Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

Scaling Up Reinforcement Learning
through Targeted Exploration

Timothy A. Mann and Yoonsuck Choe
Department of Computer Science & Engineering
Texas A&M University
3112 TAMU, College Station, TX 77843-3112, USA
{ mann23, choe } @tamu.edu

Abstract

Recent Reinforcement Learning (RL) algorithms, such as R-
MAX, make (with high probability) only a small number of
poor decisions. In practice, these algorithms do not scale well
as the number of states grows because the algorithms spend
too much effort exploring. We introduce an RL algorithm
State TArgeted R-MAX (STAR-MAX) that explores a subset
of the state space, called the exploration envelope £&. When &
equals the total state space, STAR-MAX behaves identically
to R-MAX. When £ is a subset of the state space, to keep
exploration within &, a recovery rule [is needed. We com-
pared existing algorithms with our algorithm employing var-
ious exploration envelopes. With an appropriate choice of &,
STAR-MAX scales far better than existing RL algorithms as
the number of states increases. A possible drawback of our al-
gorithm is its dependence on a good choice of £ and /5. How-
ever, we show that an effective recovery rule [can be learned
on-line and £ can be learned from demonstrations. We also
find that even randomly sampled exploration envelopes can
improve cumulative rewards compared to R-MAX. We ex-
pect these results to lead to more efficient methods for RL in
large-scale problems.

Introduction

In the Reinforcement Learning (RL) framework, each time
step, the agent must decide whether to act in a way that
it can confidently predict the reward it will receive or try
an action where the reward received is uncertain but may
have higher payoff. This problem is the well-known explo-
ration/exploitation trade-off. If the agent does not explore
enough of its environment, it may miss out on undiscovered,
high rewards. On the other hand, the agent may waste time
looking for a better policy that may not exist.

Recognizing the importance of the explo-
ration/exploitation trade-off, recent research on RL
has resulted in algorithms that, with high probability, can
act near-optimally after training only on a polynomial (in
the # of states and actions) number of time steps (Kearns
and Singh, 2002; Brafman and Tennenholtz, 2002; Kakade,
2003; Strehl, Li, and Littman, 2009). The success of
these provably efficient algorithms depends critically on
showing that the agent will quickly explore all actions in

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

435

every reachable state. In other words, efficient RL seems to
depend on thoroughly exploring all reachable combinations
of states and actions. For example, R-MAX (Brafman and
Tennenholtz 2002) is a provably efficient RL algorithm that,
essentially, exhaustively explores reachable state-action
pairs. Unfortunately, when applied to real-world tasks with
large numbers of states, R-MAX may spend unreasonable
effort exploring.

Simple Exploration Sufficient?: In practice, simple ex-
ploration strategies can often quickly find good policies. For
example, the e-greedy selection strategy chooses the action
that the agent believes will lead to highest long term reward
with probability 1 — € and uniformly draws a random ac-
tion with probability e. (Hester and Stone 2009) introduced
a more sophisticated RL algorithm that thoroughly explores
at first but stops exploration when a sufficiently high reward-
ing state is found. However, these exploration strategies can
quickly get stuck in trajectories that lead to mediocre to-
tal reward (e.g. see the Red Herring domain in (Hester and
Stone 2009)).

Additional Assumptions Needed: Without thorough
systematic exploration, we cannot prove, in general, that an
RL algorithm will converge to an optimal policy because the
algorithm may miss critical information for planning. If we
want to guarantee that a near-optimal policy will be learned
while at the same time avoiding exhaustive exploration, then
we need to make additional assumptions concerning either
the structure of the problem or the a priori information avail-
able to the agent.

Alternative 1, Additional Structure: One possibility is
to assume that the learning problem has additional struc-
ture. For example, (Leffler, Littman, and Edmunds 2007)
and (Brunskill et al. 2009) assume that the set of states
is partitioned into a set of equivalence classes. Both take
advantage of the fact that actions have the same effects for
all states in the same class. This assumption is powerful
and indeed does result in near-optimal guarantees with less
exploration provided that the number of partitions is much
smaller than the number of states (see (Leffler, Littman, and
Edmunds 2007) for details). The main drawback of this ap-
proach is that a useful partition must exist, and the agent
must be given a priori a mapping from each state to its cor-
responding equivalence class. In addition, even though the
agent does not have to visit every single state-action pair,

it does have to visit a representative of every state class at
least enough times to try every action (more for the stochas-
tic case). If the number of state classes is huge or one of the
state classes is dangerous (e.g. falling off a cliff), then the
agent may never survive to learn a near-optimal policy.

