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Abstract

We consider the problem of modeling network interactions
and identifying latent groups of network nodes. This problem
is challenging due to the facts i) that the network nodes are in-
terdependent instead of independent, ii) that the network data
are very noisy (e.g., missing edges), and iii) that the network
interactions are often sparse. To address these challenges,
we propose a Sparse Matrix-variate ¢ process Blockmodel
(SMTB). In particular, we generalize a matrix-variate ¢ dis-
tribution to a ¢ process on matrices with nonlinear covariance
functions. Due to this generalization, our model can estimate
latent memberships for individual network nodes. This sepa-
rates our model from previous ¢ distribution based relational
models. Also, we introduce sparse prior distributions on the
latent membership parameters to select group assignments for
individual nodes. To learn the model efficiently from data,
we develop a variational method. When compared with sev-
eral state-of-the-art models, including the predictive matrix-
variate ¢ models and mixed membership stochastic block-
models, our model achieved improved prediction accuracy on
real world network datasets.

Introduction

A critical task in relational learning is to model interactions
among objects in a network, such as proteins in an interac-
tion network and people in a social network, and to identify
latent groups in the network. This task is encountered for
many real-world applications. For example, we might want
to discover common research interests from groups of re-
searchers who are co-authors of many papers, or predict the
functions of a protein based on a latent group it belongs to.
This task, however, presents new modeling challenges.
First, we cannot use classical independence or exchangeabil-
ity assumptions made in machine learning and statistics for
relational data analysis; the objects are interdependent via
interactions or links between them, necessitating new mod-
els that capture relations among objects. Second, the rela-
tionships among objects may be quite complicated. A sim-
ple linear (or bilinear) model may not be sufficient to model
the complex relationships. Third, the network data are often
sparse; since the nodes of a network are often far from being
fully connected, an adjacent matrix representing the network
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structure contains many zeros. This sparsity imposes addi-
tional difficulty for modeling.

To address these challenge, we propose a Sparse Matrix-
variate ¢ process Blockmodel (SMTB). A ¢ distribution is
known to enhance sparsity and has been used in many
sparse Bayesian models, such as variational relevance vec-
tor machine (Bishop and Tipping 2000) and sparse proba-
bilistic projection (Archambeau and Bach 2009). Recently
matrix-variate ¢ distributions on matrices have been used
to model relational data (e.g., (Yu, Tresp, and Yu 2007;
Zhu, Yu, and Gong 2008)). We extend the work in (Zhu,
Yu, and Gong 2008) in two ways: i) While (Zhu, Yu, and
Gong 2008) matrix-variate ¢ distribution model (MVTM)
has high prediction accuracy in term of modeling interac-
tions between nodes, it cannot reveal latent groups of nodes
in a network. By contrast, we use nonlinear covariance func-
tions in our model so that we generalize the matrix-variate ¢
distributions to a stochastic process on matrices. This gen-
eralization allows us to estimate latent memberships for in-
dividual network nodes. ii) Also, we introduce sparse prior
distributions on the latent membership parameters, such that
the model selects group assignments for individual nodes. In
particular, we use an exponential prior distribution that not
only forces the latent membership parameters to be nonneg-
ative but also serves as a sparsity regularizer. Furthermore,
we present an efficient method to learn the new model effi-
ciently from data. When compared with several state-of-the-
art models, including the predictive matrix-variate ¢ models
(MVTM) (Zhu, Yu, and Gong 2008) and mixed membership
stochastic blockmodels (MMSB) (Airoldi et al. 2008), our
model achieved improved prediction accuracy on real world
network datasets.

The rest of the paper is organized as follows. In Section
2, we present the proposed sparse matrix-variate ¢ process
blockmodel. In Section 3, we describe related work. Section
4 presents experimental results, followed by the conclusions
in Section 5.

