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Abstract

This paper presents a generative model of eye-hand
coordination. We use numerical optimization to solve
for the joint behavior of an eye and two hands, de-
riving a predicted motion pattern from first princi-
ples, without imposing heuristics. We model the planar
scene as a POMDP with 17 continuous state dimen-
sions. Belief-space optimization is facilitated by using
a nominal-belief heuristic, whereby we assume (during
planning) that the maximum likelihood observation is
always obtained. Since a globally-optimal solution for
such a high-dimensional domain is computationally in-
tractable, we employ local optimization in the belief do-
main. By solving for a locally-optimal plan through be-
lief space, we generate a motion pattern of mutual coor-
dination between hands and eye: the eye’s saccades dis-
ambiguate the scene in a task-relevant manner, and the
hands’ motions anticipate the eye’s saccades. Finally,
the model is validated through a behavioral experiment,
in which human subjects perform the same eye-hand co-
ordination task. We show how simulation is congruent
with the experimental results.

1 Introduction
Eye-hand coordination is an integral part of many human
activities, and has been the subject of scientific inquiry for
more than a century. This domain poses an interesting chal-
lenge of motor intelligence: the uncertainty inherent to the
world’s state requires active disambiguation; with foveal vi-
sion being a limited resource, effective behavior requires
task-dependent allocation of information-gathering activity
(gaze shift) and goal-directed behavior (hand reaching).

When trying to predict the eye’s motion, a common null
hypothesis is to assume the gaze is directed to visually-
salient features of the scene (Koch and Ullman 1985). How-
ever, here we consider tasks whose goal is the motion of the
hand, with the eye playing a supportive role. In this case, the
assumption that only image heuristics (such as saliency) ac-
count for the eye’s movement seems unlikely. The top-down
effects of the motor task on visual behavior are an active
area of study (Peters and Itti 2008; Rothkopf, Ballard, and
Hayhoe 2007). Here we step away from neuroscientific in-
vestigation of visual processing, and abstract the eye’s effect
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as a localized reduction in observation noise (section 3.2).
This allows us to take a broader perspective on tasks which
require coordination of information-seeking behaviors.

Todorov and Jordan (2002) propose the paradigm of op-
timal control as a framework for the study of motor coordi-
nation, and normative models (Körding 2007) harness sim-
ulation and numerical optimization for the study of neural
mechanisms. Algorithms of optimal control often rely on
the principle of certainty equivalence (Stengel 1994), which
posits a separation between estimation and control: given
an estimate of the current state of the world, the best ac-
tion can be identified by considering a deterministic, fully-
observable system in the same state. This separation allows
for efficient computation, because optimal control can fo-
cus only on the deterministic system, and estimation can be
safely ignored during motion planning. However, this sep-
aration does not hold in tasks which involve information-
seeking behaviors.

In order to capture the coupling between perception and
action inherent to eye-hand coordination, we model this do-
main as a continuous-state partially-observable Markov de-
cision processes (POMDP), a framework designed to tackle
domains with state uncertainty. This allows us to consider
goal-directed actions and task-relevant information-pickup
in a single optimization problem. The continuous POMDP
model is described in section 3. High-dimensional, contin-
uous POMDPs are notoriously hard to solve; here we use a
deterministic belief update heuristic, described in section 2.

The domain of eye-hand coordination exhibits a large de-
gree of task-specific behavioral diversity (Carpenter 1977)
— some circumstances elicit the use of saccades, while oth-
ers elicit smooth pursuit. This is a modeling challenge, be-
cause we must allow for the emergence of a variety of possi-
ble solutions, depending on the specific instantiation of task
parameters. Our POMDP model meets this requirement, as
different parameter settings generate different motion pat-
terns. In section 4 we discuss the role of the various param-
eters in shaping the resulting behavior.

