Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

Using Semantic Cues to Learn Syntax

Tahira Naseem and Regina Barzilay
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
{tahira, regina} @csail.mit.edu

Abstract

We present a method for dependency grammar induction that
utilizes sparse annotations of semantic relations. This induc-
tion set-up is attractive because such annotations provide use-
ful clues about the underlying syntactic structure, and they
are readily available in many domains (e.g., info-boxes and
HTML markup). Our method is based on the intuition that
syntactic realizations of the same semantic predicate exhibit
some degree of consistency. We incorporate this intuition in
a directed graphical model that tightly links the syntactic and
semantic structures. This design enables us to exploit syn-
tactic regularities while still allowing for variations. Another
strength of the model lies in its ability to capture non-local de-
pendency relations. Our results demonstrate that even a small
amount of semantic annotations greatly improves the accu-
racy of learned dependencies when tested on both in-domain
and out-of-domain texts.'

Introduction

In this paper, we investigate the benefits of using partial
semantic annotations for dependency grammar induction.
While the connection between syntactic and semantic struc-
tures is commonly modeled in NLP, in most cases the goal
is to improve semantic analysis using syntactic annotations.
In this paper, we leverage this connection in the opposite
direction. This formulation is inspired by studies in cog-
nitive science that demonstrate that semantic constraints on
what “makes sense” drive the process of syntactic acquisi-
tion (Piantadosi et al. 2008). From the practical viewpoint,
the proposed set-up is attractive because partial semantic
annotations are readily available in multiple domains. Ex-
amples include HTML markup (Spitkovsky, Jurafsky, and
Alshawi 2010), Freebase tables (Mintz et al. 2009), and in-
foboxes. Moreover, while producing syntactic annotations
requires significant amount of expertise (Bies et al. 1995),
partial semantic annotations can be easier to elicit from a lay
annotator. For instance a number of information extraction
papers rely on Amazon Mechanical Turk to collect annota-
tions (Wu and Weld 2010).

Our approach is based on the intuition that syntactic real-
izations of the same semantic relation exhibit some degree

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'The source code for the work presented in this paper is avail-
able at http://groups.csail.mit.edu/rbg/code/semdep/

902

He claimed (Iraqi troops) had (destroyed)five tanks)

attacker anchor target
(A'U.S. tanK|(shelled]the hotel)in response to sniper fire.
attacker anchor target

.... that they could have preemptive[strikes]against (Pakistan.)
anchor target

were injured in that(attack.)

target anchor

Figure 1: Example sentences from the ACE corpus for
Conflict-Attack event.

of consistency. Consider, for instance, the first two sen-
tences from Figure 1. Both of them verbalize the relation
Conflict-Attack using the same dependency structure. This
similarity in structure provides a strong constraint for de-
pendency grammar induction. For instance, we can require
that a parser derives identical structures for all the instances
of the same semantic relation. In practice, however, such a
constraint is too strong — frequently, syntactic realizations
of the same semantic relation can exhibit some variations.
Examples of such variations are shown in Figure 1 where
the relation is expressed using a noun phrase in sentence
3 and as a passive construction in sentence 4. Therefore,
the key modeling challenge is to encourage syntactic con-
sistency while still allowing for variations.

To achieve this effect, we propose a directed graphical
model that simultaneously explains both the syntactic and
semantic structure of a sentence. It first generates a depen-
dency tree, and then conditioned on that, it generates seman-
tic labels for the tree nodes. Our model posits that each syn-
tactic structure has a different distribution over the set of
semantic labels. This design implicitly encourages frequent
reuse of the same syntactic structure per semantic relation to
achieve a high probability derivation. At the same time, it
allows several syntactic structures to favor the same seman-
tic label. Since semantic relations can be expressed using
arbitrarily long dependency paths, the model has to capture
non-local syntactic patterns. As a result, the probability of
the dependency tree cannot be decomposed into edge fac-
tors, which makes inference complicated. We address this
issue using a Metropolis-Hastings sampler.