Alternative 2 (Proposed Method): Another possibility
is that the agent may have prior knowledge about states that
it should avoid, either because (1) they are dangerous or (2)
simply irrelevant to the current task. In this work, we assume
that the agent is given an exploration envelope £ containing
a set of states (or state-action pairs) that are potentially rele-
vant to the current task and a recovery rule (that is applied
when the agent accidentally leaves £. Any state not in the
exploration envelope can be safely assumed irrelevant to the
current task. On the other hand, states in the exploration en-
velope should be explored. Although a recovery rule cannot
stop the agent from leaving &, it can quickly return the agent
to a state in £&. The main advantage of our algorithm, called
STAR-MAX, is that it does not need to explore every state,
which in some cases should allow it to learn faster than R-
MAX. The main potential limitation of STAR-MAX is that
the algorithm needs to be given an exploration envelope and
a recovery rule. It turns out that both issues can be effec-
tively handled. The recovery rule can be obtained by learn-
ing a simple state-independent action model. To address the
problem of obtaining an exploration envelope we first show
that a useful envelope can be learned from demonstrations
and, further, show that even a naively constructed envelope
(by randomly dropping states) achieves higher cumulative
reward than R-MAX.

The main contributions of this paper are (1) the intro-
duction of State TArgeted R-MAX (STAR-MAX), a model-
based RL algorithm that thoroughly explores only a subset
of state-action pairs called the exploration envelope, and (2)
the discovery that a recovery rule can be learned on-line ef-
ficiently and a useful exploration envelope can be learned
from demonstration or simply by randomly dropping states.

Background

We describe tasks using the Markov decision process (MDP)
formulation (Sutton and Barto 1998). An MDP task M is
a 5-tuple (S, A, T, R,~) where S is a set of states, A is a
set of actions, 7" is a set containing p(s’|s,a) denoting the
probability of transitioning to state s’ after selecting action
a while in state s, R : S x A — R assigns an expected
immediate reward to each state-action pair, and 0 < v < 1
discounts future rewards compared to immediate rewards.
The objective of most RL algorithms is to find a policy 7 :
S — A that maximizes the equation

Q;\rd(sva) = R(s,a) +7E [QT](/I(S/JT(S/)”MJT?S,G‘] (H

for all encountered s € S and a € A, where E is the ex-
pected value taken with respect to the next state s’. Equa-
tion 1 is the expected sum of discounted rewards received
for taking action «a in state s and thereafter following policy
m. The equation defines an implicit policy

(@)

n(s) = argmax Q(s,a)

436

forall s € S.

There are many RL algorithms that learn to maximize
equation I in the limit. Recently algorithms have been intro-
duced that, with high probability, learn a near-optimal pol-
icy in a polynomial number of time steps. An example is
R-MAX (Brafman and Tennenholtz 2002), a popular model-
based RL algorithm, which learns the transition probabilities
T and reward function R from observations and then uses a
dynamic programming algorithm, such as value iteration, to
plan a policy from the model.

Interestingly, while learning 7" and R, R-MAX uses its in-
complete model to decide where to explore. Assuming that
insufficiently modeled state-action pairs give the maximum
possible reward, the planner generates policies that aggres-
sively explore poorly modeled transition probabilities, until
the agent either finds a maximally rewarding trajectory in
M or every reachable state-action pair is well-modeled. This
strategy for quickly exploring the state-action space is some-
times referred to as “optimism in the face of uncertainty”,
and allows R-MAX to aggressively and efficiently explore
the state space.

Unfortunately, repeatedly exploring every state can be
wasteful if an agent has prior knowledge that some states
are irrelevant to the task. A good choice of which states to
explore, combined with a reasonable recovery rule to help
the agent stay within the relevant region of state space, can
dramatically reduce the amount of time required to learn a
near-optimal policy. However, to our knowledge no algo-
rithm is yet able to exploit this kind of information to reduce
sample complexity compared to R-MAX. In the next sec-
tion, we describe State TArgeted R-MAX (STAR-MAX), an
algorithm that is capable of targeting its exploration to spe-
cific states while minimizing exploration of states that are
known to be irrelevant or dangerous.

