
Solving 4x5 Dots-And-Boxes

Joseph K. Barker and Richard E Korf
{jbarker,korf}@cs.ucla.edu Tel: (541) 805-2292

Department of Computer Science
University of California, Los Angeles

4732 Boelter Hall
Los Angeles, CA 90095

Full-Length Paper: http://cs.ucla.edu/˜jbarker/AAAI˙2011.pdf

Abstract

Dots-And-Boxes is a well-known and widely-played combi-
natorial game. While the rules of play are very simple, the
state space for even small games is extremely large, and find-
ing the outcome under optimal play is correspondingly hard.
In this paper we introduce a Dots-And-Boxes solver which
is significantly faster than the current state-of-the-art: over
an order-of-magnitude faster on several large problems. We
describe our approach, which uses Alpha-Beta search and
applies a number of techniques—both problem-specific and
general—to reduce the number of duplicate states explored
and reduce the search space to a manageable size. Using these
techniques, we have determined for the first time that Dots-
And-Boxes on a board of 4x5 boxes is a tie given optimal
play. This is the largest game solved to date.

Introduction

Dots-And-Boxes is a combinatorial game popular among
children and adults around the world. A rectangular grid of
dots is drawn on a piece of paper and each player takes turns
drawing lines between pairs of horizontally- or vertically-
adjacent dots, forming boxes. The size of a game is defined
in terms of boxes, so a 3x3 game has nine boxes. A player
captures a box by completing its fourth line and initialing it,
and must then draw another line. The player who has cap-
tured the most boxes when all edges have been filled wins.
A player is not required to complete a box if they are able to
do so. Figure 1 shows an example game in progress.

We introduce an algorithm to solve Dots-And-Boxes: it
determines the outcome given optimal play—that is, if play-
ers always make an optimal response to their opponent’s
move. We solve the winner’s margin of victory (how many
more boxes they can capture than their opponent given per-
fect play), rather than a simple win/loss (or draw) value.

Techniques

The previous state-of-the-art solver (Wilson 2010) uses ret-
rograde analysis (Ströhlein 1970; Thompson 1986) to find
the value of every board configuration (the number of re-
maining boxes capturable through optimal play) by working
backwards from the final game state, in which all edges are

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A 4x4 game of Dots-And-Boxes in progress. A has
captured two boxes to B’s one and has the lead.

filled in. The value for a state with n edges is determined
by looking at its possible successors (with n+ 1 edges) and
picking the best. Once the initial state (in which no edges are
filled) is evaluated, the overall value of the game is known.

As the solver is working backwards, it cannot know a pri-
ori if a given state is part of an optimal strategy and thus
must evaluate every unique state in the problem space. An
mxn game has p = m ∗ (n + 1) + (m + 1) ∗ n edges and
thus 2p unique states (as any configuration of filled-in edges
constitutes a legal state). This is better than the p! states en-
countered in a naı̈ve, depth-first exploration of the search
space, but does not scale to larger problems.

As such, we use Alpha-Beta search (Knuth and Moore
1975) as our algorithm’s basis. Alpha-Beta does a depth-first
search, using local bounds to avoid provably-irrelevant parts
of the search space. This allows it to avoid exploring all 2p
unique states; however, as a depth-first algorithm it cannot
easily detect if a newly-generated state has been previously
seen and may do redundant work to determine the duplicate
state’s value. A complete Alpha-Beta search of the problem
space lets us determine the overall value of the game.

Transposition Tables

Transposition tables are a standard technique for reducing
duplicate work in Alpha-Beta search; they cache explored
states, associating with each its minimax value. If a newly-
generated state has been previously explored, its stored value
is looked up and returned, avoiding the duplicate work nec-
essary to determine its value a subsequent time.

There are interesting implications of implementing trans-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1756



Figure 2: A half-open chain (left) and a closed chain (right)
of length six. The dotted lines show the moves that leave
hard-hearted handouts (shown as gray boxes) in both cases.

position tables in Dots-And-Boxes worth mentioning. For
example, stored entries match the state being explored even
if they do not share the same player to move or current score.
An individual transposition-table entry in Dots-And-Boxes
thus matches many more states than in other domains.

