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Abstract

Ontology-based data access is a powerful form of extending
database technology, where a classical extensional database
(EDB) is enhanced by an ontology that generates new inten-
sional knowledge which may contribute to answer a query.
Recently, the Datalog± family of ontology languages was in-
troduced; in Datalog±, rules are tuple-generating dependen-
cies (TGDs), i.e., Datalog rules with the possibility of having
existentially-quantified variables in the head. In this paper
we introduce a novel Datalog± language, namely sticky sets
of TGDs, which allows for a wide class of joins in the body,
while enjoying at the same time a low query-answering com-
plexity. We establish complexity results for answering con-
junctive queries under sticky sets of TGDs, showing, in par-
ticular, that ontological conjunctive queries can be compiled
into first-order and thus SQL queries over the given EDB in-
stance. We also show some extensions of sticky sets of TGDs,
and how functional dependencies and so-called negative con-
straints can be added to a sticky set of TGDs without increas-
ing the complexity of query answering. Our language thus
properly generalizes both classical database constraints and
most widespread tractable description logics.

Introduction

Ontological Database Management Systems. We are cur-
rently witnessing the rise of a new type of database manage-
ment systems equipped with advanced reasoning and query
answering mechanisms. The necessity of combining onto-
logical reasoning and description logics (DLs) with database
techniques has emerged in both the DL and database com-
munities. In ontology-enhanced database systems, an ex-
tensional database D (also called ABox) is combined with
an ontological theory Σ (also called TBox) describing rules
and constraints which derive new intensional data from the
extensional data. Queries are not just answered against
the database D, but against the logical theory D ∪ Σ.
Thus, given a conjunctive query (CQ) of the form q(X) ←
body(X,Y), with output variables X, its answer in the on-
tological database consists of all tuples t of constants such
that D ∪ Σ |= ∃u body(t,u).

Interestingly, the well-known notion of chase (Maier,
Mendelzon, and Sagiv 1979; Johnson and Klug 1984; Fagin
et al. 2005; Deutsch, Nash, and Remmel 2008) of a database
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D w.r.t. an ontology Σ, denoted as chase(D,Σ), is a use-
ful tool for query answering. In particular, the answers to
a query q against D ∪ Σ coincide with the answers to q
over chase(D,Σ) (see, e.g., (Deutsch, Nash, and Remmel
2008)). Roughly speaking, the chase adds new tuples to D
(possibly with labeled nulls to represent unknown values)
until chase(D,Σ) satisfies all the constraints of Σ.

Research Challenges. A critical issue is that the chase of
a database w.r.t. an ontology is (in general) infinite, and thus
not explicitly computable.
Example 1 Consider a database D = {person(john)},
and the ontological theory Σ consisting of the constraints

person → ∃Y father(Y,X),
father(X,Y ) → person(X),

stating that every person has a father, who is himself a
person. Then, chase(D,Σ) is the infinite set of atoms D ∪
{father(z1, john), person(z1), father(z1, z2), person(z2),
father(z2, z3), pesron(z3), . . .}, where each zi is a labeled
null value.

Procedures for effectively answering queries, even when
the chase is infinite, were first developed in the database
context for the class of inclusion dependencies (IDs) (John-
son and Klug 1984). However, IDs alone are not ex-
pressive enough to capture some popular ontological con-
straints. Currently, there is a trend towards highly scal-
able procedures for query answering over ontologies. A
significant step forward in this direction was the introduc-
tion of the DL-Lite family of DLs (Calvanese et al. 2007;
Poggi et al. 2008).

Recently, the Datalog± family (Calı̀, Gottlob, and
Lukasiewicz 2009) has been proposed, with the purpose
of providing tractable query answering algorithms for more
general ontology languages. Datalog± languages are based
on Datalog rules that allow for the existential quantifica-
tion of variables in the head of the rules, in the same
fashion as Datalog with value invention (Mailharrow 1998;
Cabibbo 1998). As observed in (Patel-Schneider and Hor-
rocks 2007), the lack of value invention makes plain Data-
log not very well suited for ontological reasoning. The basic
Datalog± rules are so-called tuple-generating dependencies
(TGDs) (Beeri and Vardi 1981).