Sparse Matrix-variate ¢ Process Blockmodels

First we introduce our notations. We denote a constant by
c and an identity matrix by I. We use a n by n interaction
matrix Y to represent the noisy binary relationships between
n network nodes. We denote the index set of observed inter-
actions by Q. We use a n by n latent interaction matrix X to



represent the noiseless version of Y. We represent the d by
1 membership vector for node 7 as u;, where d is the num-
ber of latent clusters. All the membership vectors are put
together in the matrix U = (uy,...,u,) € R¥™", Given
the partially observed matrix Y g, our objective is to predict
missing interactions in Y and estimate U to identify latent
groups of networks nodes.

Matrix-variate ¢ process models

In the relational setting, we assume that latent matrix X
takes the form:

X =U'WU, 1)

where W € R%*? denotes the interactions among groups
and the membership matrix U represents the assignment of
individual nodes to latent groups. If W is an identity matrix,
X becomes the direct product of U and U and this model
reduces to classical matrix factorization.

Since interactions tend to be sparse, we hope X can
be modeled as a sparse matrix. To this end, we use a
matrix-variate ¢ distribution (Gupta and Nagar 2000) on W,
ie., W ~ T34(W;p,0,9Q,7), where p is the degree of
freedom, and 2 and Y define the column-wise and row-
wise covariance matrix respectively. We then have X ~
T1.a(UTWU;p,0,UTQU,UTTU).

Now we set {2 = Iand T = I. Replacing U by a mapping
#(U), we obtain ¢(U) T Q¢(U) = K(U, U) as the covari-
ance matrix for columns of X. Using another mapping for
U, we obtain G(U, U) as the covariance matrix for rows of
X (different mappings allow us to obtain model the column-
wise and row-wise relationships differently). As a result, X
follows a matrix-variate ¢ process. The matrix-variate ¢ pro-
cess is a nonparametric Bayesian model on matrices. For-
mally, we have the following definition:

Definition 1 (Matrix-variate ¢ process) . A matrix-variate
t process is a stochastic process whose projection on any
finite matrix follows a matrix-variate t distribution.

Specifically, the ¢ process on X has the following form:

X~ TPnun(X;p,0,K,G), 2)
i.e.,
I‘nlp—l—2n—1 lnii—1n
px) = —nl2@ 2o Ul g
T2 Fn[i(p—i_ n— 1)]
L, + K 'XG X T|~zlet2n-1 (3
Noise Model

We consider a Gaussian distribution to model the noise be-
tween the observable measurement Y g and the latent varia-
tion X. We then have

Yi; = Xij + €ij,
where €;; ~ N(0,0?) and the density of X is defined in
Eq.(2). Therefore, the log probability of the noise model is
In P(Yq|X) {(Yo,X)

1
952 Z (Yij—Xij)% +c.(4)
(4,5)€0
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Variational approximation

Our task is to estimate the parameter U. Ideally
we want to maximize the evidence, ie., P(Yp|U) =
[ P(Yo|X)P(X|U)dX over U. However, the computa-
tion of the evidence is intractable since we cannot marginal-
ize out the latent variable X parameter in this integration.

One can use a Markov Chain Monte Carlo method to sam-
ple the parameter. However, due to the large size of Yo,
a sampling method could be very slow. In this work, we
employ a variational approximation method in an expanded
model.

Specifically, we first expand the original ¢ process prior:

X R)NTPT,T(:;@O’(K \ )(G g ))7

L Z 0o I, 0o I,
where r = m + n.
Then we will use the following properties of a joint ¢ dis-
tribution.

Theorem 1
P(X) TPnn(X;p,0,K,G) (5)
P(Z) = Tmm(Z;p,0,1, 1) (6)
P(X|Z,R,L) = TP,nX;ip+n+m,pu 3 ¥), (7)
PRIZ) = Tpm(Rip+m, 0K, Z"Z+1,,),(8)
P(LIZ) = Tmn(L;p+m,0,Z"Z +1,,,G), (9)

where y =RTZ(Z"Z+1,) 'R E=K+R(Z'Z +
L,) 'Rand ¥ = G +L"(Z"Z +1,,)"'L. We denote by
© = {Z,R, L} as the free variables.

