
Playing Chess with a Human-Scale Mobile Manipulator

Michael Ferguson, Kim Gero, Joao Salles
Department of Computer Science

University at Albany
Albany, NY 12222

James Weis
Department of Information Studies

University at Albany
Albany, NY 12222

Abstract

This paper describes our efforts preparing a mobile ma-
nipulator for the 2011 AAAI Small Scale Manipulation
Challenge. We describe our approach to building a low-
cost mobile manipulator for human-scale environments
using ROS and off-the-shelf sensory and servos.

Introduction
Our robot (Maxwell) is a low-cost, human-scale mobile ma-
nipulator which has been prepared for the 2011 AAAI Small
Scale Manipulation Challenge. The robot has a single arm
and differential drive mobile base. Sensory consists of a Mi-
crosoft Kinect on a pan/tilt stage. Control software was writ-
ten with the help of the Robot Operating System (ROS).

Hardware
Maxwell carries a laptop on his rear deck, which connects
to motors and servos through a USB connection to an Ar-
botiX2 RoboController. The ArbotiX2 is an AVR-based co-
processor which handles all real-time operations.

Mobility is provided by a differential drive base with two
independently controlled wheels. A closed loop PID speed
control is implemented on the co-processor. The head and
arm are raised above the base by a column constructed of
8020 aluminum. The column is constructed of 3 separate
pieces, allowing Maxwell to be broken down into pieces
with no dimension larger than 20 inches, allowing for easy
shipment to the AAAI Challenge.

Primary sensory is from a Microsoft Kinect sensor,
mounted on a pan and tilt neck which provides a wider field
of view. The Kinect generates both traditional RGB images
and depth images which are used to construct a point cloud
representation of the environment.

Maxwell’s arm consists of a 5 degree of freedom (DOF)
manipulator with a 2-servo gripper. The arm is constructed
of various-sized Dynamixel servos, which have a robust and
easy to use serial bus architecture, and yield a maximum
payload of approximately 50 ounces when the arm is fully
extended.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Maxwell, a human-scale mobile manipulator.

Software
Our software was developed with the help of the Robot Op-
erating System (ROS) (Quigley et al. 2009). By using ROS,
we gained a head start on many of the challenges of mobile
manipulation.

For overall task control we used SMACH, which allows
the creation of state-based executives in the Python pro-
gramming language. Our executive consists of a hierarchi-
cal state machine, and is shown in figure 2. The outer level
consists of only two states: my move and your move. The
your move state simply waits until it is informed that either
the opponent has made a move, or the game is over. Making
a move is handled by perception and manipulation pipelines
within the my move state, which are described below.

Perception
Perception is achieved using a Kinect depth camera, which
provides both a traditional RGB image as well as a depth
image. The depth image is then converted into an n-
dimensional point cloud representation to allow geometric
computation.

A background task, the chess board locator, continu-
ously localizes the robot against the chess board, by com-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1872



Figure 2: State diagram for chess executive.

puting a transformation between the sensor frame and the
lower corner of the chess board. The locator works by find-
ing the lines of the chess board using a Hough transform and
then projecting the intersections of these lines into 3d using
the point cloud data. We then find the transform by aligning
with an ideal board using Iterative Closest Point (ICP).

We then use the Point Cloud Library (PCL) (Rusu and
Cousins 2011) to segment the table and chess pieces and find
grasp locations. The point cloud processing estimates point
normals from which it can approximate a best fit plane and
then segment the table points from the chess pieces. After
removing points corresponding to the table, segmentation of
individual chess pieces is achieved by k-means clustering.

For recognizing different pieces, we are developing a
SURF-based recognizer, which works by projecting SURF
features into 3D using the point cloud data and the recogniz-
ing individual parts. After aligning small point clouds with
their SURF recognized model, we can compute a represen-
tation of the board which can be passed into a chess engine,
GNU Chess. The output of the chess engine is then a move
to execute.

Manipulation
The manipulation pipeline converts the abstract plan gener-
ated by the chess engine into actual movements of pieces
through the 3d coordinate system of the arm. Additional in-
formation, such as the type of piece being grasped, can assist
in this arm path planning.

We use the existing ROS arm kinematics package to com-
pute inverse kinematics (IK) solutions. However, as our ma-
nipulator has only 5 degrees of freedom, we cannot reach
all 6-DOF poses within our workspace. The X, Y, Z coordi-
nates of the piece are therefore converted into a 6-DOF pose
by several heuristics:
• The yaw angle of the grasper is determined uniquely from

X and Y coordinates of the grasper.
• The roll angle of the grasper can be specified from the

piece and knowledge of usable grasps.
• The optimal pitch angle of the grasper is an overhead

grasp, however we can search the IK configuration space
within a small region around overhead grasping.

Once an IK solution for the final grasp has been found,
we generate a trajectory from the current gripper location to
the grasp point. To reduce the complexity of planning, we
do most of our movement in a horizontal plane far enough
above the board that we have no collisions with pieces. This
makes our search for smooth trajectories perform quicker
than a completely unconstrained search. Further, we avoid
the overhead of collision-free trajectory planning using more
traditional voxel grids.

Calibration
Complex mobile manipulators often face issues with calibra-
tion. Tolerances in part manufacturing and assembly quickly
add up to disastrous levels of error. It is important then that
our sensors and manipulators are calibrated to remove the
introduced errors between kinematic frames.

Maxwell has additional issues, since he can be disas-
sembled for shipping and transport. The robot must be re-
calibrated after each travel and reassembly. Our calibration
routine uses the point cloud data from our Kinect sensor,
which is highly reliable with a small amount of approxi-
mately Gaussian noise, and scores particular calibration pa-
rameters based on the intersection of Kinect point cloud data
and geometric models of the robot and environment. Cali-
bration begins by finding the constraints of the neck pan and
tilt joints by a Monte Carlo search until the output of the
Kinect matches closely the representation of the floor and
robot base. Once the neck has been calibrated, we move to
calibrating the arm to the sensor frame using a method sim-
ilar to (Pradeep, Konolige, and Berger 2010).

Conclusion and Future Works
We have presented here our work on the 2011 AAAI Small
Manipulation Challenge. In preparing for this Challenge
we have developed a number of reusable modules for our
robot, such as manipulation primitives and calibration tech-
niques. In the future we hope to adapt Maxwell to compete
in the RoboCup@Home contest by adding an actuated ver-
tical trolley to the arm, allowing the robot reach objects on
all surfaces, including the ground, allowing for more general
mobile manipulation.

References
Pradeep, V.; Konolige, K.; and Berger, E. 2010. Cali-
brating a multi-arm multi-sensor robot: A bundle adjust-
ment approach. In International Symposium on Experimen-
tal Robotics (ISER).
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS: an
open-source robot operating system. In Open-Source Soft-
ware workshop of the International Conference on Robotics
and Automation (ICRA).
Rusu, R. B., and Cousins, S. 2011. 3d is here: Point cloud
library (pcl). In International Conference on Robotics and
Automation (ICRA).

1873