Given that CQ answering under TGDs is undecid-
able (Beeri and Vardi 1981), some syntactic restrictions are
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needed. Two fundamental restriction paradigms have been
studied so far for ensuring decidability, and in the case of
data complexity, i.e., the complexity w.r.t. the data only, also
tractability of query answering: weak acyclicity (Fagin et al.
2005) and guardedness (Calı̀, Gottlob, and Kifer 2008). The
chase under weakly-acyclic sets of TGDs always terminates,
and thus a finite instance C is constructed. Obviously query
answering over C is decidable. The decidability of query
answering under guarded TGDs, that is, TGDs with an atom
in their body, the so-called guard, that contains all the body-
variables, follows from the fact that the (possibly infinite)
instance constructed by the chase has bounded treewidth.

Summary of Contributions. Our goal is to identify new
expressive fragments of Datalog±, which are based on some
new decidability paradigm. As a central new class we pro-
pose the class of sticky sets of TGDs, which are sets of TGDs
with a restriction on multiple occurrences of variables in the
rule bodies. An informal explanation of stickiness, based on
the chase, is as follows. First, stickiness requires that ev-
ery TGD σ that has a double occurrence of a variable V in
its body, V occurs in every head-atom of σ. Furthermore,
whenever such a TGD is triggered during the chase and a
new atom a is obtained that has a value v in place of the
variable V , then the value v occurs in every atom obtained
by a chase derivation that involves a. In other words, every
value that arises in a new atom a through a join in a TGD-
body must be present in all further atoms derived from a.
We will define stickiness formally by an efficiently testable
condition involving variable marking.

Moreover, we briefly discuss some extended languages
obtained by combining stickiness with known decidability
paradigms, in particular with linearity (Calı̀, Gottlob, and
Lukasiewicz 2009) (linear TGDs are rules with just one
body-atom, and thus trivially guarded) and weak acyclic-
ity, without altering the complexity of query answering. By
combining sticky sets of TGDs with linear TGDs (resp.,
weakly-acyclic sets of TGDs) we obtain the class of sticky-
join (resp. weakly-sticky) sets of TGDs.

We then discuss how we can combine TGDs with neg-
ative constraints of the form ∀Xφ(X) → ⊥, where ⊥ is
the truth constant false, and functional dependencies (see,
e.g., (Abiteboul, Hull, and Vianu 1995)), without increasing
the complexity of query answering. This allows us to show
that our work properly generalizes the main DL-Lite lan-
guages, i.e., DL-LiteF , DL-LiteR and DL-LiteA (Calvanese
et al. 2007; Poggi et al. 2008). Moreover, it is possible to
show that these DLs can be extended with concept prod-
uct, a construct introduced in (Rudolph, Krötzsch, and Hit-
zler 2008) which, through rules of the form p(X), q(Y ) →
r(X,Y ), expresses the cartesian product of two concepts
(unary relations) p and q, without altering the complexity
of query answering.

Our main complexity results are summarized in Figure 1.
Recall that the data complexity of query answering is calcu-
lated taking only the database as input, while the query and
the set of TGDs are considered fixed. The combined com-
plexity is the complexity calculated considering as part of the
input, together with the database, also the query and the set
of TGDs. The results in this paper appeared in (Calı̀, Gott-
lob, and Pieris 2010a) and (Calı̀, Gottlob, and Pieris 2010b).

Language Data Complexity Comb. Complexity

STGDs in AC0 EXPTIME-complete
SJTGDs in AC0 EXPTIME-complete
WSTGDs PTIME-complete 2EXPTIME-complete

Figure 1: Complexity of query answering. STGDs, SJTGDs
and WSTGDs are abbreviations for sticky, sticky-join and
weakly-sticky sets of TGDs, respectively.