Our model finds an optimal motion pattern of the hands
and the eye, allowing for the emergence of coordination
from first principles, without imposing heuristics. In order
to test the model, we present a behavioral experiment in
which human subjects perform the same eye-hand coordi-
nation task. The experiment and results are described in sec-
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tion 5; we find that simulation and experimental results are
mostly congruent, demonstrating the validity of the model.

2 Solving high-dimensional, continuous

POMDPs

In POMDP terminology, the agent is said to occupy a be-
lief state, which is a distribution over all possible states,
representing the agent’s ambiguous sense of the world.
For the most part, the POMDP literature focuses on find-
ing globally-optimal solutions for discrete domains. Pre-
vious studies of continuous POMDPs (Porta et al. 2006;
Brooks 2009) focus on finding a globally-optimal solution
for domains with only one or two dimensions. Several re-
cent studies (Prentice and Roy 2009; Erez and Smart 2010;
Miller, Harris, and Chong 2009) propose an alternative
approach to continuous POMDP optimization — finding
the optimal behavior by planning deterministic trajectories
through belief-space. In this paper, we use the Nominal-
Belief heuristic (Miller, Harris, and Chong 2009), replac-
ing the stochastic observation with its maximum-likelihood
counterpart (Erez and Smart 2010) during planning. The
resulting belief dynamics are deterministic, and therefore
amenable to efficient optimization algorithms. However,
since planning takes place in the belief domain, the op-
timization still accounts for the state’s ambiguity (as this
information is represented by the various belief states).
Therefore, the resulting behavior strikes a balance between
information-seeking and goal-directed action, despite the
marginalization of the stochastic processes.

2.1 Definitions

Formally speaking, we consider a discrete-time POMDP de-
fined by a tuple 〈S,A,Z, T,Ω, R,N〉, where: S,A and Z
are the state space, action space and observation space, re-
spectively; T (s′, s, a) = Pr(s′|s, a) is a transition function
describing the probability of the next state given the current
state and action; Ω(z, s, a) = Pr(z|s, a) is the observation
function, describing the probability of an observation given
the current state and action; and R(s, a) is a reward function,
and a terminal reward RN (s). In this paper we consider an
undiscounted optimality criterion, where the agent’s goal is
to maximize the expected cumulative reward within a fixed
time horizon of N time steps.

The belief state b ∈ B is a probability distribution over
S, where bi(s) is the likelihood of the true state being s at
time i. Ignoring the effect of feedback control, the reward
associated with a belief is simply the expected value over
this state distribution:

Ri(b, a) = E
s∼b

[
Ri(s, a)

]
. (1)

Given the current belief b, an action a and observa-
tion z, the updated belief b′ can be calculated by applying
Bayes’s rule. However, in the continuous case B is infinite-
dimensional, and therefore the belief update must be approx-
imated by some estimation filter.

2.2 The deterministic belief update heuristic

We study continuous stochastic dynamics of the form
ds = f(s, a)dt+ q(s, a)dζ, where ζ represents continuous-
time Brownian motion. For a given state s and action a, in-
tegrating this continuous dynamics over a small time-step
τ results in a normal distribution over the next state s′:
T (s′, s, a) = N (s′|F (s, a), Q(s, a)), where the mean is
propagated with the Euler integration

F (s, a) = s+ τf(s, a), (2)

and the covariance Q = τqTq is a time-scaling of the con-
tinuous stochastic process qdζ.

Similarly, we focus on observation distributions of the
form Ω(z, s, a) = N (z|w(s),W (s, a)), where w is a de-
terministic observation function, and W describes how the
current state and action affect the observation noise.

