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Abstract

Sparse Coding (SC), which models the data vectors as
sparse linear combinations over basis vectors (i.e., dic-
tionary), has been widely applied in machine learning,
signal processing and neuroscience. Recently, one spe-
cific SC technique, Group Sparse Coding (GSC), has
been proposed to learn a common dictionary over mul-
tiple different groups of data, where the data groups are
assumed to be pre-defined. In practice, this may not
always be the case. In this paper, we propose Auto-
matic Group Sparse Coding (AutoGSC), which can (1)
discover the hidden data groups; (2) learn a common
dictionary over different data groups; and (3) learn an
individual dictionary for each data group. Finally, we
conduct experiments on both synthetic and real world
data sets to demonstrate the effectiveness of AutoGSC,
and compare it with traditional sparse coding and Non-
negative Matrix Factorization (NMF) methods.

Introduction

The linear decomposition of a signal (data vector) using
a few atoms of a learned dictionary, or the Sparse Cod-
ing (SC) technique, has aroused considerable interests re-
cently from various research fields such as audio process-
ing (Févotte, Bertin, and Durrieu 2009), image denoising
(Mairal, Elad, and Sapiro 2008), texture synthesis (Peyé
2009) and image classification (Bradley and Bagnell 2008).
Different from traditional spectral decomposition methods
such as Principal Component Analysis (PCA) and Singu-
lar Value Decomposition (SVD), SC (1) is usually additive,
which results in a better representation ability; (2) does not
require the learned bases to be orthogonal, which allows
more flexibility to adapt the representation to the data set. In
many real world applications (e.g., the ones we mentioned
above), SC achieves state-of-the-art performance.

In traditional SC, each data vector is treated as an indi-
vidual identity and the dictionary is learned over all these
data vectors. Recently, (Bengio et al. 2009) pointed out
that the SC procedure is just an intermediate step in creat-
ing a representation for a data group. For example, the data
vectors could be the image descriptors or images, while one
data group could be an image or image group. Clearly, the
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goal of SC is to learn how an image, not an image descrip-
tor, is formed. Therefore (Bengio et al. 2009) proposed a
novel technique called Group Sparse Coding (GSC), which
can learn sparse representations at the group (image) level
as well as a small overall dictionary (image descriptors).

One limitation of GSC is that it can only learn a common
dictionary over all data groups. However, there should also
be an individual dictionary associated with each data group,
which makes those data groups different from each other.
For example, in electroencephalogram (EEG) signal analy-
sis when the data measured from several subjects under the
same conditions (Lal et al. 2004; Lee and Choi 2009), each
EEG signal contains some common as well as event (group)
related frequency bands and regions. Moreover, in many
cases, we only have the data vectors, while their associated
group identities are hidden.

In this paper, we propose an Automatic Group Sparse
Coding (AutoGSC) method, which assumes (1) there are
hidden groups contained in the data set; (2) each data vec-
tor can be reconstructed using a sparse linear combination of
both the common and group-specific dictionaries. We also
proposed a Lloyd’s style framework (Lloyd 1982) to learn
both the data groups and those dictionaries. Specifically, it
is worthwhile to emphasize the strength of AutoGSC.

e AutoGSC can learn hidden data groups automatically. In
contrast, traditional GSC needs the data group identities
to be pregiven.

e AutoGSC can learn an individual dictionary for each
group, which contains group-specific discriminative in-
formation, while traditional GSC cannot.

e AutoGSC can also learn a common dictionary for all the
groups as traditional GSC.

The rest of this paper is organized as follows. Section 2
introduces some notations and related works. The detailed
algorithm and analysis is presented in section 3. Section 4
and 5 introduce the experimental results on synthetic and
real world data, followed by the conclusions in section 6.

Background

Without the loss of generality, we assume the data instances
are represented as vectors. Mathematically, we denote the
observed data matrix as X = [x;,Xp,---,X,] € R¥",



where x; € R represents the i-th data instance vector.
d is the data dimensionality, n is the number of data in-
stances. Then the goal of sparse coding (Hoyer 2002;
Mgrup, Madsen, and Hansen 2008; Eggert and Korner 2004)
is to obtain a sparse representation of the data vectors
through a small set of basis vectors by minimizing