Preliminaries

We introduce the following pairwise disjoint sets of sym-
bols: (i) an infinite set Γ of constants, which constitute the
“normal” domain of a database, (ii) an infinite set ΓN of la-
beled nulls, which will be used as “fresh” Skolem terms, and
(iii) a set ΓV of variables, used in queries and dependencies.
Different nulls may represent the same value, and therefore
can be seen as variables. However, different constants rep-
resent different objects (unique name assumption). Sets of
variables (or sequences, with a slight abuse of notation) are
denoted as X, with X = X1, . . . , Xk, for some k > 0.

We will refer to a relational schema R, assuming that
database instances (or simply databases), queries and de-
pendencies use predicates of R. We assume the reader is
familiar with the relational model. We denote queries by q,
database instances by D, and the answers to a query q, eval-
uated on the database instance D, by q(D). In the following,
we shall consider conjunctive queries (CQs), with which we
assume the reader is familiar. Boolean CQs (BCQs) are
those with no variables in the head (i.e., with arity zero).
Database instances will be constructed with values from
Γ ∪ ΓN , and they will be possibly infinite.

An atom is an atomic formula of the form p(t1, . . . , tn),
where p is an n-ary predicate (also called relation name),
and each term ti is either a constant or a variable. An atom
is called ground if all of its terms are constants of Γ. A po-
sition p[i] of a relational schema is identified by a relational
predicate p and its i-th attribute, where the integer i can take
values between zero and the arity of p.

A substitution from one set of symbols S1 to another set
of symbols S2 is a function h : S1 → S2 defined as follows:
(i) ∅ is a substitution (empty substitution), (ii) if h is a sub-
stitution, then h∪{X → Y } is a substitution, where X ∈ S1

and Y ∈ S2, and h does not already contain some X → Z
with Y 	= Z. If X → Y ∈ h, then we write h(X) = Y . A
homomorphism from a set of atoms A1 to a set of atoms A2

is a substitution h : Γ∪ΓN ∪ΓV → Γ∪ΓN ∪ΓV such that:
(i) if t ∈ Γ, then h(t) = t, and (ii) if r(t1, . . . , tn) is in A1,
then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. The
notion of homomorphism naturally extends to conjunctions
of atoms.

A major issue in this work are database dependencies.
In the relational model, one of the most important classes
of dependencies are tuple-generating dependencies (TGDs),
which are a generalization of inclusion dependencies. A
TGD σ over a schema R is a first-order formula of the
form ∀X∀Yϕ(X,Y)→ ∃Zψ(X,Z), where ϕ(X,Y) and
ψ(X,Z) are conjunctions of atoms overR, called body and
head of the TGD, respectively. Such a dependency is sat-
isfied by a database D for R iff, whenever there exists a
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homomorphism h that maps the atoms of ϕ(X,Y) to atoms
of D, there exists an extension h′ of h (i.e., h′ ⊇ h) that
maps the atoms of ψ(X,Z) to D. To simplify the notation,
we will omit the universal quantifiers in TGDs.

We now define the notion of query answering under
TGDs. Given a database D and a set Σ of TGDs, we define
the set of instances B such that B |= D∪Σ as the set of mod-
els of D w.r.t. Σ, denoted as mods(D,Σ). The answers to
a CQ q on D w.r.t. Σ, denoted as ans(q,D,Σ), is the set of
tuples of constants t such that for every B ∈ mods(D,Σ),
it holds that t ∈ q(B). For a BCQ q, if the empty tuple 〈〉
belongs to ans(q,D,Σ), then we write D ∪ Σ |= q.

The chase procedure was introduced in order to enable
checking implication of dependencies (Maier, Mendelzon,
and Sagiv 1979), and later for checking query contain-
ment (Johnson and Klug 1984). Informally, the chase pro-
cedure is a process of repairing a database w.r.t. a set of
database dependencies, by adding tuples that may contain
labeled nulls to denote unknown values. By abuse of termi-
nology, with “chase” we refer both to the chase procedure
and to its output. We do not describe the chase in detail
here, and we refer the reader, for instance, to (Calı̀, Gott-
lob, and Pieris 2010a). The (possibly infinite) chase of a
database D w.r.t. a set Σ of TGDs, denoted as chase(D,Σ),
is a universal model of D w.r.t. Σ, i.e., for each instance
B ∈ mods(D,Σ), there exists a homomorphism that maps
chase(D,Σ) to B (Fagin et al. 2005; Deutsch, Nash, and
Remmel 2008). Using this fact it can be shown that for each
BCQ q, D ∪ Σ |= q iff chase(D,Σ) |= q.

