
Grammatical Error Detection for Corrective
Feedback Provision in Oral Conversations

Sungjin Lee, Hyungjong Noh, Kyusong Lee, Gary Geunbae Lee
Department of Computer Science and Engineering,

Pohang University of Science and Technology (POSTECH), South Korea
{junion, nohhj, kyusonglee, gblee}@postech.ac.kr

Abstract
The demand for computer-assisted language learning
systems that can provide corrective feedback on language
learners’ speaking has increased. However, it is not a trivial
task to detect grammatical errors in oral conversations
because of the unavoidable errors of automatic speech
recognition systems. To provide corrective feedback, a
novel method to detect grammatical errors in speaking
performance is proposed. The proposed method consists of
two sub-models: the grammaticality-checking model and the
error-type classification model. We automatically generate
grammatical errors that learners are likely to commit and
construct error patterns based on the articulated errors.
When a particular speech pattern is recognized, the
grammaticality-checking model performs a binary
classification based on the similarity between the error
patterns and the recognition result using the confidence
score. The error-type classification model chooses the error
type based on the most similar error pattern and the error
frequency extracted from a learner corpus. The
grammaticality-checking method largely outperformed the
two comparative models by 56.36% and 42.61% in F-score
while keeping the false positive rate very low. The error-
type classification model exhibited very high performance
with a 99.6% accuracy rate. Because high precision and a
low false positive rate are important criteria for the
language-tutoring setting, the proposed method will be
helpful for intelligent computer-assisted language learning
systems.

Introduction
Computer-based methods for learning language skills and
components are increasingly being used (Stockwell, 2007).
These tools assist in the linguistic development of students
by providing more language-learning opportunities than
human teaching methods. One of the ultimate goals of

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

computer-assisted language learning (CALL) is to provide
learners with an environment that facilitates the acquisition
of communicative competence, especially oral skills.

As a result, the demand for CALL systems that help
language learners develop oral skills has increased, and
numerous CALL systems for pronunciation training have
been developed to meet this demand (Dalby, 2005; Neri,
Cucchiarini, and Strik, 2001). However, pronunciation is
only one of the skills required for proficiency in speaking a
second language; a learner must also acquire other
important aspects of the spoken language, such as
morphology and syntax. To account for this fact, CALL
systems have been developed to detect grammatical errors
in speaking performance, provide learners with corrective
feedback, and allow learners to try repeatedly until they
manage to produce the correct form.

However, it is not a trivial task to detect grammatical
errors in oral conversations because of the unavoidable
errors of automatic speech recognition (ASR) systems. The
ASR errors make it mostly impossible to employ parser-
based methods which have usually been developed to
detect grammatical errors in learners’ writings (Heift and
Schulze, 2007). As grammatical error detection in speaking
performance is in a relatively early stage, only a few
reports have been published. In addition, most previous
studies have lacked proper evaluations to judge the
usefulness for language tutoring. In this paper, we propose
a novel method capable of handling ASR errors and we
provide several evaluation results that are helpful in
considering the practicality of the method.

The remainder of this paper is structured as follows.
Section 2 briefly describes related studies. Section 3
presents a detailed description of the methods. Section 4
outlines the experimental setup. Section 5 shows the results
and discusses their meaning. Finally, Section 6 offers our
conclusion.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

797

Related Work
Many research projects have tested the idea of providing
pronunciation training using a speech recognizer, but few
systems exist that detect grammatical errors in speaking
performance and provide learners with corrective feedback.

The Let’s Go system (Raux and Eskenazy, 2004) is a
spoken dialog system that provides bus schedules. The
researchers adapted non-native speakers’ speech data and
modified the semantic-parsing grammar that originally was
developed for the native speaker. Modifications include the
addition of new words, new constructs and the relaxation
of some syntactic constraints to accept ungrammatical
sentences. Based on the recognition result for the user
utterance, the system computes its distance to each target
sentence using dynamic programming and selects the
closest target. If the two match exactly, no correction is
produced and the dialogue continues normally. If words
were deleted, inserted or substituted by the non-native
speaker, they generate both confirmation and correction.
The idea is that whenever a non-native speaker utters an
ungrammatical utterance, the speaker’s goal was actually
to utter one of the target sentences, but the speaker made a
mistake by inserting, deleting or substituting a word. The
evaluation results, however, showed numerous false
positives (i.e., the user utterance was judged as
ungrammatical although it was grammatical), and most of
them were caused by ASR errors. This result clearly shows
that we need to take into consideration ASR errors when
we judge grammaticality to reduce false positives.