Jo=|X-FGT|5 + 231Gl
i=1

ey

where F = [f}, f5, - - , ] is the dictionary matrix with f; €
R? (i = 1,2,--- , k) being the i-th basis vector and k is the
size of the dictionary. G € R™** is the coding coefficient
matrix. We use G;. to denote the i-th row of G, and

k
Gl = |Gl
j=1

represents the ¢; norm of G;.. A > 0 is the tradeoff parame-
ter. By expanding 7, we can obtain

2
k n k
j=1

i=1j=1
which shows that what SC actually seeks for is to approxi-
mate each data instance with a sparse linear combination of
an appropriately learned dictionary. In this paper, we will
concentrate on the Non-Negative Sparse Coding (NNSC)
problem, ie., X > 0,F > 0,G > 0 (Here > means el-
ementwise nonnegativity). Then the optimization problem
that NNSC tries to solve is

@

n
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Jo “

min

F>0, G20
Unfortunately, problem (4) is not jointly convex with re-
spect to both F and G. However, it is convex with either of
them with the other one fixed. Thus a common strategy for
solving problem (4) is to adopt the block coordinate descent
strategy (Bertsekas 1999), i.e., solve F and G alternatively
with the other fixed until convergence.

When G is fixed, we can update F by Multiplicative Up-
dates (Lee and Seung 2000) or Projected Gradients (Lin
2007). When F is fixed, the minimization of 7, with respect
to G is an /; regularized nonnegative least square problem.
This type of problem can be solved by LASSO (Tibshirani
1996) or Least Angle Regression (LARS) (Efron et al. 2004;
Eggert and Korner 2004).

However, as pointed out by (Eggert and Korner 2004),
purely solving problem (4) may cause a scaling problem, as
we can always scale up F and scale down G to get a lower
cost function value. To overcome this problem, (Eggert and
Korner 2004) proposed to minimize the following normal-
ization invariant objective under nonnegativity constraints

~ - 2 n
- X—FGTH AN G 5
o= | PN ©
where F = [£,/||f1]l, £2/|I2]],- - - , £, /||£x]|] is the normal-

ized dictionary matrix, and ||f;|| = /£, f; is the Euclidean
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norm of f;. In this way, the objective function is evaluated
on F and G, and the scale of F' is fixed.

Traditional SC treated each data instance as an individual
and no data group information is considered. Sometimes it
makes more sense to learn a group level sparse representa-
tion. Thus (Bengio et al. 2009) proposed Group Sparse Cod-
ing (GSC), which assumes that there are C' hidden groups in
X. In the following, we use X, = [Xc1, X2, »Xen,| €
R¥*7¢ to represent the c-th data group. x,; is the i-th data
instance of data group c. n. is the size of the c-th group.
Then the optimization problem GSC aims to solve is

C Nne k
minz HXC—FGZHi—i—)\ZHGci-Hp +'YZHF-J’||p
c=1 i=1 j=1

st.F>0,G.>0(c=12---,C) ()

where F € R%** is a common shared dictionary over all
groups, G, € R"*¥ is the coding coefficient matrix for
group c. Gy;. is the i-th row of G, F; is the j-th column
of F. ||a]|, is the general ¢, norm of a vector a, and in this
paper, we will consider p = 1 because it is the most popular
choice in sparse coding. Here the regularization term of F
plays a similar role as the normalization of F on Eq. (5).

By solving problem (6), GSC learns a sparse representa-
tion on group level as well as a shared dictionary. However,
GSC assumes the data group identities are pre-given and it
can only learn a common dictionary. However, in many real
world applications, (1) the data group identities are hidden
and (2) we want to know the group-specific dictionaries, as
these individual dictionaries can help us to capture the dis-
crimination information contained in different data groups.

Based on the above considerations, in this paper, we pro-
pose Automatic Group Sparse Coding (AutoGSC), which
can (1) discover the hidden data groups; (2) learn a common
dictionary over different data groups; (3) learn an individual
dictionary for each data group. The algorithm details will be
introduced in the next section.

