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Abstract 
End-user interactive machine learning is a promising tool 
for enhancing human productivity and capabilities with 
large unstructured data sets. Recent work has shown that we 
can create end-user interactive machine learning systems for 
specific applications. However, we still lack a generalized 
understanding of how to design effective end-user 
interaction with interactive machine learning systems. This 
work presents three explorations in designing for effective 
end-user interaction with machine learning in CueFlik, a 
system developed to support Web image search. These 
explorations demonstrate that interactions designed to 
balance the needs of end-users and machine learning 
algorithms can significantly improve the effectiveness of 
end-user interactive machine learning. 

Introduction   
End-user interactive machine learning is the process by 
which people define concepts that can be recognized by an 
intelligent system. These concepts provide the building 
blocks needed for configuring complex automated 
behaviors on large data sets. People define concepts by 
iteratively providing examples of objects matching a 
desired concept and inspecting feedback presented by the 
system to illustrate its current understanding (left in Figure 
1). Defining concepts via examples enables end-user 
personalization of intelligent systems while circumventing 
the interpretation or manipulation of low-level 
computational representations. 
 Recent work has demonstrated several applications of 
end-user interactive machine learning systems. Fails and 
Olsen’s (2003) Crayons system supports interactive 
training of pixel classifiers for image segmentation in 
camera-based applications. Dey et al.’s (2004) a CAPpella 
enables end-user training of a machine learning system for 
context detection in sensor-equipped environments. Ritter 
and Basu (2009) demonstrate interactive machine learning 
in complex file selection tasks. Each of these provides 
initial evidence of the utility of interactive machine 
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learning, but we still lack a generalized understanding of 
how to design effective end-user interaction with 
interactive machine learning systems. For instance, which 
examples should a person provide to efficiently train the 
system? How should the system illustrate its current 
understanding? How can a person evaluate the quality of 
the system’s current understanding in order to better guide
it towards the desired behavior?   
 A traditional active learning approach to interaction can 
meet the needs of the machine learning system by forcing a
person to label training examples that provide the greatest 
information gain. However, treating a person like a passive 
information oracle can create a frustrating user experience 
(Baum and Lang 1992). On the other hand, a design that 
neglects the learning system in favor of end-user flexibility 
may be equally frustrating if a person cannot effectively 
train the system. Effective solutions must therefore balance 
the needs of both the end-user and the machine.  
 This paper presents three explorations of designing 
effective end-user interaction with machine learning in 
CueFlik, a system we developed to support Web image 
search (Fogarty et al. 2008). Our results show that well 
designed interactions can significantly impact the 
effectiveness of the interactive machine learning process. 
In addition, while our explorations are grounded in 
CueFlik, we intentionally designed our methods to be 
independent of CueFlik, image-specific features, and 
image search. As a result, our findings should generalize to 
other domains suitable for example-based training. 

CueFlik 
CueFlik (Figure 1) allows end-users to interactively define 
visual concepts (e.g., “product photos”, “pictures with 
quiet scenery”, “pictures with bright psychedelic colors”) 
for re-ranking web image search results. End-users train 
CueFlik by providing examples of images with and without 
the desired characteristics. These examples are used to 
learn a distance metric as a weighted sum of component 
distance metrics (including histograms of pixel hue, 
saturation, luminosity, edges, global shape and texture).
Formally, CueFlik minimizes an objective function 
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separating positive examples from negative examples 
while keeping examples in the same class close together:

where D(i, j) is the distance metric computed as a weighted 
sum of CueFlik’s component metrics. The first two terms 
correspond to within-class distances. Minimizing the 
function therefore favors weights that collapse the positive 
and negative classes. The third term considers all 
examples, thus favoring maximum separation of classes. 
 CueFlik uses provided examples to update its distance 
metric. It then uses a nearest-neighbor classifier to re-rank 
images according to their likelihood of membership in the 
positive class. Throughout the iterative training process,
CueFlik presents examples illustrating its current 
understanding of the desired concept and end-users decide 
how to proceed with improving system understanding. 

Designing Effective Interactions with CueFlik 
There are many possible ways to design the various 
interactions during the end-user interactive machine 
learning process. In our explorations with CueFlik, we 
attempt to move beyond previous naïve or ad-hoc 
approaches by designing general techniques that balance 
the needs of both end-users and machine learning 
algorithms. The techniques we present here target three 
important aspects of the end-user interactive machine 
learning process: (1) effectively illustrating the current 
version of a learned concept (Fogarty et al. 2008), (2)
guiding end-users to select training examples that result in 
higher quality concepts (Amershi et al. 2009), and (3) 

enabling effective and lightweight end-user exploration of 
multiple potential models (Amershi et al. 2010). 
 We present the results of our interaction evaluations in 
terms of two key measures: quality of end-user-trained 
concepts and their efficiency in training. For study details, 
please refer to our original publications. 