Theorem 1 suggests that we can employ the conditional
distributions over © to approximate a distribution on X. The
approximation could be efficient since m < n.

Now we use this idea to approximate the joint log-
likelihood of the expanded model:

In P(Y|U)

1n/P(Y|X)P(X\U,@)P(@)dXd@

Q

In P(Oriap) +1n/P(Y|X)P(X\U,®MAp)dX

Y

In P(Oriap) +/1nP(Y|X)P(X\U,@MAp)dX.(IO)

Note that we use a Maximum-a-Posteriori (MAP) approxi-
mation to obtain the second equation above. The inequality
in the third equation holds because of the concavity of the
logarithmic transformation.

Based on the definition of matrix-variate ¢ distributions,
we can easily obtain

InP(©) =InP(Z) +In P(R|Z)

—s1In|L,, + Z"Z| — sy In|K| — 55 In |G|
—s3n|l, + K'R(Z'"Z+1,,) 'R |
—s3n|L, + (Z'Z+1,) 'RG'RT| +¢, (11)

_ pt2m-—1
= =5,

_ ptnt+m—1
2

where s are all

constants.

Sy = 4,83 =



Based on the distribution P(X|0) = TP, ,(X;p+n +
m, w, 3, ¥), we have the following proposition to calculate
the mean and variance of Vec(X).

Proposition 1 The mean and variance of the vector Vec(X)
are given by:

E(Vec(X)|O)
Cov (Vec(X)|O)

Vec(p),
1

p+n+m—2

(12)

ow, (13)

where & denotes the Kronecker product.

The result directly comes from (Gupta and Nagar 2000).
Then we can compute the second term in Eq. (10) as fol-
lows:

/1nP(Y|X)P(X|U,®MAp)dX

= E[-L(Yo,p)+ss Y Tii®;;+d, (14)
(i,5)€0

where s4 = ) is a constant.

]

We can further parameterize the above equation by defin-
ingQ=R(I, +Z'Z) 2 c R and P = L"(I,, +
Z'"Z)71'/? € R"*™, We can then have the following mini-
mization problem:

min

JZin f(QZ.P.U)

where f(Q,Z, P, U) is defined as
f(QZP.U)= —((Yo,QZP")
+s11n|L, +Z"Z| + soIn |K| + s2In |G|
+s3ln|I, + K 'QQ" |+ s3In|I, + G 'PP'|

+s1 ) (K+QQT), (G+PPT) . (16)
(i,4)€0

15)

In the above, K and G define the covariance functions of
U by which the nonlinear interaction between U is modeled.
For symmetric data, we simply set G equal to K.

Sparse prior
To make U sparse, we impose an exponential prior on U.
This is equivalent to adding a L, regularizer, i.e.,

f(Q7 Z7P7U) + /\‘U|17

min

Q.ZP,U an

where ) is a hyperparameter and we set its value based on
cross-validation.

Optimization and prediction

We use a projected gradient descent method to optimize the
cost function (17). The optimization results will provide the
estimates of latent memberships U.

Furthermore, using the estimates of P, Q and Z, we can
use the conditional mean of X, i.e., E(X) = QZP to pre-
dict unobserved interactions.

It is important to note that by exploring the structure of
kronecker products, we avoid the cost of O(n%) from a naive
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derivation. Instead, the time complexity of the above opti-
mization is mainly dominated by solving a linear system of
n variables (n is the number of nodes). Depending on matrix
condition numbers, effective linear system solvers give us a
cost from O(n) to O(n?) . We can easily handle networks
of thousands of nodes.