Algorithm

Instead of being generally optimistic in the face of uncer-
tainty (which encourages the agent to explore everything),
we consider a learning agent that is

1. optimistic about a subset of states £ C S, called the ex-
ploration envelope, and

2. given a policy 3, called the recovery rule, that can return
the agent to a state within £ in a small number of actions.

The exploration envelope is assumed to contain all relevant
states and some irrelevant states. Thus the agent must ex-
plore ¢ to determine which states are relevant and which are
irrelevant. The concept of an envelope of states was first
introduced by (Dean et al. 1995). However, that work fo-
cused on efficient planning given a complete model of the
environment. Our approach is different because we are at-
tempting to learn an accurate model for a subset of the state
space. The main difficulties here are (1) selecting an ap-
propriate exploration envelope and (2) keeping the explo-
ration effort within the envelope. Focusing exploration to a
limited region is where the importance of the recovery rule
comes in. During exploration the agent may leave the explo-
ration envelope and waste time trying to return to £. We do

not assume that the recovery rule acts optimally, only that it
quickly returns the agent to a state in &.
STAR-MAX (outlined in algorithm 1) has parameters:

e Sand A : state and action sets, respectively

7 : the discount factor

e m : # visits before state-action pair is “well modeled”

¢ : the exploration envelope (a subset of .S)

e (: the recovery rule

Algorithm 1 State TArgeted R-MAX (STAR-MAX)
Require: S, A,v,m,&, 3
1: forall (s,a) € Sx A do

if s € £ then

Qs,0) «
else

Q(s,a) + %IVN
end if
n(s,a) < 0 {# visits to (s, a)}
r(s,a) + 0 {Cumulative reward at (s, a)}
9: foralls’ € Sdo

»

Rmax
1=y

A

10: I(s,a,s") < 0 {# transitions (s,a) — s’}
11: end for
12: end for

13: fort =1,2,3,...do

14: Let s denote the state at time ¢.

15: if s € £ then

16: Choose action a := arg maxpec 4 Q(s, b).

17: else

18: Choose action a := 3(s).

19: endif

20: Letr be the immediate reward and s’ be the next state
after executing action a from state s.

21: if n(s,a) < m then

22: n(s,a) + n(s,a) +1

23: r(s,a) < r(s,a) +r

24: l(s,a,s") « l(s,a,s")+ 1

25: if s € £ and n(s,a) = m then

26: Run Value Iteration on model (Algorithm 2).

27: end if

28: endif

29: end for

When STAR-MAX is initialized (lines 1 through 12), a
data structure (), used to estimate equation 1, is initialized
so that any state action pair with a state in £ is initialized op-
timistically; otherwise it is initialized pessimistically. This
encourages the agent to explore states in £ and avoid other
states. Data structures are also initialized to count n(s, a)
the number of times an agent has visited a particular state-
action pair (s,a) € S x A, l(s,a,s’) the number of times
an agent visited state-action pair (s,a) € S x A and transi-
tioned to s’ € S, and the cumulative reward (s, a) received
when the agent visited state-action pair (s,a) € S x A.

After initialization, the learner enters a loop (line 13) in-
teracting with its environment. It receives the current state s

437

Algorithm 2 Estimate Model (7', R)

Require: s,a,s’,m,¢
1: if s € £ and n(s,a) > m then

2: return (l(ns(gj;), ;((ZZ))) {Sufficiently explored}
3. else

4: ifs e and s = s then

5: return (1, Ryax) {Under explored, in £}
6: else

7: if s = s’ then

8: return (1, Ryin) {NOt in f}

9: else

10: return (0, RyiN)

11: end if

12: end if

13: end if

(line 14). Then if the current state is in the exploration enve-
lope the agent will use the estimated () function to greedily
select what it believes to be the best action (line 16). On the
other hand, if the state s is not in &, then the recovery rule
selects the action (line 18). This way, if the agent leaves &,
then the recovery rule is able to return the agent to a state
in &. Finally, if the state-action pair (s, a) is unknown, then
each of the counters is updated, and if a new state action
pair becomes known (line 25), then () is updated by running
value iteration on the estimated model (T and R). The esti-
mated model, outlined in algorithm 2, returns a pair where
the first element is the state transition probability and the
second element is the immediate reward.

The STAR-MAX algorithm is very similar to R-MAX.
The key differences are that STAR-MAX initializes only a
subset of the state space optimistically and that it uses the
recovery rule whenever it leaves the exploration envelope &.