We apply the proposed method to the task of dependency
parsing for two datasets — the Wall Street Journal (Marcus,
Santorini, and Marcinkiewicz 1993) and the ACE 2005 Cor-
pus (Walker et al. 2006). As a source of semantic annota-
tions we use relations developed for information extraction

on the ACE corpus. The semantic annotations are sparse
and noisy — only 17% of constituent boundaries are imme-
diately apparent from the semantic labels, of which 20% are
incorrect. These annotations are provided during training
only, not at test time. Our results on both corpora demon-
strate that the proposed method can effectively leverage se-
mantic annotations despite their noise and sparsity. When
compared to a version of the model without semantic infor-
mation, we observe absolute performance gains of roughly
16 points on both in-domain and out-of-domain test corpora.
We also demonstrate that improvement in learned syntactic
structure is observed throughout the tree and is not limited
to fragments expressing the semantic relations.

Related Work

Despite the magnitude of papers that leverage syntactic in-
formation in information extraction and semantic role la-
beling (Ge and Mooney 2009; Poon and Domingos 2009),
research on the use of semantic constraints in grammar in-
duction is surprisingly sparse. The set-up was first consid-
ered in the context of symbolic parsing, where manually
constructed domain-specific grammar was used to reduce
the ambiguity of syntactic derivations (Ghosh and Goddeau
1998). While the paper demonstrated the benefits of adding
semantic information to syntactic parsing, the amount of
hand-crafted knowledge it requires is prohibitive. More
recently, Spitkovsky, Jurafsky, and Alshawi revisited this
problem in the context of modern grammar induction. They
demonstrated that using HTML mark-up as a source of se-
mantic annotations brings moderate gains to dependency
accuracy. They incorporate the mark-up information by
treating HTML tags as constituent boundaries. This con-
stituency information is translated into a variety of hard de-
pendency constraints which are enforced during Viterbi-EM
based learning. While we also treat semantic labels as con-
stituent spans, we incorporate this constraint into the struc-
ture of our generative model. In addition, we also capture
the syntactic relationship between semantic labels, which is
not modeled by Spitkovsky, Jurafsky, and Alshawi.

Our work also relates to research on improving grammar
induction using external knowledge sources. Our approach
is closest to a method for grammar induction from partially-
bracketed corpora (Pereira and Schabes 1992). Like our ap-
proach, this method biases the induction process to be con-
sistent with partial annotations. The key difference, how-
ever, is that in our case the semantic annotations are noisy
and are not at the same level of granularity as the target
annotation (i.e., dependency trees). Therefore, they can-
not be directly mapped to hard constraints on the induction
process. This property distinguishes our work from recent
approaches that incorporate declarative linguistic knowl-
edge using expectation constraints on the posterior (Druck,
Mann, and McCallum 2009; Naseem et al. 2010). For in-
stance, in this framework it is not clear how to encode the
preference that the dependency paths be consistent.

903

Model

The central hypothesis of this work is that knowledge about
the semantic structure of a sentence can be helpful in learn-
ing its syntactic structure. In particular we capitalize on
the fact that semantic concepts exhibit consistent patterns
in their syntactic realizations. To leverage this idea, we pro-
pose a directed graphical model that generates semantic la-
bels conditioned on syntactic structure. Such a model will
encourage the selection of syntactic structures that have con-
sistent patterns across different instances of the same seman-
tic concept.

Semantic Representation

The model takes as input a set of sentences annotated with
part-of-speech tags. Moreover, for each sentence, partial se-
mantic annotations are available. To be specific, one or more
events are annotated in each sentence. An event annotation
comprises an anchor word that triggers the event and one or
more argument spans. Each argument span is labeled with
its role in the event. There are a fixed number of event types,
and for each event type there are a fixed number of argu-
ment labels. For example for the event type Conflict-Attack,
the argument labels are Attacker, Target and Place. Figure
1 shows example sentences with event annotations. Event
annotations are available only during training. No semantic
annotations are provided at test time.

Linguistic Intuition

The semantic annotations described above can constrain the
syntactic structure in multiple ways. First, the syntactic rela-
tionship between an anchor word and its arguments is some-
what consistent across multiple instances of the same event
type. For example, in the first two sentences in Figure 1, the
Attacker argument is the subject of the anchor verb. How-
ever, strongly enforcing this consistency might actually hurt
the quality of the learned syntactic analysis. While there
is some regularity in the syntactic structure, the variations
are also significant. For instance, in the 499 occurrences
of the Conflict-Attack event in our data, we observe 265
unique syntactic structures connecting the anchor word with
the Target argument. Moreover, the most frequent of these
structures covers only 8% of the instances and another 33
distinct structures are needed to cover 50% of the instances?.
Our model posits a different distribution over semantic la-
bels for each syntactic structure. This allows multiple syn-
tactic structures to favor the same semantic label.

