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Introduction
In the study of social network evolution, one of the central
tasks is link prediction to infer new links between nodes.
Link prediction has many applications, including recom-
mending new items in online networks (e.g., products in
eBay and Amazon, and friends in Facebook), monitoring
and preventing criminal activities in a criminal network, pre-
dicting the next webpage users will visit, and complement-
ing missing links in automatic web data crawlers.

Link prediction problems are often converted to super-
vised learning tasks. Node pairs without links in a snapshot
of a social network at time t are sampled as training sam-
ples. If a node pair forms a new link in the snapshot at the
next time step, then it is a positive sample. Otherwise, it is a
non-positive sample. The features of a sample are calculated
on the snapshot where the node pair is sampled. In general,
the features include topological features such as degree and
distance (Liben-Nowell and Kleinberg 2007). Classifiers (or
rankers) are learned from the training samples.

Evolution of node behavior is observed in many social
networks and has been shown to be useful in modeling so-
cial networks (Qiu et al. 2010). For example, in a scientific
collaboration network, a student researcher tends to work
with senior researchers; as she establishes a career, her col-
laboration preference becomes more diverse. This suggests
the behavior of nodes may have phase change and temporal
trends. Intuitively, taking behavior evolution of nodes into
consideration may improve link prediction. However, little
work has been done, probably due to the difficulty in de-
scribing and characterizing node behavior and its evolution.

In this paper, we use time series to describe node behav-
ior, calculate temporal features from the time series to char-
acterize behavior evolution, and use the temporal features to
improve link prediction.

Methodology
In traditional link prediction approaches, the features of a
sample (a node pair) are calculated in the snapshot where
the node pair is sampled. In our approach, to detect poten-
tial evolution, we instead calculate features of a sample on
all previous snapshots. Therefore, each sample is a vector
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in traditional approaches, and each element is a numerical
value (only consider numerical features), while in our ap-
proach, each sample is still a vector, but each element is a
time series.

Classifying vectors of time series is a hard problem. We
decided to extract temporal features from time series. On one
hand, temporal features characterize the evolution and tem-
poral trends. On the other hand, samples (vectors of time
series) are converted into traditional samples (vector of tem-
poral features), and existing learning methods can be used.

We consider the following four types of temporal features
to characterize time series.

Simple Statistics. This type of feature includes simple
first-order temporal features such as recency (Potgieter et
al. 2007) and activeness (Huang and Lin 2009). recency
measures the length of time elapsed since a node made its
last connection. A large recency indicates that a node has
been inactive for a long time, and likely to be inactive in fu-
ture. activeness measures the number of connections made
by a node in the latest time step. A large activeness indi-
cates that a node is very active in the last time step and is
likely to be active in the future.

Local Pattern. This type of feature calculates whether a
time series has a particular local pattern, e.g., a time se-
ries first decreases for 5 time steps and then increases for
5 steps, and thus has a V -shape. These features are useful
to detect phase changes of node behavior. To calculate this
type of feature, we extend the approach proposed by Kadous
(Kadous 1999).

Predicition. This type of feature captures global trends.
The global trend of a time series is usually complex and
cannot be simply portrayed by a single pattern. We use the
1-step ahead prediction of a time series to partially describe
the global trend. The intuition is: if two (normalized) time
series have the same global temporal trend, they have the
same 1-step ahead prediction value.

Interplay. The problem of link prediction is to predict link
formation between two nodes. We thus especially define In-
terplay, which computes the joint likelihood of two nodes
to be connected in the future based on to which degree the
two nodes match each other’s preference. Suppose we focus
on their preference on degree, and A and B are two nodes.
In the last three time steps, the average degrees of nodes
connected by A at each time step were 10, 20, 30, then we

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1810



0.2 0.34 0.5 0.67 0.8
0.75

0.8

0.85

0.9

0.95

1

Percentage of Positive Samples

A
U

C

EvPred
RF−Recency
RF−Active
RF

0.2 0.34 0.5 0.67 0.8
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Percentage of Positive Samples

A
U

C

EvPred
RF−Recency
RF−Active
RF

0.2 0.34 0.5 0.67 0.8
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Percentage of Positive Samples

A
U

C

EvPred
RF−Recency
RF−Active
RF

Figure 1: Performance(AUC) of different models on different data: NanoSCI (Left), Phone (Middle), Facebook (Right)

may predict the degree of nodes that A will connect to in the
coming time step is a distribution (NA) with mean around
40. If we predict that the degree of B (DB) to be around
40, then B has a high likelihood to be chosen by A as a
new neighbor. We therefore define the joint likelihood focus-
ing on degree as Ldegree(A,B) = f(DB ;NA)f(DA;NB),
where f(x; dist) indicates the probability density of x in
distibution dist, NB is defined as the predicted distribution
of the degree of B’s new neighbors, and DA is the predicted
degree of A in the coming time step.

After the features are calculated for samples, we train
learners for link prediction.

Evaluation
We tested three real social networks. NanoSCI is a scientific
collaboration network in the nanotechnology research com-
munity from 1980 to 2006 (292,323 nodes, each year is a
time period). Phone is a cell phone communication network
in a European country from 09/2007 to 03/2008 (24,986
nodes, each week is a time period). Facebook is the wall-
to-wall post relationship on Facebook.com from 09/2006 to
01/2009 (66,842 nodes, each month is a time period).

For each network, we extract training samples from the
first two thirds snapshots, and testing samples from the rest
of the snapshots. Note that social networks are sparse such
that positive links only occupy a small portion of all pair of
nodes. To make the training and testing data balanced, ran-
domly sampling of negative samples is used in literature so
that the number of negative samples is comparative to that of
positive samples. This kind of random sampling is contro-
versial. First, the training and testing data are not represen-
tative for the underlying social networks. Second, the testing
accuracy is higher than expected. For example, the distances
in negative samples (node pairs) are usually significantly
larger than the distances in positive samples. In our experi-
ments, we found that setting a threshold on distance achieve
accuracies around 70-80% on the three datasets. However, in
this paper, we still use randomly sampling for negative sam-
ples because our focus is the comparison of our approach
and existing approaches.

We consider three baselines. RF is an evolution-agnostic
random forest-based approach proposed by Lichtenwalter
et al. (Lichtenwalter, Lussier, and Chawla 2010). It only
includes the static topological features. RF-Recency is an
modified version of the approach proposed by Potgieter
et al. (Potgieter et al. 2007). It uses recency as well as the
static topological features. RF-Active uses activeness as

well as the static topological features. Both RF-Recency and
RF-Active are also random forest-based models. Our model,
Ev-Pred, is also random forest-based and include all tempo-
ral features and static topological features.

Figure 1 shows results measured in AUC on three datasets
(The AUC is high for all models particially because of ran-
domly sampling of negative samples, and AUC of RF agrees
with that reported in Lichtenwalter’s paper). For each of
them, we control the percentage of positive sample in both
training and testing as 1/5, 1/3, 1/2, 2/3 and 4/5 respectively.
The results suggest that our approach consistently and sig-
nificantly outperforms the others on all datasets at all ratio of
positive samples. It suggests that temporal features describ-
ing the evolution of node behavior are extremely useful to
the problem of new link prediction.

Conclusion
We calculated temporal features to characterize the evolu-
tion of node behavior, and our experimental results suggest
that including these temporal features significantly improve
link prediction performance.
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