Next we show that STAR-MAX scales gracefully to do-
mains with a large number of states and show how the main
potential limitations of the algorithm (selecting the right ex-
ploration envelope and recovery rule) can be overcome.

Experiments and Results

Our experiments are performed on grid world environments
(see (Sutton and Barto 1998)). In a grid world environment
the agent’s state is a cell on a 2-dimensional grid. The agent
has four actions corresponding to the four cardinal direc-
tions with probability 0.8 and one of the two corresponding
diagonal directions with probability 0.2.

For all experiments we used a discount factor of v = 0.9.
A value of m = 5 was used for all experiments unless other-
wise noted. A learning rate of 0.2 was used for Q-learning.

In the first two experiments we consider the scalability of
STAR-MAX with a learned recovery rule.

Scalability with Learned Recovery Rule

During exploration the agent does not have a good approx-
imation of the environment and can easily wander into ir-
relevant regions of the state space. (Hans et al. 2008) in-
troduced a concept similar to our recovery rule, which they

(a)

(b

Figure 1: (a) Example grid world instance with exploration
envelope (light gray). The goal state is in the top right de-
noted by a red square, initial location by green, and the agent
by blue. (b) Corresponding visitation table. Despite having
to learn a recovery rule the agent was able to focus almost
all exploration effort on states within the envelope.

call a backup policy, that returns the agent to a safe region
of the state space. They suggest that a backup policy can
be learned off-line from previously collected data or learned
on-line. However, (Hans et al. 2008) did not show how to
learn the backup policy on-line, and did not apply it in the
context of systematically varied exploration envelopes.

It is generally impossible to estimate an accurate tran-
sition model for states that have never been visited. For-
tunately, in many problems, avoiding irrelevant or harmful
states can be accomplished with a simple and consistent set
of rules.

Most states in the grid world environment have similar
dynamics. We took advantage of this similarity by learning
state-independent transition probabilities, which were used
to plan a recovery rule. To learn state-independent transition
probabilities, we exploited the notion of action outcomes
(Sherstov and Stone 2005). In this case, the outcomes were
the relative distances traveled. The function x : S x .S — O
maps each pair of states to a small number of outcomes O
(e.g. move left by 1 unit). Unlikely state transitions were
mapped to a single dummy outcome. We learned a state-
independent action model on-line that could be applied to
any state outside of £. For all states s ¢ £ and actions a € A
the transition probability to a state s’ € S was estimated by

Zye{mESM(s,x)En(s,s/)} l(sv a, y)
> esn(za)

where {z € S|k(s,x) = k(s,s’)} is the set of states that
when paired with s belong to the same outcome class as the
pair (s,s’) and [and n are counters updated in algorithm
1. A similar approach could also be applied to robotic sys-
tems. Figure 1 shows that the learned recovery rule is quite
effective in the grid world domain.

As a proof of concept, for well chosen exploration en-
velopes and our learned recovery rule, we tested how aver-
age total reward achieved by STAR-MAX is affected as the
number of states in simple grid world MDPs is increased.
The results, shown in figure 2, compare STAR-MAX’s per-
formance against that of R-MAX and Q-learning initialized
to be generally optimistic and Q-learning constrained to &
(Q-learning with 5). STAR-MAX scales significantly better
than R-MAX and Q-learning even when Q-learning is arti-

B(s'[s,a) = 3

438

States
25 49 100 144

225
0 Bl | l_‘_l {
—2000

-4000

6000

8000

Cumulative Reward

I STAR-MAX

[Q-learning [with B]
[CIR-MAX

Il Q-learning [Optimistic]

-10000

-12000

Figure 2: Average final cumulative reward achieved as the
number of states in the grid world domain increase. For a
good choice of exploration envelope STAR-MAX outper-
forms both R-MAX and Q-learning (even when Q-learning
is given an oracle recovery rule [3). (Note that the total re-
ward is negative because a reward of -1 was given until the
goal state was reached.)

ficially restricted to the exploration envelope. This suggests
that model-based exploration is important for efficient learn-
ing even when the state space is restricted. We use the same
technique for learning a recovery rule in all of the following
experiments.

Sample Complexity vs. Envelope Size

We considered how sample complexity grows with envelope
size. Unfortunately we cannot directly measure the theoret-
ical sample complexity, but the last time a state-action pair
transitioned from insufficiently modeled to “well-modeled”
(last exploration event) provides a good indication of when
the agent stopped exploring.