Another clue about the syntactic structure is available in
the form of argument labels: the argument spans form syn-
tactic constituents in most cases. For dependency parsing
this implies that there should be no outgoing dependency
edges from an argument span. This holds true in our dataset
roughly 80% of the time. We incorporate this constraint into
our model by assuming that if a tree node corresponds to
an argument label, all of its children will also be part of the
same argument.

These statistics are based on the dependency trees produced by
a supervised parser.

The final restriction that our model imposes on the syn-
tactic structure is that a function word cannot be the head of
a semantic argument. This is a reasonable assumption be-
cause function words by definition have minimal semantic
content. In our data, this assumption is always true.

Generative Process

Our model first generates the syntactic structure of a sen-
tence i.e. the dependency tree. Next, for every event type,
an anchor node is selected randomly from all the nodes in
the tree. Finally, an argument label for every node in the
tree is generated conditioned on the dependency path from
the anchor node. Below we describe the generative process
in more detail. A summary is given in Table 1.

Generating Dependency Trees The process for generating
a dependency tree starts with generating a root node. Then
child nodes are generated first towards the right of the root
node until a stop node is generated, and then towards the left
until a stop node is generated. This process is then repeated
for every child node.

Each node comprises a part-of-speech tag drawn from a
multinomial 6, 4, over the set of part-of-speech symbols,
where p is the parent part-of-speech tag, d is the direction
of the child node with respect to the parent node i.e. right
or left and v is the valence of the parent. Valence encodes
how many children have been generated by the parent before
generating the current child. It can take one of the three
values: 0, 1 or 2. A value of 2 indicates that the parent
already has two or more children.

This component of the model is similar to the Dependency
Model with Valence (DMV) of (Klein and Manning 2004).
The only difference is that our model encodes more detailed
valence information.

Generating Events After generating the dependency tree,
event labels are drawn conditioned on the tree structure. For
every event type e first an anchor node is selected uniformly
from all the nodes in the tree plus a null node. The null
node accounts for the case where the event does not occur
in the sentence. If the selected node is the null node, the
generation process stops, otherwise we proceed to generate
the argument labels.

To generate argument labels, tree nodes are traversed in
a top down fashion starting from the root. Whenever a con-
tent word node is visited?, an argument label is generated for
the node. This argument label is drawn from a multinomial
®e,path- The support of this distribution is over all allow-
able labels for the arguments of event type e plus a special
not-argument label. If the label generated at a node is the
not-argument label, the process continues recursively on the
child nodes. Otherwise, the process stops for that node, and
all the nodes dominated by the argument node become a part
of the argument. Forcing all children of an argument node
to have the same argument label allows the model to benefit

3Content word nodes can be identified based on their part-of-
speech tags which have already been generated; e.g. Nouns, Verbs,
Adjectives and Adverbs are the major classes of content words.

904

from the constituency boundaries indicated by the argument
annotations.

The argument generation multinomial ¢ is indexed by
event type and path — i.e. we have one such multinomial
for each event type and each unique path from an anchor
node to a potential argument node. This path is specified by
concatenating the part-of-speech tags along the path, joined
by arrows indicating the direction of each node with respect
to its parent node. Figure 2 shows example paths from the
anchor node to two potential argument nodes.

-
AAAAA
¢ bor (N v (NN] 1

T TR)

argument,

~

argument; anchor

NN<—VB—> [NN] [NN]— IN—>NN

Y

Figure 2: A dependency tree with anchor and argument an-
notations. Path from anchor node to argument; (left) and
arguments (right) are also given. Square brackets indicate
the anchor nodes.

Generating Parameters We have two sets of model pa-
rameters: syntactic parameters i.e. the child tag generation
multinomials 6, 4 v and semantic parameters i.e. the event
argument generation multinomials ¢e path. Both these sets
of multinomials are drawn from conjugate Dirichlet priors.