Given a Gaussian prior on the initial state, we ap-
proximate the infinite-dimensional b by a single Gaus-
sian: b̂(s) = N (s|ŝ,Σ), where the covariance Σ belongs
to the space of symmetric, positive-semidefinite matrices
M⊂ R

n×n. Therefore, the belief space B̂ is parameterized
in this case by the product space ν ∈ S ×M. In the limit
of τ → 0, and given a Gaussian prior, this approximation is
accurate.1

In order to approximate the belief update, we use the Ex-
tended Kalman Filter (EKF) (Stengel 1994). Given the cur-
rent belief b̂, action a and observation z, we calculate the
partial derivatives of the dynamics and the observation func-
tions around ŝ: ws = ∂w/∂s and Fs = ∂F/∂s. We find the
uncorrected estimation uncertainty H = FsΣF

T
s + Q(ŝ, a)

and calculate the new mean ŝ′ by the innovation process:

ŝ′ = F (ŝ, a)−K(z − w(ŝ)), (3)

where K = Hws(w
T
sHws + W (ŝ, a))−1 is the Kalman

gain. Finally, the new covariance Σ′ is given by:

Ψ(ŝ,Σ, a) = H−Hws(w
T
sHws+W (ŝ, a))−1wT

sH
T. (4)

The deterministic belief update is obtained by taking the
expectation of equations (3) and (4) with respect to the ob-
servation variable z. Since equation (3) is linear in z, the
expectation operator replaces z with its mean w(ŝ), caus-
ing the second term of equation (3) to vanish. Therefore, the
maximum-likelihood estimate of the next belief’s mean is
reduced to the deterministic dynamics (2). By virtue of the
EKF being a first-order filter, the calculation in (4) is inde-
pendent of z, and so the next belief’s covariance is the same,
regardless of the value of z. In summary, the maximum-
likelihood estimate for the next belief is formed by by com-
bining (2) and (4): b̂′(s) = N (

s|F (ŝ, a),Ψ(ŝ,Σ, a)
)
.

2.3 Planning in the belief domain

The belief update heuristic of the previous section (to-
gether with equation 1) define a problem of determinis-
tic optimal control in a high-dimensional continuous space,

1Note that this single-Gaussian approximation fails when the
domain includes discontinuities and unilateral constraints (e.g.,
joint limit constraints, or confining walls); in such cases, a different
formulation of the belief is needed (Erez and Smart 2010).
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with non-linear dynamics and non-quadratic reward. To
find a locally-optimal solution, we may use trajectory opti-
mization; here we use Differential Dynamic Programming
(DDP), a second-order algorithm that has been success-
fully applied to high-dimensional, non-linear control do-
mains (Abbeel and Ng 2005; Tassa, Erez, and Smart 2008).

3 A POMDP model of eye-hand coordination

We model the position of the gaze target in the frontal plane,
as well as the position of the hands’ end-effectors in that
plane. In addition, the model’s state includes the (a priori
unknown) planar positions of a target and four obstacles.
The agent’s task is to guide both hands to the target while
passing between a pair of obstacles, using the eye’s gaze to
locally disambiguate portions of the scene (figure ??). By
solving for an optimal motion plan, we generate a coordi-
nated movement of hands and eye through the scene. The
model and the resulting motion are best illustrated by a short
movie, available at youtube.com/?v=PxvLIaoLn2o;
see also figure 1.

3.1 State, action, and transition function

The system’s state is the concatenation of the planar posi-
tions of the agent’s state and the environment’s state. The
agent has kinematic control of gaze fixation point (se ∈ R

2)
and two hands (sh1 , sh2 ∈ R

2); the agent’s state also in-
cludes a scalar time-lag variable (sk), which measures the
time from the last saccade (section 3.2). The environment’s
state specifies the positions of the target (sT ) and obstacles
(sbi , i = 1 . . . 4). This leads to a 17-dimensional state space.

The state update is subject to process noise whose mag-
nitude is constant in time but varies between the elements
of the scene. For example, the state update equation for the
target position is:

s′T = sT + σcξ,

with ξ being a two-element vector of zero-mean normally-
distributed random variables with unit variance (same equa-
tion holds for sbi , the state dimensions describing the posi-
tions of the obstacles). The parameter σc scales the process
noise for the target and obstacles (see discussion in section
4.2).