The Spoken Electronic Language Learning (SPELL)
system (Morton and Jack, 2005) provides opportunities for
learning languages in functional situations such as going to
a restaurant or expressing (dis-)likes. Recast feedback is
provided if the learner's response is semantically correct
but has some grammatical errors. To reduce the confusion
between ASR errors and grammatical errors, the system
embeds error checking into the speech recognition process.
Within the constrained environment defined for SPELL, it
is readily possible to predict to a reasonable degree what
learners might say at any given stage; similarly, it is then
possible to predict certain grammatical errors that they
might make. The aim is to develop finite-state network
(FSN)-based recognition grammars specifically for non-
native speakers that take into account both grammatical
and ungrammatical predicted responses (Figure 1).
However, this study did not conduct experiments on the
performance of the error detection component. Therefore,
we implemented the method as the baseline system and
performed comparative experiments with our method.

The Development and Integration of Speech technology
into COurseware for language learning (DISCO) system
(Cucchiarini, Doremalen, and Strik, 2008) is under
development and supposed to extend the previous

pronunciation training project to morphology and syntax
training in well-designed exercises. The aim of the DISCO
project is to optimize Dutch learning through interaction in
realistic communication situations and provide intelligent
feedback on important aspects of speaking. For detecting
morphological and syntactic errors, grammatical error
simulation software can be used. This software takes
appropriate responses as input and expands them to form
pools of correct and incorrect responses. Similar to SPELL,
the speech recognition module determines which utterance
was spoken and the system determines whether errors have
been made depending on which of the possible utterances
has been recognized. The evaluation on the DISCO system
has not yet been performed because the system is currently
under development.

Grammatical Error Detection
The simplest way to detect grammatical errors in speaking
performance while reducing the hindrance of ASR errors is
the method employed in SPELL and DISCO. The system
takes appropriate responses as input and expands them
using a grammatical error simulator to form FSN-based
recognition grammars that include both correct and
incorrect responses. The system determines whether errors
have been made depending on which of the possible
utterances has been recognized. However, this approach
has severe drawbacks. As the grammar size exponentially
increases because of the numerous ungrammatical
responses, the recognition performance sharply decreases.
Often the recognized hypothesis could be a totally different
utterance because the FSN-based Viterbi-decoding
searches for the hypothesis at a nearly utterance level.
Moreover, even if the recognized hypothesis is similar to
the learner’s speech, it could be useless for error detection.
Because of the grammatical error simulation, we have
many similar ungrammatical variants of a correct response.
When the learner’s utterance is one of the variants, it is
highly likely that these similar variants are placed on the
N-best hypotheses. However if the right hypothesis is not

Figure 1: An example of FSN-based recognition grammar to
detect possible preposition errors for the correct response “I am
here on business”

798

the top hypothesis, the system would produce wrong
feedback because the system takes only the top hypothesis.
Therefore, we investigate a method that uses ASR systems
with an N-gram language model to not get a totally
different hypothesis and that considers multiple hypotheses
based on confidence scores at a word level by exploiting a
confusion network (CN) (Mangu, Brill, and Stolcke, 2000).
According to Mangu, Brill, and Stolcke (2000), the
posterior probability of a word hypothesis can serve as a
confidence score for the word to occur at the position.
Unlike previous methods that just rely on the Viterbi-
decoding process of ASR systems, this approach allows us
to use machine learning techniques that we can try various
useful features and have more opportunity to optimize a
sophisticated objective function such as a low false
positive rate and a high F-score.

Besides ASR errors, there are several factors that make
it hard to detect grammatical errors. Because there are far
more grammatical words than ungrammatical words in the
data, the grammatical error detection model, which is
implemented as a classifier, must be constructed to
effectively learn from the imbalanced data distribution.
When accuracy is the performance measure, using the
classifier trained on the highly imbalanced data simply
produces the majority class for all test data to achieve the
best performance. In addition, the number of error types to
classify is relatively large. This can make the model
learning and selection procedure vastly complicated.
Therefore, to cope with these difficulties, we divide the
grammatical error detection model into two sub-models:
the grammaticality-checking model and the error-type
classification model (Figure 2).

Grammaticality Checking Model
The grammaticality-checking task takes the recognized
hypothesis in the form of a CN and determines the
grammaticality at each word position in sequence. Even
without error type information, the grammaticality-
checking function may be very useful for some
applications, e.g., categorizing learners’ proficiency level
and generating implicit corrective feedback such as
repetition, elicitation, and recast feedback.
Feature Extraction
To judge the grammaticality, we first extract error patterns
from the simulated ungrammatical responses. The error

pattern is a 5-tuple consisting of the erroneous word and its
two left and two right neighbor words. For example, the
error pattern for the proposition error at ‘at’ for the
utterance ‘I am here at business’ will be a tuple <‘am’,
‘here’, ‘at’, ‘business’, ‘-’ 1 >. The error pattern is also
tagged with the error type and structural deviation (e.g.,
deletion or substitution) for the error-type classification
task.