The child tag multinomial distributions 6y, 4, are drawn
from a symmetric Dirichlet with hyperparameter ¢,. The
event argument distributions ¢e path are drawn from a non-
symmetric Dirichlet prior where the hyperparameters for all
argument labels are set to ¢y except for the hyperparameter
for the not-argument label, which is set to a value ¢, pro-
portional to the length of the path. This prior bias incorpo-
rates the intuition that the dependency path from anchor to
argument should be short. A long path to a node strongly in-
dicates that the node does not have an argument relationship
with the anchor.

Inference

During training we want to estimate the posterior probability
of latent dependency trees given the observed part-of-speech
tags and event annotations. Directly estimating this posterior
requires computing marginals over all possible settings of
the model parameters for every possible set of dependency
trees for the whole corpus. This makes exact inference in-
tractable. Instead, we employ Gibbs sampling to approxi-
mate the model posterior. This allows us to sample one la-
tent variable at a time, conditioning on the current values of
all other latent and observed variables. The only variables
that we sample during inference are the dependency trees;
model parameters ¢ and ¢ are marginalized out.

The inference procedure starts by assigning an initial de-
pendency tree to every sentence. During each iteration, a
dependency tree is sampled for each sentence from the con-
ditional probability distribution over trees given the current
samples for all other sentences. Conditional probability of

For each POS tag ¢, each valence v and direction d:
Draw child tag multinomial 6, g, ~ Dir(6p).
For each event type e and dependency path p:
Draw argument multinomial ¢ ;, ~ Dir(¢o).
For each sentence s;:

Draw dependency tree T; as follows:
For each parent tag ¢ with valence v in direction d:
Draw child tag ¢’ ~ Mult(6,4.,).
For each event type e:
Select anchor node ¢, uniformly from nodes in 7;.
For each node n € T; with path p from c.:
Draw argument label a ~ Mult(¢e ;)

Table 1: The generative process for model parameters, de-
pendency parses and event labels. In the above Dir and Mult
refer respectively to Dirichlet distribution and multinomial
distribution.

the dependency tree T for the i*" sentence is given by,

P(Ti|xi, e, T, x5, e—;, 00, do)
o P(Ti|wi, T—i, 24, 00)P(ei|T;, T—i, e—i, o), (1)

where z; is the tag sequence and e; is a set of event annota-
tions for the i*" sentence. The notation m_; represents all
variables m except m,. The first term on the right side corre-
sponds to generation of the tree structure, while the second
term corresponds to generation of the semantic event labels
given the tree structure. We can further expand the first term

as follows:

P(Ti|x7ﬁ7T7iam7i790) = Hp(lepz37vada T7i733—i790)

j=1
where n is the sentence length, p_; is the parent tag of tag

xz according to dependency tree T}, v is the valence of the

parent node, and d is the direction of the tag x{ with re-
spect to its parent according to dependency tree 7;. Thus the
probability of a tree is a product of the probabilities of its
nodes. The child generation multinomial parameters 6 are
marginalized out. This marginalization has a closed form
due to Dirichlet-multinomial conjugacy. Each term in the
product can be computed using following equation:

count(x, pz,v,d) + by

P(l‘|px,’U,d, T—i7x_i’00) - count(P v d) +k90

@

where %k is the total number of unique tags.
count(x,py,v,d) is the number of times tag x= has
been generated by tag p, in direction d with valence v.
Similarly, count(p,., v, d) is number of times parent tag p,
generated any tag in direction d with valence v.

The second term on the right side of Formula 1, which
is responsible for the generation of semantic event labels,
expands as follows:

905

z

P(e;|T;, T-iye—i ¢0) o [[P(el|Ti, Tise—ir o) (3)

J=1

where z is the total number of event types.

Each event annotation e comprises an anchor word and
a set of argument labels one for each word in the sentence.
For an event with event type ¢, let c, represent the tree node
corresponding to the anchor word and let a. (n) represent the
argument label for node n in the dependency tree 7;. Hence,
each term on the right of Formula 3 expands into:

P(e|T;, T-i,e—i, ¢o)
:P(CelteaTiaT—iae—ia¢O)P(ae|cevteaTiaT—iae—i7¢0)

1
= m H P(a€<n)‘path(nacE7Ti)at67¢0)
v neT;

where path, as described in model section, is the depen-
dency path from anchor node c, to current node n according
to dependency tree 7;. Each term in the product on the right
side has a closed form similar to Equation 2.