The agent controls six continuous action variables, spec-
ifying the displacement of the hands and eye at every time
step. For example, the state update equation for the hand’s
position is:

s′h1
= sh1 + ah1 + σhξ,

where σh is a model parameter that sets the magnitude of the
process noise affecting the hand; the same equation holds for
sh2

and se, and their corresponding controls. We eliminate
any uncertainty in the eye’s position by not subjecting it to
process noise (σe = 0).

It is known that the brain’s processing of visual informa-
tion is impaired (even if not completely inhibited) during a
saccade. Furthermore, it has been shown (Thorpe, Fize, and
Marlot 1996) that even after the eye’s gaze settles on the new
target, it takes some time before visual information is avail-
able for some tasks. We model this effect with an auxiliary

state variable sk, which measures the time elapsed from the
last saccade. This variable integrates linearly when the eye’s
velocity is zero, and becomes very low otherwise:

s′k = τ +
sk

1 + α‖ae‖ , (5)

where τ is the time-step length, and α is some large coeffi-
cient (we use α = 1000). Like the eye’s position, this aux-
iliary variable is also not subject to any process noise, and
therefore needs no estimation.

3.2 Observation

In a POMDP, the agent receives stochastic observations,
through which it infers the true state of the system. Here,
the agent may observe the state of all the scene’s elements,
and the observation of every element’s position is randomly
drawn from a normal distribution centered at the true under-
lying value; the agent has accurate observation of the eye’s
position, as well as the time since the last saccade.

The covariance of the observation of each scene ele-
ment depends on its position relative to the eye’s gaze. Let
d∗ = ‖s∗−se‖ be the Euclidean (planar) distance between a
scene element and the eye’s gaze point (∗ standing for either
a hand, a target or an obstacle), and let g(d) be a function
that scales the width of this element’s observation distribu-
tion; this function models foveated vision, so it is low around
d = 0, and high farther away. We chose to model g as a sig-
moid: given a width parameter η and a slope parameter l, we
look at the scaled distance:

d̃(s∗, se) = (‖s∗ − se‖ − η)/ld, (6)

and compute:

g(d̃) = σo

(
0.5 +

d̃

2
√
d̃2 + 1

)
, (7)

with σo being the maximal observation covariance due to
peripheral vision (see discussion in section 4). The width
of the human fovea is about 2 degrees; in our experimental
setup, this translates to 7% of the scene’s width, and so we
set η = 0.035, and ld = 0.005.

Modeling post-saccadic perceptual delay. In order to
model the time delay due to processing of visual informa-
tion, we added a term to the observation’s covariance that
is sigmoidal in the elapsed time since the last saccade. We
scale the elapsed time sk: t̃ = (μ− sk)/lk, and compute

k(sk) = α
(
0.5 +

t̃

2
√
t̃2 + 1

)
. (8)

We set μ = 150ms and lk = 30ms following Thorpe, Fize,
and Marlot (1996), and α is some large coefficient (we use
α = 1000). Therefore, the observation’s covariance remains
high for the first 120 ms after a saccade; at 150 ms this term
drops, allowing the elements within the fovea to be observed
accurately. Put together, the distribution of the observation
for any scene element ∗ (target or obstacles) is:

ω(o∗|s∗, se, sk) = N
(
s∗, I2 · (k(sk) + g

(
d̃(s∗, se)

)
(9)
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Proprioception. Proprioception is an independent chan-
nel of observation for the hands’ positions. We model this
by bounding from above the covariance of the hands’ ob-
servation (as given by equation (9)) by a fixed value σp, the
observation noise of proprioceptive observations. Therefore,
the distribution of observations for the hands is:

ω(o∗|s∗, se, sk) = N
(
s∗, I2·max(σp, k(sk)+g

(
d̃(s∗, se)

))

(10)

3.3 The reward function

The reward function has two parts: running reward and ter-
minal reward. The terminal reward is a penalty (cost) that
is quadratic in the distance of the hands from the target:
RN (s) = cT

(||sh1
− sT ||2 + ||sh2

− sT ||2
)
. The running

reward has two cost terms:

R(s, a) = −cb
2∑

i=1

4∑
j=1

δ(shi
, sbj )− aTMa (11)

where δ is the delta function penalizing collision between
hand and obstacle, and the quadratic action cost is given by
the second term, with M being a diagonal matrix assigning
weight 1 to the hands’ displacement, and 0.01 to the eye’s
displacement.