We recall that BCQ answering is LOGSPACE-equivalent to
CQ answering (Calı̀, Gottlob, and Kifer 2008). Moreover,
it is easy to see that the query output tuple problem (as a
decision version of CQ answering) and BCQ answering are
mutually AC0-reducible. We shall henceforth consider BCQ
answering only.

Sticky Datalog±

In this section we present a new decidability paradigm called
stickiness. More precisely, the class of sticky sets of TGDs
(which forms the language sticky Datalog±) is introduced.

Formal Definition. The definition of sticky sets of TGDs
is based heavily on a variable-marking procedure called
SMarking. This procedure accepts as input a set of TGDs
Σ, and marks the variables that occur in the body of the
TGDs of Σ. Formally, SMarking(Σ) works as follows. First,
we apply the so-called initial marking step: for each TGD
σ ∈ Σ, and for each variable V in body(σ), if there exists
an atom a in head(σ) such that V does not appear in a, then
we mark each occurrence of V in body(σ). Then, we apply
exhaustively (i.e., until a fixpoint is reached) the propaga-
tion step: for each pair of TGDs 〈σ, σ′〉 ∈ Σ×Σ (including
the case σ = σ′), if a universally quantified variable V oc-
curs in head(σ) at positions π1, . . . , πm, for m � 1, and
there exists an atom a ∈ body(σ′) such that at each position
π1, . . . , πm a marked variable occurs, then we mark each
occurrence of V in body(σ). We are now ready to give the
formal definition of sticky sets of TGDs.

Definition 1 Consider a set Σ of TGDs over a schema R.
Σ is sticky iff there is no TGD σ ∈ SMarking(Σ) such that

a marked variable occurs in body(σ) more than once.

Example 2 Consider the following set of TGDs. We mark
the body-variables, according to the SMarking procedure,
with hat, e.g., X̂:

p(X̂, Ŷ ) → ∃Z p(Y, Z)

p(X, Ŷ ) → q(X)
q(X), q(Y ) → r(X,Y )

p(X, Ŷ ), p(Ẑ,X) → q(X).

The only variable that occurs more than once in the body of
a TGD, i.e., the variable X in the body of the last TGD, is
non-marked. Therefore, Σ is a sticky set.

Consider the simple database D = {p(a, a)} and the set
Σ of TGDs given in the above example. It is easy to ver-
ify that chase(D,Σ) is infinite, which implies that Σ is not
weakly-acyclic. In fact, the first rule of Σ by itself violates
weak acyclicity. Moreover, the extension of the relation r
in chase(D,Σ) is an infinite clique, and thus chase(D,Σ)
has infinite treewidth. This implies that Σ in non-guarded;
in particular, the third rule of Σ is a prime example of non-
guardedness. Actually, stickiness is incomparable to weak
acyclicity and guardedness.

It is straightforward to see that the problem of identifying
sticky sets of TGDs, that is, given a set Σ of TGDs, decide
whether Σ is sticky, is feasible in polynomial time. This
follows by observing that at each application of the propa-
gation step, during the execution of the SMarking procedure,
at least one body-variable is marked. Thus, after polynomi-
ally many steps the SMarking procedure terminates.

Sticky Property. It is interesting to see that the chase
constructed under a sticky set of TGDs enjoys a syntactic
property called sticky property. Before we proceed further
let us introduce a useful technical notion. Given a database
D for a schema R and a set Σ of TGDs over R, we de-
fine the binary relation

D,Σ−→ as follows. Suppose that in the
construction of chase(D,Σ) we apply a TGD σ ∈ Σ, with
homomorphism h, and the atom a is generated. Then, for

each b ∈ body(σ), we have h(b)
D,Σ−→ a.