Illustrating the Current Learned Concept 
A fundamental issue in end-user interactive machine 
learning is illustrating the system’s current understanding 
of a learned concept. An effective illustration can help 
people asses the quality of the current concept and in turn 
inform whether and how they proceed in training.  

We examined two methods for illustrating CueFlik’s 
current version of a learned concept: single versus split 
presentation (Fogarty et al. 2008). The single method 
provides access to the entire set of images, ranked by their 
likelihood of membership in the positive class (right in 
CueFlik interface, Figure 1). The split method instead 
shows only the best and worst matching images in the set 
(left in CueFlick interface, Figure 1). The best matches 
show a small number of high-certainty positive images 
(extremely close to positive training examples). The worst 
matches show a small number of high-certainty negative 
images (extremely close to negative training examples).  
 In addition, we experimented with integrating active 
learning examples into both the single and split
presentations interfaces. These examples were chosen 
using standard active learning heuristics for selecting 
examples that provide the system with the most 
information gain (e.g., examples the system is currently 
most uncertain about, such as examples near the boundary 
of the positive and negative classes). 
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Figure 1. In end-user interactive machine learning (left), a person iteratively provides a system with training examples for a desired
concept. Those examples train a classifier that is applied to the remaining data. A person then inspects presented data and decides how to 
best proceed with refining the classifier. CueFlik (right) supports end-user interactive machine learning in Web image search.
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 From our evaluation, we found that participants using 
the split presentation created CueFlik concepts of 
significantly higher quality, using significantly fewer 
training examples, in significantly less time than 
participants using the single method.  One explanation of 
this is that the split presentation encouraged participants to 
focus on whether the system’s understanding was mostly 
correct (i.e., whether the best and worst matches 
corresponded to their desired concept). In contrast, 
presenting the entire set of images (single) exposes 
participants to images for which the system is more 
uncertain (e.g., images in the middle of the ordered set). 
These images may have led participants to find relatively 
minor inconsistencies, prompting them to continue adding 
examples and take more time. Furthermore, as people label 
more of these uncertain images, CueFlik may begin to 
learn irrelevant aspects of those examples. Interestingly, 
neither the presence nor absence of active learning 
examples (i.e., examples that are theoretically intended to 
provide the machine with the most information about the 
model being trained) had a significant effect on participant 
ability to train models. These findings suggest further 
exploration of how to best guide people to select effective 
training examples during interactive machine learning. 

Soliciting Effective Training Examples 
Our initial exploration showed that the split method of 
presenting examples led participants to train better 
concepts. This result mixes two possible explanations for 
the improvement: (1) the use of a split presentation with a
small number of examples illustrating the positive and 
negative regions during interactive refinement of a learned 
concept, and (2) that those examples were selected as 
representative of the positive and negative regions because 
of their high-certainty. We hypothesized that the first of 
these explanations is indeed important. However, because 
high-certainty examples are extremely similar to already 
labeled examples, they provide little additional information 
to the machine learning algorithm during training.  

We examined two strategies for selecting small sets of 
examples of high-value to the machine learning algorithm 
that also provide the end-user with an intuitive overview of 
the positive and negative regions of a space defined by a 
learned concept (Amershi et al. 2009). Our first strategy 
presents a global overview, selecting examples to provide 
good coverage of the positive and negative regions (left in 
CueFlik interface, Figure 1). We use a sensor-placement 
strategy (Krause et al. 2008) to select examples, i, that 
maximize the mutual information gain between currently 
selected, S, and unselected, U, examples (and are therefore 
of high quality from the learner’s perspective):
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To achieve this, we take a Gaussian Process perspective 
and select examples that maximize: 
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where KS,S is the similarity matrix among S, KU-i,U-i is the 
similarity matrix among U excluding i, and Ki,S, KS,i, Ki,U-i,
and KU-i,i are each similarity vectors between i and the 
respective sets (Amershi et al. 2009). Intuitively, examples 
maximizing this ratio are most dissimilar to selected 
examples and most representative of those unselected. 