In addition, a table entry may store a bound on the mini-
max value, not the exact value itself. Most transposition ta-
bles store a single value with each entry along with a flag
indicating if the value is exact or an upper or lower bound.
In Dots-And-Boxes, we find it effective to instead store both
an upper and lower bound with each entry; this is not worth
the extra space in most domains (Schaeffer 2011).

Symmetries

Symmetric states in Dots-And-Boxes have identical mini-
max values with symmetric optimal strategies. All boards
have horizontal and vertical symmetry, reducing the state
space by a factor of four; diagonal symmetries reduce the
state space of square boards by an additional factor of two.
All games have an additional, less obvious symmetry: the
two edges that form a corner are equivalent. Filling in ei-
ther edge of such a pair results in an equivalent state; thus,
we need consider only one such move on states where
both corner edges are unfilled. A full proof can be found
in (Berlekamp 2000).

Chains

A sequence of one or more capturable boxes is called a
chain. If only one end of a chain is initially capturable (i.e.,
is a box with three edges filled in), it is half-open. If both
ends are initially capturable, it is a closed chain. Most avail-
able moves on a state with chains can be provably discarded
as non-optimal, significantly reducing the search space.

In a game state with a half-open chain, there are only two
sequences of moves that can possibly be part of an optimal
strategy: capture every available box (and then make an ad-
ditional move), or capture all but two boxes and then fill in
the end of the chain—leaving two capturable boxes for the
opponent. The remaining configuration of two boxes cap-
turable with a single line is called a hard-hearted handout.

The possibly-optimal moves in states with a closed chain
are similar: capture every available box (and then make an
additional move), or capture all but four boxes and fill in
the edge that separates them into two hard-hearted handouts.
Figure 2 shows an example of chains and how they can be
filled in to leave hard-hearted handouts.

These rules significantly reduce the number of moves to
consider in states with capturable boxes and consequently
reduce the overall size of the search space. They are widely
known, but are most thoroughly treated (with a proof sketch
of their validity) in (Berlekamp 2000). Chain analysis can-
not, however, be used in a retrograde-analysis approach such
as that of Wilson’s solver; this is a significant advantage of
our Alpha-Beta approach.

Move Ordering

A move-ordering heuristic decides the order in which chil-
dren of a state are explored, and has a strong effect on
the performance of Alpha-Beta search. In general, a good
heuristic explores the most valuable children of a state first.

All possible capturing moves occur in chains and are dealt
with by the rules of the previous section; thus, our heuristic
only considers non-capturing moves. Of those, it considers
moves that fill in the third edge of a box last, as they leave
a capturable box for the opponent. The remaining moves
are explored by considering edges in an order radiating out-
wards from the center of the board. We have found empiri-
cally that considering center moves first is significantly more
effective than a simple left-right, top-down move ordering.

Results
Combining these techniques results in a solver over an
order-of-magnitude faster than the previous state-of-the-art
on a number of hard benchmark problems, including the
4x4 problem (the largest problem previously solved). We
find that doing chain analysis is the most consistently use-
ful improvement: removing it increases the runtime of our
solver by over an order-of-magnitude. Our transposition-
table and symmetry techniques provide a smaller but con-
sistent speedup, each reducing runtime by a factor of two to
four. Our move-ordering heuristic is helpful but inconsistent,
providing up to a factor of 17 speedup on empty boards but
only small speedups on games with existing edges.

In addition to these experiments, we have solved the 4x5
game for the first time: it is a tie given optimal play. Our
solver took nine days to complete on a 3.33 GHz Intel Xeon
CPU with a 24GB transposition table. We conservatively es-
timate that Wilson’s solver would require 130 days to solve
the 4x5 game (as well as 8 terabytes of disk space).

Acknowledgments
This work was supported by NSF Grant IIS-0713178.

References
Berlekamp, E. 2000. The Dots-and-Boxes Game. A K Peters.
Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-beta
pruning. Artificial Intelligence 6(4):293 – 326.
Schaeffer, J. 2011. Personal communication.
Ströhlein, T. 1970. Untersuchungen ber kombinatorische Spiele.
Ph.D. Dissertation, Technischen Hochschule München.
Thompson, K. 1986. Retrograde analysis of certain endgames.
ICCA Journal.
Wilson, D. 2010. Dots-and-boxes analysis index. http://
homepages.cae.wisc.edu/˜dwilson/boxes/.

1757