Definition 2 Consider a database D for a schema R, and
a set Σ of TGDs over R. Suppose that in the construction
of chase(D,Σ) we apply σ ∈ Σ, with homomorphism h,
that has a variable V appearing more than once in its body,
and the atoms a1, . . . , ak, for k � 1, are generated. We say
that chase(D,Σ) has the sticky property iff, for each atom
a ∈ {a1, . . . , ak}, h(V ) occurs in a, and also in every atom

b such that 〈a, b〉 is in the transitive closure of
D,Σ−→.

The following theorem implies that stickiness is a suffi-
cient condition for the sticky property of the chase.
Theorem 1 Consider a set Σ of TGDs over a schema R. If
Σ is sticky, then chase(D,Σ) enjoys the sticky property, for
every database D forR.

Usefulness of Sticky Sets of TGDs. Together with stan-
dard constructs such as keys and negative constraints, sticky
sets of TGDs can express whatever is expressible in the well-
known DL-Lite versions DL-LiteA, DL-LiteR, and DL-
LiteF , and actually more. Therefore, wherever DL-Lite is
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appropriate for modeling ontological constraints, so are, a
fortiori, sticky sets of TGDs.

Sticky sets of TGDs can be used with relational database
schemas of arbitrary arity. Note that the above mentioned
DL-Lite languages are, as most description logics, usable for
binary relations only. In this sense, sticky sets of TGDs are
closer to the paradigm of database constraints, that make no
assumption about arity. In particular, sticky sets of TGDs
generalize the class of inclusion dependencies, while DL-
Lite constraints generalize unary and binary inclusion de-
pendencies only. DLR-Lite (Calvanese et al. 2006), a recent
generalization of DL-Lite to arbitrary arities, is also strictly
generalized by sticky sets of TGDs.

Sticky sets of TGDs can express constraints and rules
involving joins. We are convinced that the overwhelming
number of real-life situations involving such constraints can
be effectively modeled by sticky sets of TGDs. Of course,
since query answering under TGDs involving joins is unde-
cidable in general, we somehow needed to restrict the inter-
action of TGDs, when joins are used. But we believe that the
restriction imposed by stickiness is a very mild one. Only
rather contorted TGDs that seem not to occur too often in
real life violate it. For example, each singleton multivalued
dependency is sticky, as are many realistic sets of multival-
ued dependencies.

Sticky sets of TGDs very significantly generalize some
other constructs that were introduced to enhance DLs with
joins. Noticeably, Rudolph et al. (Rudolph, Krötzsch,
and Hitzler 2008) introduce the concept product, which,
through rules of the form p(X) ∧ q(Y ) → r(X,Y ), ex-
presses the cartesian product of two concepts (unary rela-
tions) p and q. This way one can, for instance, express
that all elephants are bigger than all mice: elephant(X) ∧
mouse(Y ) → bigger than(X,Y ). Several convincing ar-
guments are given in (Rudolph, Krötzsch, and Hitzler 2008)
to support the introduction of the concept product in DLs.
Note that concept products are very special cases of sticky
sets of TGDs.

Data Complexity. Let us know study the data complex-
ity of query answering under sticky sets of TGDs. A class C
of TGDs is first-order rewritable, henceforth abbreviated as
FO-rewritable, iff for every set Σ of TGDs in C, and for ev-
ery BCQ q, it is possible to construct a first-order query qΣ
such that, for every database D, D∪Σ |= q iff D |= qΣ (Cal-
vanese et al. 2007). Since answering first-order queries is in
the class AC0

1 in data complexity (Vardi 1995), it immedi-
ately follows that for FO-rewritable TGDs, query answering
is in AC0 in data complexity.

To establish FO-rewritability of sticky sets of TGDs, we
first prove that they enjoy the so-called bounded derivation-
depth property (BDDP) (Calı̀, Gottlob, and Lukasiewicz
2009). The derivation depth of an atom in chase(D,Σ) is
defined inductively as follows. The atoms of D have deriva-
tion depth zero. Let a be an atom obtained by the atoms
a1, . . . , an through the application of a TGD σ ∈ Σ. Let
also d be the maximum depth of an atom among a1, . . . , an.