When a speech is recognized, at each position in the CN,
we extract a feature vector by comparing the error patterns
with the segment of the CN, consisting of the target
position and the two left and right neighboring positions.
We extracted seven features (Table 1) for each error
pattern. For example, if the first word in the error pattern
exists among the competing word hypotheses at the first
position in the CN, then we take the confidence score of
the matched word hypothesis as the S1 feature. If there is
no matched word hypothesis, we simply set the feature to
zero.

 The higher the matching scores an error pattern has, the
more likely the recognized result has the relevant error in it.
Because the number of error patterns is very large and
likely uninformative, only the features extracted from top
10 error patterns ranked by the TS feature are used. In
addition, we perform a similar feature extraction process at
the parts-of-speech (POS) level. We apply POS tagging to
both the recognition result and the error patterns to get
additional features from the top 10 POS-level error patterns.
The POS-level features contribute to raising the recall rate
by alleviating the data sparseness problem of lexical-level
features. Figure 3 depicts the aforementioned feature
extraction process.
Model Selection and Parameter Learning
We use the LIBSVM (Chang and Lin, 2001) Support
Vector Machine (SVM) classifier to produce a model that
predicts grammaticality. We use a radial basis function
(RBF) as the kernel because unlike linear kernels, an RBF
kernel allows us to handle nonlinear interactions between
attributes (e.g., dependency between the feature SD and the

1 ‘-’ is a blank symbol.

Figure 2: The grammatical error detection model consists of
two sub-models

Feature Description

S1 Confidence score of the word hypothesis matching the
first word in the error pattern

S2 Confidence score for the second word in the error pattern
S3 Confidence score for the third word in the error pattern
S4 Confidence score for the fourth word in the error pattern
S5 Confidence score for the fifth word in the error pattern
TS Total score of L2, L1, TW, R1 and R.

SD Indicator of structural error type:
1 for Deletion and 0 for Substitution

Table 1: Description of features extracted from each error pattern
to train the grammaticality checking model

799

other features in Table 1) and relationship between class
labels and attributes. We conduct simple scaling on the
data to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges. We linearly
scale each attribute to the range [0, 1]. As mentioned
before, the grammaticality-checking task is non-trivial
because of the highly imbalanced data distribution. To
address this problem, we can oversample the minority class
or undersample the majority class to make the data
balanced. Also we can implement cost-sensitive learning to
assign a larger penalty value to false negatives versus false
positives. Without loss of generality, we will assume that
the positive class is the minority class (i.e., ungrammatical),
and the negative class is the majority class. However, these
approaches do not explicitly optimize the objective
function that is important for a tutoring setting. For
example, false positives (i.e., the user utterance was judged
as ungrammatical although it was grammatical) are more
detrimental than false negatives. Furthermore, precision is
more important than recall. Therefore, in this study, we
solve the problem by using a custom objective function
instead of using accuracy as a performance measure. The
objective function to optimize for this study is:

There are two parameters for an RBF kernel: and . To
find the best parameters and that optimize the objective
function, we perform a grid-search using 5-fold cross-
validation.

Error Type Classification Model
To provide meta-linguistic feedback (i.e., detailed
explanations about the grammatical error), we need to
identify the error type. Identifying the error type is also
beneficial to construct the learner model. Thus, we perform
error-type classification for the words that are determined
as ungrammatical by the grammaticality-checking model.
The simplest way to classify the error type is to choose the
error type associated with the top ranked error pattern. But
this approach has two flaws: it does not have a principled
way to break tied error patterns, and it does not consider
the error frequency. Therefore, to solve both problems at
the same time, we reorder error patterns by weighting more
heavily errors that occur more frequently:

,

where returns the TS feature of the error pattern and
 returns the error frequency of the relevant error,

normalized summing to one. We set the constant as 0.1
for this study.

Experimental Setup
To evaluate the proposed method, we apply the method to
detect grammatical errors of Korean learners of English.