Figure 3 shows the cumulative reward for STAR-MAX
with exploration envelopes containing different numbers of
states. Notice that the cumulative reward tends to decrease
linearly as the number of states increases. On the other hand,
the last exploration event occurs later as the number of states
increases. Smaller exploration envelopes require less explo-
ration and achieve higher cumulative reward.

In the next two experiments we consider how to learn ex-
ploration envelopes and whether STAR-MAX is sensitive to
degenerate exploration envelopes.

Envelope from Demonstrations

In many problems exploration envelopes can be determined
by a knowledgeable engineer. We demonstrate an important
alternative here: learning an envelope from demonstrations.

We considered a figure-8 tracing task (figure 4a). This
task has 1,000 states because the location of the arm’s end-
effector was discretized into 100 locations and time was dis-
cretized into 10 phases. Trajectories were generated for a
figure-8 tracing task (figure 4a) by running Q-learning on
the task for 4,000 episodes. This resulted in a visitation table
(figure 4b) containing counts on the number of times each

0 200 400 600 800 1000
State—Action Pairs in Envelope

I

0 200 40!) i 690 800
State—Action Pairs in Envelope

1000

Last Well-modeled Event Cumulative Reward

Figure 3: (Top) Cumulative reward for STAR-MAX de-
creases linearly as the envelope size increases for a grid
world instance with 225 states and 4 actions. (Bottom) Last
time a state-action pair changed to “well-modeled” increases
linearly with the # states in the exploration envelope.

Teacher
Demonstration

Learner

(a)

() (©

Figure 4: (a) Figure-eight demonstration. (b) Visit table of
Q-learning agent. (c) Envelope derived from visit table by
extracting states with number of visits greater than the 95
percentile. (Bright = High, Dark = Low Value)

state was visited. The final envelope was generated by se-
lecting all states for inclusion that were visited greater than
the 95" percentile (figure 4c). The results (figure 5) demon-
strate that STAR-MAX is able to learn far more efficiently
with the demonstration envelope than either Q-learning or
R-MAX. It is also worth noting that STAR-MAX is compu-
tationally faster than R-MAX because it runs value iteration
fewer times. This kind of demonstration-based exploration
envelope can be naturally applied to robot training.

Degenerate Envelopes and Red Herring States

The Red Herring domain (see figure 6) is a grid world in-
stance introduced by (Hester and Stone 2009) to demon-
strate a potential weakness of the RL-DT algorithm. The
space is partitioned into four rooms. The initial state is se-
lected randomly from one of the cells in the top left room.
All states produce an immediate reward of —1 except for the
two “red herring” states marked by “R”, which provides a
reward of O and terminates, and the goal state marked by
“G”, which gives a reward of 425 and terminates. For the
Red Herring domain we used a value of m = 10 to match
with experimental results from other work.

Provided that ¢ contains the goal state “G”, STAR-MAX
and R-MAX will both eventually explore the goal state in

439

Figure-8 Tracing

Average Reward

h = = Q-Leaming
e STAR-MAX
= = = R-MAX

L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Episode Number

Figure 5: STAR-MAX learns a high reward policy almost
immediately with the exploration envelope described in fig-

ure 4c.
i
:Z%m_:- ::FD_:- ?:I:I-:-
TafE T CfetiE
(a) small (b) medium (¢) full (R-MAX)

Figure 6: Red Herring domain with various exploration en-
velopes (yellow states). (a) The small envelope has few
states and leads directly to the goal along a single path, (b)
the medium envelope has two paths to the goal state, and (c)
the full envelope behaves identically to R-MAX.

favor of the “red herring” states. The main difference is that
STAR-MAX will have fewer states to explore.

Figure 7 shows that envelopes with more states receive
less cumulative reward, which is expected. What is sur-
prising is that envelopes constructed by randomly dropping
a certain percentage of states improves cumulative rewards
(statistically significant for 10% - 60% with p-values less
than 0.02, see figure 8). This provides evidence that in prac-
tice STAR-MAX can learn more efficiently than R-MAX
even when little is known about the environment.