1This is the complexity class of recognizing words in languages
defined by constant-depth Boolean circuits with an (unlimited fan-
in) AND and OR gates.

Then, the derivation depth of a is d + 1. We denote by
chasek(D,Σ) the initial part of the chase constituted by
atoms of derivation depth at most k.

Definition 3 A class C of TGDs enjoys the BDDP iff for ev-
ery BCQ q, for every instance D, and for every set Σ ∈ C, if
D ∪ Σ |= q, then chasek(D,Σ) |= q, where k depends only
on q and Σ, i.e., k is constant w.r.t. the size of the data.

As shown in (Calı̀, Gottlob, and Pieris 2010a), the
class of sticky sets of TGDs enjoys the BDDP. It is well-
known that the BDDP is a sufficient condition for FO-
rewritability (Calı̀, Gottlob, and Lukasiewicz 2009). The
desired result follows immediately.

Theorem 2 BCQ answering under sticky sets of TGDs is in
AC0 in data complexity.

Combined Complexity. Let us know study the combined
complexity of query answering under sticky sets of TGDs.
First, observe that BCQ answering under a fixed sticky set of
TGDs is NP-hard. This is derived from the NP-hardness of
CQ containment (which in turn is polynomially equivalent
to CQ answering) without constraints (Chandra and Mer-
lin 1977). BCQ answering under (general) sticky sets of
TGDs is EXPTIME-hard. This is established by showing the
EXPTIME-hardness of the fact inference problem for loss-
less Datalog. Lossless Datalog programs, which are triv-
ially sticky sets of TGDs, are Datalog programs where each
rule enjoys the following property: all variables in the body
occur also in the head.

The desired upper bounds are established by exhibiting an
algorithm that runs in NPC , i.e., in non-deterministic poly-
nomial time with an oracle C, where C = ALOGSPACE
(resp., APSPACE), when the set of TGDs is fixed (resp., arbi-
trary). Note that ALOGSPACE and APSPACE denote alternat-
ing LOGSPACE and alternating PSPACE, respectively. Since
ALOGSPACE = PTIME and APSPACE = EXPTIME, the fol-
lowing complexity characterization follows immediately.

Theorem 3 BCQ answering under sticky sets of TGDs is
NP-complete, if the set of TGDs is fixed, and is EXPTIME-
complete, in general.

Extending Stickiness

Sticky-Join Datalog±. Sticky sets of TGDs are arguably a
very relevant and applicable modeling tool. However, they
are not expressive enough for being able to model simple
cases such as the linear TGD r(X,Y,X) → ∃Z p(Y, Z);
clearly, the variable X is marked, and thus stickiness is
violated. The question that comes up is whether a FO-
rewritable class can be defined that captures both sticky
sets of TGDs and linear TGDs. At the first glance it may
seen that it could be sufficient to allow a marked variable
V to occur more than once in the body of a TGD, as long
as V appears only in one body-atom. The obtained class,
which we call atom-sticky sets of TGDs, captures linear
TGDs. Nevertheless, as shown by the following example,
FO-rewritability is not preserved.

Example 3 Consider the TGD σ : r(X,Y ), r(Y, Z) →
r(X,Z). Observe that this rule captures the transitive
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closure of the binary relation r, which in general can-
not be done using a finite number of first-order queries.
Now, we transform σ into the set Σ of TGDs consisting of
r(X,Y ), r(Y ′, Z) → s(X,Y, Y ′, Z) and s(X,Y, Y, Z) →
r(X,Z). Clearly, Σ is not sticky since in the body of the
second rule the marked variable Y occurs more than once.
However, Y occurs in one atom only, and thus Σ is atom-
sticky. Notice that, given a database D, the set of atoms
with predicate r in chase(D, {σ}) and chase(D,Σ), re-
spectively, coincide. This implies that if atom-sticky sets of
TGDs are FO-rewritable, then transitivity can be captured
using a finite number of first-order queries which is a con-
tradiction.