Automatic Group Sparse Coding

In AutoGSC, we also assume there are C' groups contained
in the data set with the c-th group X.. Then we assume

. . . S
there is a shared dictionary F¥ € R?**” over all C groups,
where k£ is the dictionary size. Also there is an individual

dictionary F1 € R%<: for each group c, with the dictionary
size kL. Then the problem that AutoGSC tries to solve is

_— XC:HXC—FSGCST—FiGgT)2F+XC:['VI¢(G£)+’YS¢(G§)]

st. F°>0,Ve=1,2,---,C, FL >0,GL>0,GZ >0

(M

where the variables we want to solve in the above problem
include F¥ {FI}C | {GSY |, {GI}C |, as well as the
data group identities. The first term of the objective mea-
sures the total reconstruction error (using matrix Frobenius

norm) of the data set from those common and individual dic-
tionaries. G2 € R"e*k° s the reconstruction coefficient
matrix on the group-shared dictionary F°. G is the recon-
struction coefficient matrix on c-th group-specific dictionary



I . .
G! € Rm*Fc, The second term imposes some regulariza-
tions on the coding coefficients. As what we care is sparse
coding here, we make the following specific assumptions

Ne

:_Zuez.m
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where G2, and GZ is the i-th row of G5 and GL. | - |,
represents the vector /1 norm defined as in Eq.(2). Similar
as in Eq.(5), we solve the following dictionary normalization
invariant version of problem (7) instead

fuslt) oso(c)

®)

(€))

2
HSAST HI~IT
- Gc _Fch
F

st. F

>0,Ve=1,2,---,C,FL>0,GL>0,G7 >0 (0
where FS = [£5/|[£5),£5/]|£5]), - - Es /115 1],
£f5 is the i-th column of F¥. FI =
(5 /IR B /IS EL B ) £ is the

i-th column of Fé As we mentioned, we need
to solve both the data group identities as well as

FS {FI} LG {GHSC,,  which is not an
easy task. However, if we define
F. = [F°F] (1
G. = [GI.G/] (12)

and assume y; = 7ys = -y, then we can rewrite the objective
of problem (7) as

3 {HX _F.G.T (13)

’1 + w(Gc)]

=22

C X;ET.

2
-3 GeiiFej| +v > |G
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where 7 is the c-th data group, F..; is the j-th column of
F., Glij s the (i, j)-th entry of G. This is very similar to
the problem of Vector Quantization (VQ) (Lloyd 1982). The
m/gin difference is that in AutoGSC, we use C' dictionaries
{F.}¢_, to quantize those data vectors, instead of using C
vectors as in traditional VQ. Based on this observation, we
propose a Lloyd style algorithm (Lloyd 1982) to solve the
problem, which alternates between the following two steps:

e Solving problem (10) to get the dictionaries as well as the
coding coefficients with given data group identities.

e Estimating data group identities using the current dictio-
naries and codes.

In the following we will introduce how these two steps pro-
ceed in detail.

Obtaining the Dictionaries

Given the data group identities, we can solve problem (10) to
get the dictionaries as well as the coding coefficients. More
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formally, there are four groups of variables in problem (10):
FS {G5)C | {FI}¢ | {GI}C ,. We adopt an alternat-
ing 'scheme to update them. Similar to traditional SC tech-
niques, if we fix the others, the updating of G5 or G (V ¢ =
1,2,---,C) would just involve an ¢; regularized nonneg-
ative least square regression problem, which can be solved
using LASSO (Tibshirani 1996) or LARS (Efron et al. 2004;
Mgrup, Madsen, and Hansen 2008). For F*, we can update
it using the following update rule

e pen ¥, [Af + FSdiag (f (Bf © ﬁS))] e
S0, [BE + Fodiag (17 (AF 0 F9))]
where
AY = X.G? (15)
B = F9GY'GS+FlG!'GS (16)

©® represents the matrix elementwise product, and — means

matrix elementwise division. For FL (¢ =1,2,--- ,C), we
can update it with
Al 4 fsdiag (1T (B£ ® f‘s))
F.+— F.® — — (17)
B! + FSdiag (1T (Ag ® FS)>
where
Al = X.G! (18)
B! = Faf'cl+FGl'gl (19

The correctness of the updating rules Eq.(14) and Eq.(17)
are guaranteed by the following theorem.

Theorem. If the update rule ofFS and {Fl} _, in Eq.(14)
and Eq.(17) converges, then the final solution satisfies the
Karush-Kuhn-Tucker (KKT) optimality condition.

Proof. See Appendix.

Obtaining the Group Identities

As we can see from Eq.(13), what AutoGSC actually
does is to quantize the data space using C' dictionaries

Fl, FQ, - FC The error for quantizing x; with dictio-
nary F < can be measured by
Q(xi, Fe) = minx; — Foge,|* +7lgei (20
and the group identity of x; can be predicted as
GI(x;) = arg mcin Q(x, fc) 21

A Synthetic Example

In this section we will introduce a set of experiments to val-
idate the effectiveness of the proposed AutoGSC algorithm.

