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Introduction�

In the past decade there has been a significant interest in 
the phase transition of NP-complete or NP-hard problems. 
However, it seems difficult to obtain the location of the 
exact phase transition point. (Xu and Li 2000) may be one 
of the few works that can prove the existence of phase 
transition and identified the phase transition points exactly. 
By introducing a revision of the standard CSP random 
model(Model B) in (Gent el. al. 2001), as we called Model 
RB, we can prove that the critical value of the phase 
transition point can be quantified. Moreover, Model RB 
provides a framework for generating asymptotically hard 
random constraint satisfaction problems and therefore has 
been widely used as benchmarks to evaluate the asymptotic 
behavior of CSP algorithms (Xu el. al. 2007). In this 
literature, we follow this line of research to study phase 
transition of counting the solutions of CSP instances 
following Model RB. Specifically, we consider a decision 
version of #CSP, called #CSP (�dn/t). That is, deciding 
whether the instance has at least dn/t satisfying assignments. 
Note that #CSP(�dn/t) can be viewed as a generalization of 
#3SAT(�2n/t), which was studied in (Bailey el. al. 2007). 
So #CSP(�dn/t) is at least PP-hard. The contribution of our 
work is as following: 

1) We prove the existence of phase transition in 
Model RB for #CSP(�dn/t) can be guaranteed, and 
the threshold point can be precisely located rather 
than in the form of some loose but hard won 
bounds, for instance (Bailey el. al. 2007). 

2) A careful analysis of phase transition can lead us to 
develop an approximate algorithm to estimate the 
solutions number in Model RB. Unlike other 
approximate algorithms, the accuracy of our 
algorithm increases with the increase of the 
problem scale.    
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Model RB 
In this section, we recall the concept of Model RB. For 

more details we refer to (Xu and Li 2000, 2006; Xu el. al. 
2005, 2007).   
Definition 1 (Model RB) In Model RB, a class of random 
CSP instances is determined by parameters (k, n, �, r, p)
where, for each instance: 
1) k� 2 denotes the arity of each constraint, 
2) n� 2 denotes the number of variables, 
3)�>0 determines the domain size d=n� of each domain, 
4)r>0 determines the number m=  of constraints, 
5)1>p>0 determines the number t = pdk of disallowed 
tuples of each relation. 

lnr n n� �

The main difference between Model RB and Model B is 
that the domain size in Model RB grows with the number 
of variables. The generation of random CSP instance in 
Model RB is done as follows: 

(1) Select m= lnr n n� �  random constraints (with 
repetition), each one formed by randomly selecting k of n 
variables (without repetition). 

(2) For each constraint select t = pdk incompatible tuples 
of values (without repetition). i.e., each constraint relation 
contains exactly (1-p)dk compatible tuples of values. 

Phase transitions of #CSP(�dn/t)
Let Pr be the probabilistic distribution and 

let ,r p
, ,n kX � denote the number of solutions of the instance 

generated following Model RB. The following theorems 
can be proved: 
Theorem 1 If pcr=1-

1(1 )
r te
�

� � ,where 1/ k� � , r>0 are two 
constraints, k, � and r satisfy the inequality / 1rk e ��� � ,
then
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Theorem 1 uses constraint tightness as the parameter, 
when using constraint density as the parameter, we get a 
similar result. 
Theorem 2 If rcr= (1 1/ )

ln(1 )
t

p
� �

�
�

, 1
k

� � and 0<p<1 are two 
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constraints satisfy ,then 1/(1 )k p� �
, , /
,lim Pr[ ] 1n k n t

n r pX d�
�	 � 
  when r<rcr   

 when r>rcr   
, , /
,lim Pr[ ] 0n k n t

n r pX d�
�	 � 


For the page limits, we omit the proof procedures of the 
theorems here. Note that when t goes to infinity,  the 
problem of #CSP(�dn/t) reduces to the problem of deciding 
satisfiability of CSP, and then the theorems proposed in 
this paper reduce to theorem 1 and theorem 2 in (Xu and Li 
2000) as well. So the theorems proposed in this paper can 
be viewed as a generalization of those proposed in (Xu and 
Li 2000). Moreover, the above two theorems hold when 
n�	, but preliminary experiments have shown that exact 
phase transition do occur even if n is small.  

On Estimating Solutions Number of CSPs 
In this section we introduce how to evaluate solution 

numbers of CSPs in Model RB. According to theorem 1, 
when p>1-e-�/r, the number of solutions approaches 0. So 
we only need to consider conditions when p<1-e-�/r.
According to the definition 1, it is easy to prove that the 
expected number of solutions E( , ,

,
n k
r pX � ) of the instance can 

be calculated as: 
   E( , ,

,
n k
r pX � )= = n .ln(1 )n rn nd p� ln(1 )n rn np� �

Then the following theorem shows that E( , ,
,

n k
r pX � ) can 

provide good lower and upper bounds for Model RB.
Theorem 3 Given a CSP instance I randomly generated 
following Model RB and k, � and r satisfy the inequality 
ke-�/r�1 and �>1/k. Let , ,

,
n k
r pX �  be the number of solutions 

for I, E( , ,
,

n k
r pX � ) denote the expected number of solution for 

I � be an arbitrary real number, and Pr denote the function 
for probability distribution. As the number of variable goes 
to infinity, if p<1-e-�/r then 

, , , , , ,
, , ,( ((1- )E( ) (1 )E( ))) 1n k n k n k
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Table 1 Accuracy of AE-count (for each point 300 instances are 
generated)

From above discussion, we can easily develop an 
approximate algorithm for #CSP in linear time, as we 
called AE-count. The only point where AE-count cannot 
work is when p = pcr. It should be pointed out that the short 
coming of AE-count is that it is only capable of estimating 
random instances generated following Model RB, and can 
only return the estimate numbers of solutions rather 

enumerating the solutions. However, since we can generate 
large-scale CSP instances or SAT instances following 
Model RB, and simultaneously obtain an upper bound and 
lower bound of their number of solutions, we can use 
Model RB to generate benchmarks for counting algorithms. 
As can be seen in Table 1, even if the problems scales are 
relatively small, the estimates are found to be over 69% 
correct for �=0.9, and the accuracy of the estimates grows 
with the increasing of problem scales. Note that we only 
make experiments on “SAT” region (former experiments in 
(Xu and Li 2000) have shown that no solutions exist in 
UNSAT region). So the real accuracy should be higher. 

Conclusion
In this paper, we first present a probabilistic analysis of the 
problem #CSP. We show that for random instances 
generated following Model RB, exact phase transitions do 
exist for a decision version of #CSP, i.e. #CSP(�dn/t). Then, 
preliminary experimental results have confirmed the phase 
transition and threshold predicted by theory. Second, we 
present an accurate estimate of the number of solutions of 
random CSP instances generated following Model RB.  
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