Discussion

STAR-MAX aggressively and efficiently explores its envi-
ronment. However, STAR-MAX does not need to explore as
many states as R-MAX before STAR-MAX begins exploit-
ing. This allows STAR-MAX to scale to large state MDPs.
The main limitation of STAR-MAX is that it requires
an exploration envelope and recovery rule. However, we
have shown here that a recovery rule can be learned on-
line. There is a caveat that this solution is only plausible
for MDPs where the states outside of the exploration enve-
lope are likely to share similar dynamics. Specifying the
exploration envelope is also a critical design decision. We
have shown here that one can be learned from demonstra-
tion and that even naively generated exploration envelopes

Red Herring Domain
14000 T T T T T T
120001
10000~
8000
6000
4000

20001

Cumulative Reward

%’
—-2000

—4— Full (R-MAX)
e Medium (STAR-MAX)]
—s— Small (STAR-MAX)

150 200 250 300 350 400 450
Episode Number

—-4000

-6000

50 100 500

Figure 7: Cumulative reward achieved by STAR-MAX com-
paring exploration envelopes from figure 6.

14000

120001

100001

80001

60001

Cumulative Reward

IS
o
S
S

20001

0 10 20 30 40 50 60 70
% States Dropped

Figure 8: Average cumulative reward of STAR-MAX (n=30
trials, errorbar=std, 500 episodes/trial) increases under the
Red Herring domain when a percentage of states are ran-
domly dropped from the full exploration envelope. Perfor-
mance degrades if too many states are dropped (> 60%).

can improve performance.

Although we leave a formal analysis to future work, a ma-
jor motivation for the development of STAR-MAX is to ex-
ploit prior knowledge (about where NOT to explore) to re-
duce theoretical upper bounds on sample complexity com-
pared to R-MAX. We hypothesize that, with few additional
assumptions about the exploration envelope and recovery
rule, a polynomial upper bound on the sample complexity
of STAR-MAX can be established that is dependent on the
size of £ (and independent of total number of states) because
all transitions from states in & to states not in £ can be mod-
eled as transitions to a single fictitious state. Any proof will
also require a slight modification to the notion of optimality
(compared to (Kakade 2003)) since it is not reasonable to
expect STAR-MAX to act optimally outside of &.

There are several directions for future work. For example,

we can (1) apply an exploration envelope strategy to De-
layed Q-learning (Strehl, Li, and Littman 2009), which is a

440

model-free RL algorithm with polynomial sample complex-
ity guarantees, (2) extend STAR-MAX to tasks with contin-
uous state spaces, or (3) investigate learning £ and [in a
transfer learning setting to reduce sample complexity.

Conclusion

We have introduced a model-based RL algorithm STAR-
MAX that is an extension of the popular R-MAX algorithm.
Intuitively, narrowing exploration to a subset of the total
space should result in faster learning. We have shown that
there are multiple productive ways to select a useful explo-
ration envelope, and that STAR-MAX is robust to degener-
ate choices for £&. We expect the results from this work to
lead to new insights about how RL can be scaled to handle
large-scale real world problems.

References

Brafman, R. I., and Tennenholtz, M. 2002. R-MAX - a
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3:213-231.

Brunskill, E.; Leffler, B. R.; Li, L.; Littman, M. L.; and Roy,
N. 2009. Provably efficient learning with typed parametric
models. Journal of Machine Learning Research 10:1955—
1988.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76(1-2):35 — 74. Planning and
Scheduling.

Hans, A.; Schneegal}, D.; Schifer, A. M.; and Udluft, S.
2008. Safe exploration for reinforcement learning. In Euro-
pean Symposium on Artificial Neural Networks, 143—148.

Hester, T., and Stone, P. 2009. Generalized model learn-
ing for reinforcement learning in factored domains. In The

Eighth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2369-2374.

Kakade, S. M. 2003. On the Sample Complexity of Rein-
forcement Learning. Ph.D. Dissertation, University College
London.

Kearns, M., and Singh, S. 2002. Near-optimal reinforcement
learning in polynomial time. Machine Learning 49:209—
232. 10.1023/A:1017984413808.

Leffler, B. R.; Littman, M. L.; and Edmunds, T. 2007. Effi-
cient reinforcement learning with relocatable action models.
In Proceedings of the 22nd national conference on Artificial
intelligence - Volume 1, 572-577. AAAI Press.

Sherstov, A. A., and Stone, P. 2005. Improving action selec-
tion in MDP’s via knowledge transfer. In Proceedings of the
Twentieth National Conference on Artificial Intelligence.
Strehl, A. L.; Li, L.; and Littman, M. 2009. Reinforcement
learning in finite MDPs: PAC analysis. Journal of Machine
Learning Research 10:2413-2444.

Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. MIT Press.