Directly sampling dependency trees from Distribution 1
is not possible, because the term related to event genera-
tion involves conditioning on non-local dependency paths.
As a result the probability does not factor along the edges
of the dependency tree, which makes it intractable to con-
struct the marginalized probability tables (i.e. the in-
side tables) required for sampling trees. To circumvent
this problem we use a Metropolis-Hastings (MH) sampler.
Rather than directly sampling from P(T;|T_;, %, e, 80, ¢o)
we instead sample from a tractable proposal distribution
Q(T;|T-;,%,0p) and then accept the sample with the fol-
lowing probability:

P(T‘T,“ X, e, 90) QSO)Q(T/'Tfia X, 90) }

1
n{ " P(T'[T—i., . 60, 60)Q(T|T_:., o)

where T is the newly sampled tree for the i*" sentence and
T’ is the previous sample for the same sentence. The pro-
posal distribution that we use is similar to the true model
distribution given in Formula 1, except it does not have the
term involving events generation. In other words the pro-
posal distribution assumes that the generation process stops
after generating dependency trees. We selected this proposal
distribution because it is close to the actual model distribu-
tion while still being tractable.

To sample a dependency tree from the proposal distribu-
tion, we use the standard tree sampling algorithm (Johnson,
Griffiths, and Goldwater 2007). We first construct the in-
side probability table for the sentence. Then starting from
the top we sample one dependency decision at time based
on the inside probabilities below it, thus marginalizing over
the probabilities of all possible decisions below.

Experimental Setup

Data We train our model on the English portion of the ACE
2005 Multilingual Training Corpus (Walker et al. 2000).
The data sources for this corpus include newswire, broad-
cast news, broadcast conversations, weblog and telephone
conversations. The ACE corpus is annotated with entities,

relations and events. We use only the event annotations in
our experiments. The event annotations are restricted to 18
event types. In any given sentence the only events annotated
are those that fall into one of these pre-specified types.

We extract only those sentences from the corpus that con-
tain at least one event annotation. Following standard prac-
tice, punctuation markers and special symbols are removed.
Any sentences longer than 50 words, after removing punc-
tuation, are filtered out. This process leaves us with a total
of 2442 sentences with 3122 event annotations. On average,
there are 1.3 event annotations per sentence.

As explained in the model section an event annotation
comprises an anchor and one or more argument annotations.
In our data, the average number of arguments per event is
2.3. There are roughly 4.2 semantic labels per sentence, in-
cluding both anchor and argument labels. 43.4 percent of
the words are covered by at least one semantic label. How-
ever most of this coverage comes from very long argument
spans, where no information is available about the internal
structure of the argument. If we count only the headword of
each argument span, the word coverage is only 19.2%.

The ACE corpus does not have part-of-speech annotations
which are required by our model. We obtain these annota-
tions using the Stanford Tagger version 3.0 (Toutanova and
Manning 2000).

Training and Testing We test our model on two datasets:
the ACE corpus and the WSJ corpus. We split the 2442
sentences extracted from the ACE corpus into 2342 training
sentences and 100 test sentences. These test sentences are
selected randomly. We manually annotate these sentences
with dependency trees, following the same linguistic con-
ventions that are used by the Penn converter (Johansson and
Nugues 2007). Event annotations are ignored during testing.
From WSIJ, we use section 23 for testing. For comparison
with previous work, we test on both the sentences of length
10 or less (WSJ10) and sentences of all lengths (WSJ). De-
pendency trees for this corpus are produced using the Penn
converter (Johansson and Nugues 2007).

Initialization and Decoding The initial dependency trees
are set to the Viterbi output of the standard DMV model
trained on our training data using the EM algorithm.

In all the experiments, 6, the hyperparameter for the syn-
tactic child generation multinomial, is set to 0.25 and ¢, the
hyperparameter for the semantic argument generation multi-
nomials, is set to 1. The hyperparameter ¢y, corresponding
to the not-argument label, is set to 10 x path-length, where
path-length is the number of dependency edges along the
path. All hyperparameters remain fixed during training. We
train the model for 5000 sampling iterations.

At test time, Viterbi decoding is performed using only the
syntactic parameters of the model. These parameters are
set to the MLE estimates based on the counts from the final
training sample with hyperparameters used for smoothing.