The only non-quadratic term is the obstacle cost. In a de-
terministic system, the use of a delta-function would yield
unrealistic motion, as the hand might pass at epsilon distance
from the obstacle. However, since we plan in belief space,
we use the belief cost function (1). The obstacle-related be-
lief cost is the expectation of this delta-function under the
normal distribution describing the joint uncertainty in the
positions of the hand and the obstacle. Therefore, the belief-
cost due to the obstacles is a Gaussian, which can be com-
puted in closed form.

3.4 Shaping

The cost function does not explicitly reward (or penalize)
for passing between a pair of obstacles. In order to ensure
that the eventual solution fulfils this requirement, we initial-
ize the optimization with a rudimentary trajectory for both
hands that passes between the obstacles (without even reach-
ing the target). As the local optimization (section 2.3) pro-
ceeds, this property is maintained, since any local variation
of the trajectory requires the hands to pass closer to an ob-
stacle, and so this modification in trajectory space is always
locally-disadvantageous.

Also, note the parameter η which controls the width of
the fovea in (6). When the fovea is wide, the eye does not
saccade, and instead makes small movements in the gen-
eral direction of the gaze’s target (since there is no need to
focus the gaze’s center on the relevant gaze target). How-
ever, when the fovea is narrow, there is no gradient infor-
mation to enable the local search (if some scene element is
far in the fovea’s periphery, a small variation of the eye’s
position will not improve the observation), which can make
local optimization fail. Therefore, we used η as a contin-
uation parameter to shape the model’s solution: first, the
behavior was optimized for a wide fovea, which provided

a rough approximation of the right movement. We then
shrunk the fovea, and solved again, using the previous solu-
tion as an initial guess. Passing through five such iterations
(η = 1, 0.5, 0.2, 0.09, 0.035), we recover effective behavior
with a narrow fovea.

4 Exploring the model’s behavioral diversity

As mentioned in section 1, the domain of eye-hand coor-
dination exhibits a diverse array of behaviors, and a candi-
date model should allow for an equally-diverse array of solu-
tions. Our model employs three categories of parameters: the
coefficients of the cost function, the coefficients describing
the process noise, and parameters that determine the state-
dependent observation noise. In this section, we discuss the
model’s parameters, and the behavioral diversity they en-
able.

4.1 The cost function parameters

Our simulations suggest that the cost parameters are sim-
ple to choose, as the wrong value often leads to absurd be-
havior: for example, if the target cost parameter cT is not
big enough compared to the hands’ action cost, the hands
do not reach the target; increasing the target cost fixes the
problem, and increasing it even more makes no difference
(because the residual is already zero). The obstacle cost pa-
rameter cb leads to interesting behavioral diversity — when
it is very big (relative to the hand action cost), the hands in-
crease their velocity as they pass between the obstacles, and
if it is very small, the hands choose a shorter path that gets
dangerously close to the obstacle. Such behaviors are con-
ceivable in certain scenarios, but the human subjects in our
experiment (section 5) exhibited neither.

4.2 Process noise

While the observation noise is state-dependent, the process
noise in equation (2) is constant. Two values need to be de-
termined — σh, the process noise associated with the hands,
and σc, the process noise associated with the static elements
of the scene (target and obstacles). When the hands are not
subject to process noise (σh = 0), the eye only looks at the
obstacles, and when the static scene elements are not subject
to noise (σc = 0), the eye’s gaze shifts preemptively (before
the hand reaches the obstacles), as one glance is enough to
perfectly and permanently disambiguate their position.

