies that generated X
and Y . Therefore, the changes in the strategy can be detected
with high probability.

Robot Table-Tennis

We consider the problem of choosing the preparation pose
for a served ball as a repeated two-player game. The robot
has three possible actions, namely, choosing the forehand,
backhand or middle preparation poses before the oppo-
nent serves. In the meantime, the opponent can choose
to serve the ball to the right, left or middle region. We
have no knowledge whether the opponent is competitive
or cooperative as the opponent’s reward is not available.

Right Left Middle
Forehand 0.6506 0.0648 0.5222
Backhand 0.0449 0.3889 0.1222

Middle 0.4103 0.5648 0.7444

Whereas, an empiri-
cal reward matrix for
the robot can be com-
puted as the success
rates in previous games. Therefore, we roughly know how
well a robot’s preparation pose can return balls in those three
regions. The minimax play will choose the middle prepara-
tion pose with probability around 0.8 and the forehand pose
with probability 0.2. However, it does not exploit the oppo-

nents if they tend to serve the ball to a specific region more
frequently.

We recruited three volunteers to repeatedly serve the ball,
and analyze the performance of the algorithms. We measure
the performance by the Average Expected Reward (AER),
which is the sum of its expected reward divided by the num-
ber of trials. The first volunteer served the balls with ap-
proximately a uniform distribution over the three regions.
Therefore, the pure strategy 3 that always chooses the mid-
dle preparation pose leads to the maximal AER. As shown
in Figure 2(a), the learned strategies preform slightly worse
than it in the beginning as the algorithm starts from the min-
imax strategy, yet quickly converge to the optimal payoff.
The second volunteer had a significant preference to serve to
the right region. As shown in Figure 2(b), the learned strate-
gies move gradually towards the optimal counter-strategy.

The third volunteer started with the preference of serv-
ing the ball to the middle/right side, and then intentionally
switched to favoring the middle/left side. Pure strategy 1 and
3 are optimal before and after the switch. We compare the
adaptive algorithm to the version without change detection
in this case. As shown in Figure 2(c), both algorithms have
decreased performance right after the switch. As the hypoth-
esis test failed, the adaptive algorithm successfully detected
the strategy switch and adapted to it. Therefore, it achieved
the best overall performance.

Future Work
We will extend this modeling idea to more complicated
games, e.g. stochastic games, and use it for other robotic
applications.
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