Baselines We compare our model against several baselines.
First we construct a baseline by using only the syntactic
component of our model. We train this baseline on the train-
ing data without making use of the event annotations. Since

906

this baseline is very close to our main model, a comparison
with it should highlight the effect of using semantic annota-
tions. We use the same initialization and parameter settings
for the baseline that we used in our main experiments.

We also compare against the results of Spitkovsky, Juraf-
sky, and Alshawi. Their setup is the closest to ours since
they use HTML mark-up to guide grammar induction.

In addition, we compare against the best available unsu-
pervised parsing results on WSJ (Blunsom and Cohn 2010)
and WSJ10 (Headden III, Johnson, and McClosky 2009).

Finally, following the setup of (Spitkovsky, Jurafsky, and
Alshawi 2010), we compare with the supervised MLE ver-
sion of the syntactic component of our model. The parame-
ters are set to the MLE estimates based on the gold depen-
dencies from the WSJ corpus, with hyperparameters used for
smoothing. The performance of this model can be viewed as
an upper bound for our main model, since our main model
also uses only the syntactic component at test time.

Results

Table 2 shows the result for our model along with the results
for various baselines. The results on the in-domain ACE cor-
pus show that the availability of semantic annotations signif-
icantly improves the performance, cutting the gap between
the supervised MLE results and the unsupervised baseline
results by about 62%. Similar trends can be observed in the
results on the out-of-domain Wall Street Journal corpus.

ACES0 | WSJ | WSJ10
1 | Baseline 46.6 43.2 56.2
2 | Full Model 63.4 59.4 70.2
3 | Blunsom et al. (2010) - 55.7 67.7
4 | Headden et al. (2009) - - 68.8
5 | Spitkovsky et al. (2010) - 50.4 69.3
6 | Supervised MLE 72.9 70.5 82.2

Table 2: Directed dependency accuracy of our model on in-
domain ACE corpus and out-of-domain WSJ corpus. The
baseline corresponds to the syntax-only component of our
model. Rows 3 and 4 show the results of the state-of-the-
art unsupervised dependency parsers. Row 5, (Spitkovsky,
Jurafsky, and Alshawi 2010), corresponds to a model trained
using HTML mark-up. The last row shows the results based
on the supervised MLE version of our model.

For the ACE dataset we also evaluated the performance
separately on the words that are covered by the argument
labels. We compute the percentage of these words whose
head is predicted correctly by the model. Our model gives an
accuracy of 62.5% on these words compared to the overall
accuracy of 63.4%. This result shows that we in fact learn
a better parser rather than just improving on those structures
involved in semantic annotations.

Our model also outperforms the state-of-the-art unsuper-
vised models on the WSJ corpus by a significant margin,
despite the fact that the underlying syntactic component of
our model is much simpler than the models used by Head-
den III, Johnson, and McClosky and Blunsom and Cohn. We
believe this implies that replacing the syntactic component

of our model with a more sophisticated one has the potential
of further improving the results.

Ablation Experiments As explained earlier in the model
section, our model exploits event annotations by assuming
that, 1) the arguments form constituents, 2) the head of a
semantic argument is always a content word and 3) there
are consistent patterns in dependency paths from the anchor
node to the argument node across multiple occurrences of
the same event type. To analyze the relative contribution of
each of these assumptions, we perform ablation experiments
by dropping them one at a time.

Table 3 shows the results of the ablation experiments. The
impact of dropping the first two constraints is much more
drastic than the path constraint. This is partly due to the
fact that the first two constraints are much more consistently
followed in the gold data than the path constraint. Another
reason why removing the path information has little effect
on performance is that the presence of the head constraint
indirectly enforces path consistency.

ACESO | WSJ | WSJ10
Full Model 63.4 59.4 70.2
No argument brackets 43.5 41.3 48.5
No head constraint 50.1 46.8 57.4
No path 61.9 58.4 69.0

Table 3: Results of the ablation experiments.

We also performed an experiment where we only use the
bracketing constraint. This approximates the setup used in
(Pereira and Schabes 1992). This setup gives an accuracy of
48.3% on the ACE corpus, which is higher than the baseline
(46.6%) but significantly worse than the full model perfor-
mance (63.4%). The reason for this low performance might
be that the brackets available in the form of argument labels,
are very sparse.