Our second strategy emphasizes projected overviews, 
selecting instances that illustrate variation along major 
dimensions of the positive and negative regions. We first 
obtain a set of principle dimensions in each region and then 
select examples along each. We use a non-linear projection 
technique similar to Principal Component Analysis to 
compute principle dimensions, as this best respects the 
structure of the underlying data (Amershi et al. 2009). To 
select instances that best illustrate the intended variation 
(i.e., provide coverage of a single principal dimension but 
also vary as little as possible in all other dimensions), we 
modify our sensor placement strategy to maximize: 
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where K is the similarity matrix for the principal dimension 
for which we are currently selecting a set of representative 
examples and K̅ is the similarity matrix for all of the other 
principal dimensions (Amershi et al. 2009).  
 We compared our new overview-based strategies to the 
best performing strategy from our initial work (i.e., the 
high-certainty strategy presenting the best and worst 
matches). We found that our overview-based strategies of 
presenting high-value examples guided participants to 
select better training examples and train significantly 
higher quality concepts than the high-certainty strategy. 
However, we also found that participants spent more time 
training when using the overview-based strategies. 
 During our evaluation, we observed that participants 
often continued providing additional training examples 
even when they did not seem to be further improving a 
concept. This obviously increases the training time and we 
believed it could also negatively impact final concept 
quality. We therefore further analyzed the point where 
participants obtained their best learned concept. This 
showed that our overviews led participants to train better 
best concepts in the same amount of time and with fewer 
examples than the high-certainty strategy. This analysis 
also showed that all of our interfaces suffered from some 
model decay (from best to final concepts). Participant 
feedback indicated they were often unable to revert back to 
previous model states during training when quality started 
to decay (e.g., “it was weird, sometimes it would start out 
doing really well, but as I kept going it did worse”). Our 
overviews, however, helped to reduce the magnitude of 
this decay compared to the high-certainty condition. 
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Examining Multiple Potential Models 
Participants in our second exploration were unable to 
revert back to previous models when they observed that 
CueFlik was not behaving in the desired manner.  We 
hypothesized that this was partly due to an implicit 
assumption in prior research about how people should 
interact with machine learning. Machine learning systems 
learn by generalizing from examples of object classes.
Prior research has thus focused interaction on prompting a 
person to answer “what class is this object?” (e.g., Tong 
and Chang 2001). Such an approach permits simulated 
experiments with fully-labeled datasets. However, treating 
a person simply as an oracle neglects human ability to 
revise and experiment. We therefore propose that a person 
instead consider “how will different labels for these objects 
impact the system in relation to my goals?” 
 Our third exploration examines the impact of end-user 
comparison of multiple potential models during the 
interactive machine learning process (Amershi et al. 2010). 
Comparison of multiple alternatives is a proven technique 
in human-computer interaction but has not been explored 
in the context of people interacting with machine learning. 
We examine this with a history visualization showing 
recently explored models and support for revision (see 
CueFlik interface in Figure 1). The history contains a plot 
of each model’s estimated reliability, updated after every 
end-user interaction (e.g., labeling examples). Model 
reliability is measured using leave-one-out-cross-validation 
on the current set of training examples. The history also 
shows snapshots of each model’s top ranked images for 
visual comparison. Revision can be achieved by removing 
examples directly, via undo/redo, and by clicking directly 
within the history to revert back to previous models.  

Our evaluation showed that the history visualization led 
participants to spend more time and perform more actions 
to train concepts without improving overall model quality. 
Although the plot used an accepted metric to estimate 
model reliability (leave-one-out-cross-validation accuracy), 
end-users seemed to use it less like an tool for helping 
them interpret model quality and more like a quantity to 
maximize (e.g., “I wanted the graph to go up instead of 
concentrating on [the results]”). This emphasizes the need 
to consider a person’s understanding of the limitations (and 
benefits) of accepted machine learning techniques when 
designing interactive machine learning systems.  

Our evaluation also found that participants readily 
adopted revision mechanisms, making use of them in 68% 
of their tasks when it was available. Revision also led 
participants to achieve better quality final models in the 
same amount of time than when revision was not available.   
Furthermore, examining and revising actions is consistent 
with how people expect to interact with applications. One 
participant commented that without revision “it felt a little 
like typing on a keyboard without a backspace key”.

 While revision led our participants to create better 
quality final models, we still observed some decay in all 
conditions. This problem of helping people determine 
appropriate stopping points is related to the machine 
learning problem of identifying overfitting. Therefore, a 
perspective that considers both the human and the machine 
introduces new opportunities for solving these and other 
open problems in interactive machine learning.  

Conclusion 
In this work we explore how to design effective end-user 
interaction with interactive machine learning systems. 
While important problems remain, our explorations with 
CueFlik demonstrate that careful designs considering the 
needs of both end-users and machine learning algorithms 
can significantly impact the effectiveness of end-user 
interaction. Moreover, many of our techniques are not 
specific to image search or features of images. Techniques 
like overview-based example selection or revision of 
previous models can therefore potentially impact a wide 
variety of machine learning based applications. 
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