It turns out that the class of atom-sticky sets of TGDs is
not only non-FO-rewritable, but is undecidable. This can be
shown by employing the same principle as in the Example 3
to transform an arbitrary set of TGDs into an atom-sticky set.
Notice that such transformation was employed in (Calı̀, Got-
tlob, and Pieris 2010b) to show that BCQ answering under
joinless TGDs, i.e., TGDs where every body-variable occurs
in at most one atom, or, equivalently, is not in a join, which
is a special case of the proposed class, is undecidable.

A more restrictive condition than atom-stickiness, that
gives rise to the class of sticky-join sets of TGDs (which
forms the language sticky-join Datalog±) was proposed
in (Calı̀, Gottlob, and Pieris 2010b). The chase constructed
under a sticky-join set of TGDs enjoys the so-called sticky-
join property.
Definition 4 Consider a database D for a schema R, and
a set Σ of TGDs over R. Suppose that in the construction
of chase(D,Σ) we apply σ ∈ Σ, with homomorphism h,
that has a variable V in its body which is in a join, and the
atoms a1, . . . , ak, for k � 1, are generated. We say that
chase(D,Σ) has the sticky-join property iff, for each atom
a ∈ {a1, . . . , ak}, h(V ) occurs in a, and also in every atom

b such that 〈a, b〉 is in the transitive closure of
D,Σ−→.

Observe that the only difference between the sticky and
the sticky-join property is that the latter applies stricter cri-
teria whether a symbol (either a constant or a labeled null)
must occur in every atom of a certain part of the chase.
Clearly, if the chase has the sticky property, then enjoys also
the sticky-join property; however, the converse is not true.
The next result establishes that the chase constructed under
a sticky-join set of TGDs fulfills the sticky-join property.
Theorem 4 Consider a set Σ of TGDs over a schema R.
If Σ is sticky-join, then chase(D,Σ) enjoys the sticky-join
property, for every database D forR.

Similarly to sticky sets, sticky-join sets of TGDs are de-
fined by a testable condition based on variable-marking.
However, the marking procedure for this new class is more
sophisticated, and for this reason the problem of identifying
whether a set of TGDs is sticky-join is much harder than
the one of identifying sticky sets; in particular, is PSPACE-
complete. Due to lack of space, the formal definition of
sticky-join sets of TGDs is omitted, and we refer the inter-
ested reader to (Calı̀, Gottlob, and Pieris 2010b).

Interestingly, the alternating algorithm proposed for query
answering under sticky sets of TGDs, can be also used for

query answering under sticky-join sets of TGDs. This al-
lows us to show that the extension from sticky to sticky-join
sets can be done without paying a price in the complexity of
query answering.

Theorem 5 BCQ answering under sticky-join sets of TGDs
is in AC0 in data complexity. Also, is NP-complete, if the set
of TGDs is fixed, and is EXPTIME-complete, in general.

Weakly-Sticky Datalog±. A more general class, that
generalizes both stickiness and weak acyclicity, called
weakly-sticky sets of TGDs (and forms the language weakly-
sticky Datalog±), is proposed in (Calı̀, Gottlob, and Pieris
2010b).

Roughly, in a weakly-sticky set, the variables that occur
more than once in the body of a TGD are non-marked or
occur at positions where a finite number of symbols can ap-
pear during the construction of the chase. Since the chase
under a weakly-acyclic set over a schema R always termi-
nates, at every position of R only finitely many values can
appear during the construction of the chase. Hence, every
weakly-acyclic set of TGDs is indeed weakly-sticky.

Analogously to weakly-sticky sets, the class of weakly-
sticky-join sets of TGDs, that generalizes both sticky-join
and weakly-acyclic sets, can be defined (Calı̀, Gottlob, and
Pieris 2010b).