First we shall show a synthetic example. The data set
we use here is a set of images of size 30 x 40 constituting
two groups. Both groups have three common basis images
shown in Fig.1(a)(b)(c), where we use dark colors to repre-
sent value zero, and bright colors to represent value 1. Group
1 has four individual basis images shown in Fig.1(d)-(g).



Group 2 has four individual basis images shown in Fig.1(h)-
(k). The set of images used in our experiments are generated
by a random combination of a pair of common and indi-
vidual basis images plus some uniform random noise with
values in [0, 0.1]. Fig.2 illustrates examples of the training
images, where the top row belongs to the first group, while
bottom row belongs to the second group.

(a) F? (b) F§ (c) F§
(d) F{, (e) Fi, () Fis (2) Fli4
(h) F4, (i) F5s () Fi3 (k) Fi,

Figure 1: Common and individual dictionaries.

Figure 2: Examples of the training data.

Fig.3 illustrates the three basis learned using simple Non-
negative Matrix Factorization (NMF) (Lin 2007), which ob-
tains basis images F by minimizing | X — FG "||% using
projected gradient with randomly initialized F. From the
figure we can see that the three common basis contained in
the data set are correctly learned, however, they are mixed
with the individual basis as traditional NMF does not have
the scheme to discriminate common and individual basis.
The similar phenomenon can be observed when we apply
simple nonnegative sparse coding (Eggert and Korner 2004),
which minimizes | X —FG " [|Z + ) _i; |Gij| with normal-
ization invariant updates.

Fig.5 illustrate the results of running unsupervised Group-
NMF (Lee and Choi 2009) on the data set, i.e., solve prob-
lem (7) with Lloyd’s framework without sparsity regulariza-
tion and basis wise normalization. These figures demon-
strate that both the common and individual patterns are
mixed up in this case.
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(@ F1 (b) Fs (© F3

Figure 3: Dictionary learned by Nonnegative Matrix Factor-
ization (Lin 2007).

(a) Fy (b) F2 (c) Fs

Figure 4: Dictionary learned by group NMF (Lee and Choi
2009).

Fig.6 shows the learned basis images AutoGSC proposed
in this paper. We can see that both the common individual
basis images, are correctly learned. Note that we use the
same (random) initializations for ¥, F!, G, G as well as
the data group identities to obtain the results shown in Fig.5
and Fig.6. The number of groups is set to 2.

Fig.7 demonstrates the convergence curve of running Au-
toGSC on our synthetic data set, which shows that our algo-
rithm can converge within about 30 steps in this case.

A Case Study

In this section we will apply our AutoGSC algorithm to a
real world scenario of medical informatics.

Specifically, effective patient utilization management is
an important issue for medical care delivery. Here we refer
to utilization as different types of patient visits, such as vis-
its to a Primary Care Physician (PCP), specialist, indepen-
dent lab, in/out-patient hospital, etc. Usually management
on high-utilization patients receives more attention as these
patients consume more resources. A well accepted fact in
medical informatics is that 20% of the patients incur 80% of
the cost. In the following, we will make use of AutoGSC to
investigate the clinical characteristics of the high utilization
patient population, i.e., detect the disease groups as well as
the common and individual representative diseases.

The data set we use consists of patients’ clinical records,
including clinical characteristics, demographic features, uti-
lizations, medication history, for a pool of over 131k patients
over one year period. We compute the total number of vis-
its for each patient, and use that count as the indication of
the patient utilization level. We plot the histogram of patient
visits in Fig.8, and with medical expert assistance, we se-
lect the cutoff point to be 100, i.e., a patient is considered
to incur high utilization if the number of his yearly visits is
larger than 100. In this way, we obtain a pool of 216 pa-
tients. Then we use the HCC codes' to represent the patient

YHCC stands for Hierarchical Condition Category (Pope et al.
2000), which can be viewed as a grouping of ICD9 (International



(2) FY (b) F3 (© F§
() Fi () Fi, (H Fis (®) Fiy
(h) Fi, (i) Fis () Fis (k) Fi,

Figure 5: Common and individual dictionaries learned by
GroupNMF (Lee and Choi 2009).

diagnosis features. In this way, we obtain a 195 x 216 patient
matrix X (as we have 195 distinct HCC codes), with