Related Work

Modeling the interaction among nodes in social and bio-
logical networks has become an active research area in re-
cent years. One popular approach is the stochastic block
model and its variations and extensions, e.g., (Snijders and
Nowicki 1997; Wang and Wong 1987; Kemp, Griffiths, and
Tenenbaum 2004; Xu et al. 2006; Airoldi et al. 2008;
Hoff 2007). This type of approaches assigns each node in
a network to one or multiple latent clusters. Our model be-
longs to this type of approaches too. What separates ours
from the previous ones is the nonparametric Bayesian ¢ pro-
cess modeling, which allows us to capture complex non-
linear network interactions. Also, due to the models’ non-
parametric nature, the model complexity is adaptive with the
amount of data available.

Another type of network (or relational) models focuses
on the latent similarity between two nodes and instead of
modeling their latent cluster memberships. Such approaches
include the latent distance model (Hoff et al. 2001) and
matrix-variate ¢ model (Zhu, Yu, and Gong 2008). Although
these approaches may achieve accurate predictions for miss-
ing interactions, they cannot reveal latent cluster structures,
limiting their applications in practice. As described in Sec-
tion 1, our model is closely related to the work by (Zhu,
Yu, and Gong 2008); we generalizes it to the nonparametric
model and uses sparse priors to learn latent memberships for
network nodes.

Experiment

In this section, we illustrate how our new model, SMTB,
works on synthetic data and compare it with alternative
methods on several real world network datasets.

Experiment on Synthetic Data

First, we test SMTB on a synthetic dataset to answer the
following two questions:

1. Is SMTB robust to noise?
2. Can SMTB output block structures?

To generate the synthetic data, we first randomly sample a
40x40 clean interaction matrix, representing a network with
four 10-node cliques. In each clique the nodes are fully con-
nected (so the corresponding sub-matrix is dense), as shown
in Figure 1(a). We then randomly remove some elements
from the clean interaction matrix and add Gaussian noises to
the remaining elements. We use this noisy matrix as our ob-
servation Y (Figure 1(b)). Given Y we run SMTB to obtain
the latent interaction matrix X, as an estimate for the orig-
inal interaction matrix. The result is shown in Figure 1(c).
Clearly, the model identifies the block structure embedded



in the noisy observation Y and recovers the latent struc-
ture to a reasonable accuracy. We also measure the mean
square errors (MSE) based on the exact interaction matrix in
1(a). The MSE value of the noisy matrix is 0.269 and that of
the estimated X is only 0.131, demonstrating the power of
SMTB in filtering out the network noise and recovering the
latent structure.

Furthermore, we plot the estimated membership matrix
U in Figure 1(d). Note that u; indicates which latent group
node ¢ should belong to. As shown in Figure 1(d), the es-
timated memberships are consistent with the original block
structure in Figure 1(a).

Experiment on Real-world Datasets

We use three real-world datasets to test SMTB. It should

be noted that the number of edges in a network is in the

quadratic order of the number of nodes, and the prediction
will be made on each edge. The large number of edges
makes the estimation problem computationally challenging.

The used network datasets are summarized in the follow-
ing:

e The first dataset represents friendship ties among 90 12¢"-
graders from the National Longitudinal Study of Adoles-
cent Health !. The data is represented by a symmetric
matrix corresponding to an undirected graph. Y;; = 1
means identity nodes ¢ and j are friends. This dataset is
named as “Friends”.

e The second dataset is a protein-protein interaction data
of E.coli (Butland et al. 2005). There are 230 proteins,
where Y;; = 1 means the ' protein interacts with the j*"
protein. This dataset is named as “E.coli”.

e The third dataset is a protein-protein interaction dataset,
which consists of 283 yeast proteins from the third class
of the data produced by (Bu et al. 2003). Y;; = 1 means
the i protein is likely to function with the j** protein.
This data is represented by an asymmetric matrix. Note
that by using different column- and row-wise covariance
functions, SMTB can be applied to model asymmetric
networks. This dataset is named as “Yeast”.