In contrast, when the hands are subject to a significant
process noise, the eye performs smooth pursuit, following
each hand along its path as it approaches the obstacles. This
allows the agent to be certain of the hand’s position at the
mission-critical moment, when it is near the obstacles. Sim-
ilarly, applying some process noise to the static scene ele-
ments causes the eye’s gaze to remain fixed on the obstacles
until the hand passed through the obstacle pair, so as to en-
sure that no uncertainty accumulates before the hand reaches
the obstacle.

Another two parameters of behavioral relevance are σp

(the maximal observation covariance of the hands’ posi-
tions) and σo (the maximal observation covariance of the
static scene elements), appearing in equations (9) and (10).
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Figure 1: First row: Gaze fixations (green dots) and left/right
hand trajectories (blue/red line) of subject S5 for a single
trial, plotted in a two-dimensional plane. The obstacles and
target are depicted by black squares and a star, respectively.
Subsequent panels show a snapshot of the subject’s behavior
at the onset of a new fixation. Second row: POMDP model
prediction.

When the first is small, no smooth pursuit will emerge, as
the agent has a reliable source of information of the hands’
positions. When the second is small, saccades will be inhib-
ited, as peripheral vision provides observations that are good
enough.

5 Comparing the model’s solution to human

subjects’ behavior

In order to conflate simulation results with human motor be-
havior, we tested six subjects in an eye-hand coordination
task. Subjects were equipped with a game controller con-
sisting of two thumbsticks to move a left and right virtual
hand in a two-dimensional scene projected on a large screen.
Subjects were asked to move each virtual hand through a
pair of obstacles and reach a common goal within 3 sec-
onds. The position of the two gates changed at every trial,
randomly rotating between 12 different arrangements (each
scene was repeated thirty times). The scene was presented
to the subjects at a field-of-view of 45 degrees. Before each
trial, subjects had to fixate at the center of the screen. No
instructions were given regarding eye movements during a
trial. Eye movements were recorded using the double mag-
netic induction method (Bour et al. 1984).

The first row of panels in figure 1 shows the results of
subject S5 for a single trial. The blue and red line represents
the subject’s trajectory of the left and right virtual hand, re-
spectively. Gaze fixations are represented by green dots. The
obstacles and target are depicted as black squares and a star,
respectively. The subsequent panels show a snapshot of the
subject’s behavior at the onset of a new fixation. The first
panel shows that the subject initially fixates at the center of
the screen, with the hands a the starting position at the bot-
tom of the scene. After 348 ms, the gaze saccades toward the
right obstacle pair to assist the right hand in passing the ob-
stacles (second panel). Before the right hand has reached the
obstacle pair, gaze already jumps to the left obstacle pair at

t = 854 ms (third panel). Note that this jump consist of one
large saccade (from the right to the left gate) followed by a
small, so-called correction saccade which is a well known
phenomenon for large saccades (Carpenter 1977). When the
right hand approached the gate, a saccade is made toward a
new location between the left gate and target (fourth panel)
to guide both hands to the final goal, which was reached after
1.85 s from the beginning of the trial (last panel).

In the second row with panels, we plotted the hand trajec-
tories and gaze trajectory as solved by the POMDP model.
In order to compare the subject’s behavior with the model
predictions, we set the model’s time limit equal to the sub-
ject’s trial duration. The first panel shows the initial state
of gaze and hand position. After 74 ms, gaze saccades to
the right gate (second panel), which is earlier than the cor-
responding saccade of subject S5. Since the initial fixation
was not preceded by a saccade, the model did not include
a post-saccadic perceptual delay during the initial fixation,
resulting in a short fixation duration. When the right hand
reached the gate at t = 817 ms (third panel), gaze moved
to the left gate to guide the left hand through the obstacles.
At t = 1411 ms the left hand had passed the gate and gaze
jumps toward the target (fourth panel) and stayed there un-
til the end of the trial (last panel). Note that the timing of
the second and third saccade is well in accordance with the
subject’s behavior.