The desired upper bounds of the complexity of query an-
swering under weakly-sticky(-join) sets of TGDs are ob-
tained by extending the alternating algorithm employed for
sticky sets. The PTIME-hardness of data complexity fol-
lows immediately from the PTIME-hardness of fact infer-
ence in Datalog programs (since a Datalog program is triv-
ially a weakly-sticky set of TGDs). Finally, the 2EXPTIME-
hardness of combined complexity is established by simu-
lating the behavior of a 2EXPTIME Turing machine using a
weakly-sticky set of TGDs; in fact, this can be done using a
weakly-acyclic set of TGDs.

Theorem 6 BCQ answering under weakly-sticky(-join) sets
of TGDs is PTIME-complete in data complexity. Also, is
NP-complete, if the set of TGDs is fixed, and is 2EXPTIME-
complete, in general.

Additional Features

Negative Constraints. A negative constraint (NC) is a
first-order formula of the form ∀Xφ(X) → ⊥, where
⊥ denotes the truth constant false. Using NCs we can
state, for example, that professors and students are disjoint
sets: ∀X professor(X), student(X) → ⊥. As established
in (Calı̀, Gottlob, and Lukasiewicz 2009), checking whether
a set of constraints is satisfied by a database and a set of
TGDs is tantamount to query answering. Consequently, we
obtain that the addition of NCs does not increase the com-
plexity of BCQ answering under the classes of TGDs pre-
sented in the previous sections.

Functional Dependencies. While the addition of NCs
can be done effortless, from a computation perspective, the
addition of functional dependencies (FDs) (Abiteboul, Hull,
and Vianu 1995), with which we assume the reader is famil-
iar, is tricky. In the presence of TGDs and FDs, the chase
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also needs to repair according to FDs, which is done by uni-
fying values. When the chase attempts at unifying (equating)
two constants, there is a hard violation, and the chase fails as
the theory is inconsistent. In certain favorable cases, a con-
trolled interaction of TGDs and FDs is achieved, so that FDs
do not increase the complexity of query answering. This is
captured by the notion of separability (Calı̀, Gottlob, and
Lukasiewicz 2009), which, roughly speaking, states that if
there is no chase failure, then we can ignore the FDs and
proceed with the TGDs only. It is possible to show that, if
TGDs and FDs are separable, then the complexity of BCQ
answering is the same as in the case with TGDs alone. A suf-
ficient syntactic condition for separability of sets of TGDs
and FDs is given in (Calı̀, Gottlob, and Pieris 2010a); sets
that satisfy this condition are called non-conflicting.

Ontology Querying
Non-conflicting sticky sets of TGDs and FDs, with the
addition of NCs, are strictly more expressive than DL-
LiteF , DL-LiteR and DL-LiteA (Calvanese et al. 2007;
Poggi et al. 2008).
Example 4 The DL-Lite assertions

Professor � Member ,
Phd student � Member ,

Member � ∃worksIn,
Professor � ∃leaderOf ,
∃worksIn− � Group,
∃leaderOf − � Group,
Professor � ¬Phd student ,

state that professors and phd students work in research
groups, professors are leaders of research groups, and no
phd student is also a professor (and vice-versa). Also, the
functionality assertion (funct leaderOf ) states that every
professor is the leader of at most one research group.

The above TBox is translated into the following set of
TGDs, NCs and FDs

Professor(X) → Member(X),
Phd student(X) → Member(X),
Member(X) → ∃Y worksIn(X,Y ),
Professor(X) → ∃Y leaderOf (X,Y ),
worksIn(X,Y ) → Group(Y ),
leaderOf (X,Y ) → Group(Y ),
Professor(X),Phd student(X) → ⊥,
leaderOf : {1} → {2}.

Notice that the set of TGDs given above is sticky (in fact,
they are inclusion dependencies).

By observing that concept products (Rudolph, Krötzsch,
and Hitzler 2008), that is, rules of the form p(X), q(Y ) →
r(X,Y ) which express the cartesian product of two con-
cepts (unary relations) p and q, are very special cases of
sticky sets of TGDs, it is possible to show that the above
DL-Lite languages can be extended with concept product,
without increasing the complexity of query answering.
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