Conclusions

We presented a method for dependency grammar induction
that utilizes annotations of semantic relations. We demon-
strated that even incomplete annotations of semantic rela-
tions provide useful clues for learning syntactic structure.

Acknowledgements

The authors acknowledge the support of Defense Advanced
Research Projects Agency (DARPA) Machine Reading Pro-
gram under Air Force Research Laboratory (AFRL) prime
contract no. FA8750-09-C-0172 and the U. S. Army Re-
search Laboratory and the U. S. Army Research Office under
contract no. W911NF-10-1-0533. Any opinions, findings,
and conclusion or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
view of the DARPA, AFRL, or the US government.

References
Bies, A.; Ferguson, M.; Katz, K.; MaclIntyre, R.; Tredinnick,
V.; Kim, G.; Marcinkiewicz, M.; and Schasberger, B. 1995.
Bracketing Guidelines for Treebank II Style Penn Treebank
project. University of Pennsylvania.

907

Blunsom, P., and Cohn, T. 2010. Unsupervised Induction
of Tree Substitution Grammars for Dependency Parsing. In
Proceedings of EMNLP, 1204-1213.

Druck, G.; Mann, G.; and McCallum, A. 2009. Semi-
supervised Learning of Dependency Parsers using General-
ized Expectation Criteria. In Proceedings of ACL/IJCNLP,
360-368.

Ge, R., and Mooney, R. 2009. Learning a Compositional
Semantic Parser Using an Existing Syntactic Parser. In Pro-
ceedings of ACL/IJCNLP, 611-619.

Ghosh, D., and Goddeau, D. 1998. Automatic Grammar In-
duction from Semantic Parsing. In Fifth International Con-
ference on Spoken Language Processing.

Headden III, W. P.; Johnson, M.; and McClosky, D. 2009.
Improving unsupervised dependency parsing with richer
contexts and smoothing. In Proceedings of NAACL/HLT,
101-109.

Johansson, R., and Nugues, P. 2007. Extended Constituent-
to-dependency Conversion for English. In Proceedings of
NODALIDA, 105-112.

Johnson, M.; Griffiths, T.; and Goldwater, S. 2007. Bayesian
Inference for PCFGs via Markov Chain Monte Carlo. In
Proceedings of NAACL-HLT, 139-146.

Klein, D., and Manning, C. 2004. Corpus-based induction of
syntactic structure: Models of dependency and constituency.
In Proceedings of ACL, 478-485.

Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A.
1993. Building a large annotated corpus of english: The
penn treebank. Computational Linguistics 19(2):313-330.

Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Dis-
tant supervision for relation extraction without labeled data.
In Proceedings of ACL/IJCNLP, 1003—-1011.

Naseem, T.; Chen, H.; Barzilay, R.; and Johnson, M. 2010.
Using Universal Linguistic Knowledge to Guide Grammar
Induction. In Proceedings of EMNLP.

Pereira, F., and Schabes, Y. 1992. Inside-Outside Reesti-
mation from Partially Bracketed Corpora. In Proceedings of
ACL, 128-135.

Piantadosi, S.; Goodman, N.; Ellis, B.; and Tenenbaum, J.
2008. A Bayesian model of the acquisition of compositional
semantics. In Proceedings of the Thirtieth Annual Confer-
ence of the Cognitive Science Society.

Poon, H., and Domingos, P. 2009. Unsupervised Semantic
Parsing. In Proceedings of EMNLP, 1-10.

Spitkovsky, V. I; Jurafsky, D.; and Alshawi, H. 2010. Prof-
iting from Mark-Up: Hyper-Text Annotations for Guided
Parsing. In Proceedings of ACL, 1278-1287.

Toutanova, K., and Manning, C. 2000. Enriching the Knowl-
edge Sources Used in a Maximum Entropy Part-of-speech
Tagger. In Proceedings of EMNLP/VLC, 63-70.

Walker, C.; Strassel, S.; Medero, J.; and Maeda, K. 2006.
Ace 2005 Multilingual Training Corpus. Linguistic Data
Consortium, Philadelphia.

Wu, E., and Weld, D. 2010. Open Information Extraction
Using Wikipedia. In Proceedings of ACL.