On these datasets, we compare our model, SMTB, with
the following competitive ones:

e Non-negative Matrix Factorization (NMF) (Lee and Se-
ung 1999). NMF factorizes an interaction matrix to
low-dimensional representations with non-negativity con-
straints. NMF has been successfully applied to a wide
range of application and is used as a baseline method here.

e Mixed membership stochastic blockmodels (MMSBs)
(Airoldi et al. 2008). MMSB is a state-of-the-art approach
for network modeling.

e Predictive matrix-variate ¢ models (MVTMs) (Zhu, Yu,
and Gong 2008). MVTM is another advanced model for
relational data and closely related to our model.

For nonnegative matrix factorization, we adopt an im-
plementation in the statistics toolbox of Matlab 2009.

'www.cpc.unc.edu/projects/addhealth
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Data \ NMF MVTM MMSB SMTB
Friends

d=3 66.10  65.31 72.17 76.11

d=5 70.02  67.51 72.03 74.94
E.colv

d=3 75.30  78.89 80.83 87.40

d=5 77.15 82.09 83.58 87.83

Yeast
d=3 89.16 89.85 83.19 92.58
d=5 91.07 82.09 81.60 93.24

Table 1: The AUC values averaged over 10 runs. We vary
the number of the latent groups for all the models. The high-
est average AUC value for each setting is highlighted.

For the mixed membership stochastic blockmodel, we
use the default setting of the software downloaded
from the authors’ website previously. For the predic-
tive matrix-variate ¢ model, we adopt the code kindly
provided by the authors 2.  For both this model and
SMTB, we fix the degree of freedom p to 10. For
SMTB, we use the Gaussian covariance function (i.e., the
RBF kernel function). The kernel width is selected from
[0.01,0.05,0.1,0.15,0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50]
by five-fold cross validation.

Since for these datasets we do not know the true latent
groups, we use the prediction accuracy on hold out edges
to compare all these models (actually one cannot even use
MVTM to identify latent groups). Specifically for each of
these datasets, we randomly choose 80% of the matrix ele-
ments (edges) for training and use the remaining for testing.
The experiment is repeated 10 times. We evaluate all the
models by Receiver Operating Characteristic (ROC) curves
and Area Under Curve (AUC) values averaged over 10 runs.

Figure 2 shows the ROC curves of all the models. The
higher a ROC curve, the better the predictive performance.
We change the number of latent clusters (i.e., the length
of u;) from 3 to 5. As shown in Figure 2 SMTB consis-
tently achieves better performance than the other models.
Among these models, NMF achieves the lowest accuracy,
probably caused by its simple modeling of relational data;
NMF simply treats an interaction matrix as a regular matrix
without exploring the underlying structure of network data.
The performance of MMSB is often better than MVTM but
slightly worse than SMTB. A special case appears for the
yeast dataset, on which both SMTB and MVTM outperform
MMSB. Since this data is very sparse, we expect that the ¢
distributions and processes used by MVTM and SMTB help
them achieve higher accuracy.

For a detailed comparison, we report the average AUC
values in Table . SMTB consistently outperforms all the
other models in terms of the average AUC.

Conclusions and Future Work

In this paper, we have presented a new model, SMTB,
for modeling interactions of network nodes and discover-

“http://www.nec-labs.com/ zsh/files/MVTM-1.18.zip
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Figure 1: Illustration of SMTB estimation on synthetic data. As shown in (c), SMTB significantly reduces the noise in the
observation (b). Also SMTB reveals the correct node memberships shown in (d), consistent with the block structure in the

clean (unknown) interaction matrix (a).

ing latent groups in a network. Our results on real network
datasets demonstrate SMTB outperforms several the state-
of-art models.

As to the future plan, we will explore other likelihood
functions (e.g., probit functions) to better model binary in-
teractions or more complex relationships between network
nodes.
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