Grammatical Error Simulation
One of the key elements to the development of ASR-based
CALL systems for morphology and syntax training is to
expand the recognition grammar to include not only
grammatical responses but also ungrammatical responses.
In SPELL, as each new scenario is developed, it is

Figure 3: An illustration of feature extraction process. PRP_LXC and AT denote proposition lexical error and article error. SUB and
DEL mean substitution and deletion

800

essential to create ungrammatical responses by hand.
However, using human experts to anticipate various types
of grammatical errors and list all possible realizations of
the errors is too laborious and costly. Thus, as in DISCO,
automatic generation of realistic grammatical errors to
create recognition grammars is crucial to the development
of such systems. Inspired by Lee et al. (2009), we
developed a grammatical error simulator that generates
errors that Korean learners of English usually make. To
generate realistic errors, expert knowledge of language
learners’ error characteristics was imported into a
statistical modeling system that uses Markov logic
(Richardson and Domingos, 2006). A Markov logic
network (MLN) can be seen as a first-order knowledge
base with weights attached to each of the formulas. A total
of 119 MLN formulas were written. For example, English
learners often commit pluralization errors with irregular
nouns. These errors result because they over-generalize the
pluralization rule, e.g., attaching ‘s/es’ to the end of a
singular noun, so that they apply the rule even to irregular
nouns such as ‘mice’ and ‘feet’. This characteristic is
captured by the simple formula:

� ,

where is true if and only if
the -th word of the sentence is an irregular plural,
stands for plural noun, and is the abbreviation for
noun number error.

We learned the weights of first-order formulas from the
NICT JLE corpus (Izumi, Uchimoto, & Isahara, 2005).
This is a speech corpus of Japanese speakers learning
English2. The corpus data were obtained from 1,281 audio-
recorded speech samples, 167 of which are error-annotated,
from an English oral proficiency interview test. The
current version of the error tagset targets morphological,
grammatical, and lexical errors and can describe diverse
grammatical errors. The error tagset currently includes 46
tags. Because of the space limitation, please refer to Izumi,
Uchimoto, and Isahara (2005) for the full list of error types.
Lexis errors related to open-word class (i.e., n_lxc, v_lxc,
aj_lxc, and av_lxc), were excluded in this experiment
because realizing such errors without encountering the data
sparseness problem requires a huge amount of learner data.
Some other errors (i.e., o_je, o_lxc, o_odr, o_uk, and o_uit)
were also excluded because these error categories have not
yet been clearly analyzed for practical applications. Error
categories that occurred less than five times were also
excluded to improve reliability. This results in a total of 23

2 Unfortunately, there is no Korean learners’ corpus. But Korean and
Japanese speakers learning English have very similar error characteristics
because the two languages have very similar grammatical structures.

error types. In addition, we did not explicitly generate
insertion errors because many insertion errors appear
implicitly as replacement errors in the NICT JLE corpus.
The insertion errors, which are not covered in this model,
usually relate to vocabularies in open-word classes or are
highly unpredictable even when linguistic context is taken
into account.

Data Preparation and Setup of Grammatical
Error Detection Models
We took 100 utterances from the NICT JLE corpus and
expanded it to form the pool of 5000 utterances using the
grammatical error simulator. For the training data, we
randomly chose 250 utterances from the utterance pool and
ten male Korean speakers to each read 50 utterances,
resulting in 500 recordings. For the test data, we randomly
chose 50 utterances from the utterance pool and ten male
Korean speakers to each read the utterances, resulting in
500 recordings.

We developed our own English ASR system to
recognize Korean learners’ English more reliably. The
acoustic model is based on 3-state left-to-right, context-
dependent, 8-mixture, and cross-word tri-phone models,
trained on the Korean-Spoken English Corpus (Rhee et al.,
2004) using the HTK version 3.4.1 toolkit (Young et al.,
2009). A backed-off bigram trained on the 5000 utterances
is used as a language model to cover both grammatical and
ungrammatical utterances. The lattice output of the speech
recognizer is converted to the CN using the lattice-tool
(Stolcke, 2002). After constructing the English ASR
system, the recognition performance of the ASR system
was evaluated on both the traininig and test speech data.
The word error rate was 15.20% at the vocabulary size of
530.

For a comparative evaluation on the grammaticality-
checking task, we developed the proposed method and also
implemented the FSN-based ASR system (FSN in Table 2)
which was employed in SPELL and DISCO as the baseline
system. In addition, to verify the effect of confidence
score-based soft match, we developed an exact pattern
match-based method (EPM in Table 2) that judges the
recognition result as ungrammatical only when there is an
error pattern that exactly matches the sequence formed by
picking the word with highest confidence score at each
position in the CN. For a comparative evaluation on the
error-type classification task, we developed the proposed
method with the error frequency estimated from the NICT
JLE corpus and implemented the method that takes the
error type of the top ranked error pattern as the baseline
system.