L,

We run AutoGSC on X with random initializations, and
set the number of groups to be 3. We set the number of com-
mon as well as individual condition basis to be 5 (here each
condition basis is a 195 dimensional vector). The learned ba-
sis are very sparse, i.e., most of the elements on the learned
condition basis vectors are zero. Here we refer to the condi-
tions with nonzero values in the basis vectors as active con-
ditions. Table 1 illustrates the common active conditions.

if patient 5 was diagnosed with HCC code 7
otherwise

Table 1: Common Active conditions

HCC code | Description
HCC166 Major Symptoms, Abnormalities
HCC179 | Post-Surgical States/Aftercare/Elective
HCC167 Minor Symptoms, Signs, Findings
HCC183 | Screening/Observation/Special Exams
HCC162 Other Injuries

Table 2 shows the active conditions found in group 1,
which are different types of cancers. Table 3 illustrates the
active conditions found in group 2, which are mainly heart
conditions. Table 4 shows the active conditions found in
group 3, which are related to some major surgeries such as
organ transplant. From these results we can clearly observe
the major condition groups that may lead to high utilization.
Such insights will be very useful in optimizing care delivery
to patients and reducing the associated cost.

Statistical Classification of conditions and Related Health Prob-
lems, 9th ed.) diagnosis codes for better healthcare management.
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(a) FY (b) F5 () F3
(d) F{1 (e) F{Q ) F{3 (€9) F{4
(h) F5, (i) Fio () Fi3 (k) F5,

Figure 6: Common and individual dictionaries learned by
AutoGSC.
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Figure 7: The objective function value vs. number of itera-
tions plot on the synthetic data set.

Conclusion

In this paper we proposed Automatic Group Sparse Coding
(AutoGSC). Different from traditional group sparse coding,
AutoGSC can (1) learn both common as well as individual
basis for all data groups; (2) automatically find the hidden
data groups. We provide experimental results on applying
AutoGSC to a synthetic data set. Finally we also use it to
discover representative condition groups for high utilization
patient population, which demonstrates the effectiveness of
AutoGSC in real heatlcare applications.

Appendix
Following the standard theory of constrained optimization,
we introduce the Lagrangian multipliers @ = [oy;] €

Table 2: Active conditions in Group 1
HCC code |

Description

HCC312 Breast, Prostate, and Other Cancers and Tumors
HCC311 Colorectal, Bladder, and Other Cancers
HCC310 Lymphoma and Other Cancers
HCC309 Lung and Other Severe Cancers




cutoff point

2 /

150 200
number of visits

number of patients

0 50 100 250 300 350

Figure 8: The histogram of the patient visits.

Table 3: Active conditions in Group 2

HCC code | Description
HCCO080 Congestive Heart Failure
HCCO079 | Cardio-Respiratory Failure and Shock
HCC092 Specified Heart Arrhythmias
HCC091 Hypertension
HCC092 Specified Heart Arrhythmias
RI*k% and B. € Rxne (¢ =1,2,---,C) and construct

the following Lagrangian function
C
_ B8 ST mIAIT|2 L (BIaT 8S T
L_;MXC e’ _Flg! HF tr (Feﬂc)}—tr (F a )
Taking the first order derivative, we have
2 S [(aroBE)
w  IFSP IV 7w

. (ﬁsdiag (1T [(Af . Bf) ® FS])>L —
where AS and BY are defined as in Eq.(15) and

Eq.(16)Fixing the other variables and setting L/0F° = 0,
we have

C
2 5 s 5
o= 2 (A7 - B7),, 1P
v c=1

- (Faing (17 (a7 -BZ) 0F°]))]

the KKT complementary condition for the nonnegativity of
Fis

oL

aFs 22

(23)

C

2
v c=1
_ (fsdiag 17 [(Af - Bf) @FS]))] Fuy =0
uv
Table 4: Active conditions in Group 3
HCC code | Description

HCC174 Major Organ Transplant Status
HCC179 Post-Surgical States/Aftercare/Elective
HCC160 Internal Injuries
HCCO023 | Disorders of Fluid/Electrolyte/Acid-Base Balance
HCC044 Severe Hematological Disorders
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which is equivalent to
5, [ + Foaig (17 (B2 0 %))
S0, [BS + Fodiag (17 (AF 0 F9))]

This is exactly the same as in Eq.(14) when the iteration
converges. Similarly, we have

F =F°0

(25)

I
e
_ [fidiag (1T [(Aﬁ - Bi) ® Ffm ﬁ b

and it can be easily validated that Eq.(17) satisfies the KKT
complementary condition when converges. (|
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