We compared the predictions of the POMPD model with
the experimental results of all trials and subjects on three cri-
teria: (1) the order and location of fixations, (2) the trajectory
of left and right hand, and (3) the relative timing of gaze and
hands. Figure 2 shows the trial average of all subjects for
the same scene. The variability in hand position is repre-
sented by the shaded area (one standard deviation). Clusters
of gaze fixations are represented by colored ellipses (two
standard deviations). For this scene, the subjects’ order of
fixations (i.e., initial fixation, right obstacle pair, left obsta-
cle pair, target) is in agreement with the model predictions.
However, when the gates were located close to the initial fix-
ation location at the center of the screen, or when the gates
were sufficiently large, subjects do not direct their gaze to
the relevant obstacles in the scene, but instead use their pe-
ripheral vision to perform the task. This behavior was found
in two of the twelve scenes (17%), except for subject S3,
which showed this behavior in nine scenes (75%).

The subjects fixate approximately between an obstacle
pair, in agreement with the model predictions. The pre-
cise fixation location differs slightly between subject and
model. Some subjects make slightly smaller saccades than
the model. This undershoot is a known phenomenon (Car-
penter 1977) and is thought to reflect properties of the hu-
man saccadic system, which were not included in our model.
In 62% of the scenes, the predicted fixation locations lay
within the cluster of measured gaze fixations.

The right hand’s trajectory predicted by the model
matches the measured path for subjects S3, S5 and S6 al-
most perfectly, whereas the left hand shows a slightly curved
trajectory. For the other subjects, both hands reach the target
via a more curved trajectory than predicted by the model.
For all subjects and scenes, the predicted hand trajectory was
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Figure 2: Trial averages of gaze fixations and hand trajec-
tories for all subjects for the same scene as in figure 1.
Clusters of gaze fixations are represented by colored ellipses
(two SD). Hand trajectory is represented by the trial average
(solid line) and the variability (shaded area, size of one SD)
for left (blue) and right (red) hand. The dashed and black
solid lines represent the model’s solution for gaze and hand
trajectories, respectively.

located within one standard deviation of the measured hand
trajectories for 72% of the time. A control experiment re-
vealed that even in absence of any obstacles, subjects tend
to move the hands in an inward-curved trajectory whereas
the model predicts a straight line (i.e., the shortest path). In
that case subjects fixate at positions in the middle, between
both hands. A plausible explanation for this behavior is that
subjects use their peripheral vision to guide both hands to the
target, relying on the heightened capacity to perceive motion
through peripheral vision (McKee and Nakayama 1984) (a
feature which we did not try to model).

In addition to correctly predicting the spatial location of
eye fixations and hand positions, the model also predicts the
timing of gaze relative to hand position. This is illustrated in
figure 1, which shows that gaze jumps from the initial gaze
position at the start of each trial to the right obstacle pair,
and from there to the left pair of obstacles after 0.9 s, when
the right hand approached the obstacles. After another 0.6
s, gaze jumps from the left pair of obstacles to the target.
By tuning the value of the parameter describing the obsta-
cles’ process noise, we recover this temporal pattern in our
model.

6 Conclusion

This paper presents a POMDP model of hand-eye coordina-
tion, and demonstrates that the optimal solution is congru-
ent with the behavior of human subjects in one particular
setting. However, in general, experiments of eye-hand coor-
dination tasks yield a diverse set of behaviors, according to
the particular experimental setup. Our model is capable of
producing such qualitatively-different behavior in different
parameter regimes (section 4). Here, we demonstrate how
the model can be congruent with one particular experimental
setup; this naturally guided our choice of parameter values
to a particular region.

Finally, it is important to note that we do not argue for
the biological plausibility of the computational techniques;
instead, this normative model may allow us to test our un-
derstanding of what (we believe) the brain “should” do.
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