801

Results and Discussion
The results showed that the proposed model largely
outperformed the baseline FSN model for all metrics
(Table 2). It is because the FSN-based Viterbi-decoding
exhibited a very low sentence-level recognition
performance due to the relatively large size of the
recognition grammar consisting of many similar variants
for various grammatical errors. This affects not only the
precision and recall but also the false-positive rate, where it
can be detrimental for language tutoring by frustrating
learners. The proposed method also surpasses the EPM
model in F-score. It is attributed to the large gain in the
recall rate. The proposed method achieves a far higher
recall rate than that of the EPM model by exploiting a soft
pattern match based on the confidence score. Furthermore,
the proposed method lost little precision by virtue of the
SVM model optimization to satisfying the constraints on
the precision and false positive rate. Both the EPM model
and proposed model showed a very low false positive rate.
This implies that the proposed method is very suitable for
educational applications. For the error-type classification
task, the baseline method that does not consider the error
frequency showed an accuracy of 95.55%. The proposed
method improved the baseline performance by 4.05%. The
result of the baseline model is quite good already, but the
incorporation of error frequency into the model gives us an
additional performance gain.

Conclusion
This study proposed a novel method to detect grammatical
errors in speaking performance to provide corrective
feedback on grammatical errors. The results showed that
for the grammaticality-checking task, the proposed method
largely outperformed the two comparative models
respectively by 56.36% and 42.61% in F-score while
keeping the false positive rate very low. For the error-type
classification task, the proposed method exhibited very
high performance with a 99.6% accuracy rate. Because
high precision and a low false positive rate are important
criteria for the language tutoring setting, the proposed
method will be helpful for intelligent CALL systems.

Acknowledgement
This work was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2010-0019523).

References
Chang, C., and Lin, C., 2001. LIBSVM : a library for support
vector machines.
Cucchiarini, C., van Doremalen, J., & Strik, H., 2008. DISCO:
Development and Integration of Speech technology into
Courseware for language learning. Proceedings of Interspeech,
Brisbane, Australia.
Dalby, J., and Kewley-Port, D. 2005. Explicit pronunciation
training using automatic speech recognition technology. In: Yong,
Z. (ed.), Research in technology and second language education:
developments and directions. Connecticut: Information Age
Publishing.
Heift, T., and Schulze, M., 2007. Errors and Intelligence in CALL.
Parsers and Pedagogues.New York: Routledge.
Izumi, E., Uchimoto, K., and Isahara, H. 2005. Error annotation
for corpus of Japanese Learner English. Proceedings of the Sixth
International Workshop on Linguistically Interpreted Corpora.
Lee, S., and Lee, G. 2009. Realistic grammar error simulation
using Markov Logic. Proceedings of the ACL-IJCNLP
Conference.
Mangu, L., Brill, E., and Stolcke, A. 2000. Finding consensus in
speech recognition: word error minimization and other
applications of confusion networks. Computer Speech and
Language, 14:373–400.
Morton, H. and Jack, M., 2005. Scenario-based spoken
interaction with virtual agents.Computer Assisted Language
Learning, 18(3): 171–191.
Neri, A., Cucchiarini, C. and Strik, H. 2001. Effective feedback on
L2 pronunciation in ASR-based CALL. Proceedings of the
workshop on Computer Assisted Language Learning, Artificial
Intelligence in Education Conference. San Antonio, Texas.
Raux, A., and Eskenazi, M., 2004. Using task-oriented spoken
dialogue systems for language learning: potential, practical
applications and challenges. InSTIL/ICALL Symposium, Venice,
Italy.
Rhee, S., Lee, S., Kang, S., and Lee, Y., 2004. Design and
construction of Korean-Spoken English Corpus (K-SEC). In: Proc.
ICSLP, Jeju, Korea.
Richardson, M. & Domingos, P., 2006. Markov logic networks.
Machine Learning, 62(1), 107–136.
Stockwell, G., 2007. A review of technology choice for teaching
language skills and areas in the CALL literature. ReCALL,
19(02), 105–120.
Stolcke, A. 2002. SRILM - An Extensible Language Modeling
Toolkit. Proc. Intl. Conf. on Spoken Language Processing, vol. 2,
pp. 901-904, Denver.
Young, S. et al., 2009. The HTK Book. Microsoft Corporation,
Cambridge University Engineering Department.

Model Precision
(%)

Recall
(%)

F-score
(%)

False
Positive
Rate (%)

FSN 19.30 18.60 18.94 6.25

EPM 97.44 19.64 32.69 0.04

Proposed 91.82 63.82 75.30 0.46

Table 2: Experimental results on the grammaticality-checking task

802

