
Basis Function Discovery using
Spectral Clustering and Bisimulation Metrics

Gheorghe Comanici and Doina Precup
School of Computer Science, McGill University, Montreal, QC, Canada

gcoman@cs.mcgill.ca and dprecup@cs.mcgill.ca

Abstract

We study the problem of automatically generating fea-
tures for function approximation in reinforcement learn-
ing. We build on the work of Mahadevan and his col-
leagues, who pioneered the use of spectral clustering
methods for basis function construction. Their methods
work on top of a graph that captures state adjacency. In-
stead, we use bisimulation metrics in order to provide
state distances for spectral clustering. The advantage of
these metrics is that they incorporate reward informa-
tion in a natural way, in addition to the state transition
information. We provide theoretical bounds on the qual-
ity of the obtained approximation, which justify the im-
portance of incorporating reward information. We also
demonstrate empirically that the approximation quality
improves when bisimulation metrics are used instead of
the state adjacency graph in the basis function construc-
tion process.

Introduction

Markov Decision Processes (MDPs) are a powerful frame-
work for modeling sequential decision making in stochastic
environments. One of the important challenges in practical
applications is finding a suitable way to represent the state
space, so that a good behavior can be learned efficiently. In
this paper, we focus on a standard approach for learning a
good policy, which involves learning first a value function
that associates states with expected returns that can be ob-
tained from those states. Sutton and Barto (1998) provides
a good overview of many methods that can be used to learn
value functions.

In this paper, we focus on the case in which function ap-
proximation must be used to represent the value function.
Typically, states are mapped into feature vectors, and a set
of parameters is learned, enabling the computation of the
value for any given state. Having a good set of features is
crucial for this type of method. Theoretically, the quality of
the approximation depends on the set of features (Tsitsiklis
and Van Roy 1997). In practice, the feature set affects not
only the quality of the solution obtained, but also the speed
of learning. Two types of methods have been proposed in re-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cent years to tackle the problem of finding automatically a
good feature set.

The first approach, exemplified by the work of Mahade-
van and Maggioni (2005) (and their colleagues) relies only
on information about the transitions between states. More
specifically, data is used to construct a state connectivity
graph. Spectral clustering methods are then used to construct
state features. The resulting features capture interesting tran-
sition properties of the environment (e.g. different spatial
resolution) and are reward-independent. The latter property
can be viewed either as an advantage or as a disadvantage.
On one hand, reward independence is desirable in order to be
able to quickly re-compute values, if the problem changes.
On the other hand, if the goal is to compute a good policy for
a particular problem, a general feature representation that is
insensitive to the task at hand and only captures general dy-
namics may be detrimental.

The second category of methods aims to construct ba-
sis functions that reduce the error in value function estima-
tion (also known as the Bellman error), e.g. (Keller, Man-
nor, and Precup 2006; Parr et al. 2008). In this case, features
are reward-oriented, and are formed with the goal of reduc-
ing value function estimation errors. Parr et al. (2008) show
that this approach guarantees monotonic improvement as the
number of features increases, under mild technical condi-
tions. However, unlike in the case of spectral methods, the
resulting features are harder to interpret.

The goal of this paper is to show how one can incorporate
rewards in the construction of basis functions, while still us-
ing a spectral clustering approach. Specifically, we explore
the use of bisimulation metrics (Ferns, Panangaden, and Pre-
cup 2004; 2005) in combination with spectral clustering, in
order to create good state features for linear function ap-
proximation. Bisimulation metrics are used to quantify the
similarity between states in a Markov Decision Process.
Intuitively, states are close if their immediate rewards are
close and they transition with similar probabilities to “close”
states. Ferns, Panangaden, and Precup (2004) showed that
the difference in values between two states can be bounded
above using their bisimulation distance. In this paper, we
prove a significant extension of this result, for the case of
general linear function approximation. This theoretical re-
sult suggests that bisimulation can be used to derive a simi-
larity measure between states for spectral clustering. We il-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

325

lustrate this approach on several problems, showing that it
has significantly better results than methods using only fea-
tures based on the state dynamics without considering re-
ward information.

We start by presenting background on Markov Decision
Processes, basis function construction and bisimulation met-
rics. Then we present the main idea of our approach and the
extension of bisimulation metric approximation guarantees
to linear function approximation. Finally, we illustrate em-
pirically the utility of bisimulation metrics for feature gen-
eration.

Background

We adopt the framework of (finite) discounted Markov Deci-
sion Processes, in which the environment is represented as a
tuple 〈S,A, P : S×A×S → [0, 1] , R : S×A→ [0, 1], γ〉,
where S is a set of states; A is a set of actions; P is the tran-
sition model, with P a

ss′ denoting the conditional probability
of a transition to state s′ given current state s and action a;
R is the reward function, with Ra

s denoting the immediate
expected reward for state s and action a; and γ ∈ (0, 1)
is a discount factor. Without loss of generality, we consider
R ∈ [0, 1]. A policy π : S × A → [0, 1] specifies a way of
behaving for the agent.

The model of the environment consists of P and R, which
can be represented as matrices P ∈ [0, 1]|S×A|×|S|, P1 =
1, where 1 is the identity vector, and R ∈ [0, 1]|S×A|. In
the same manner, policies can also be represented as block-
diagonal matrices π ∈ [0, 1]|S|×|S×A|, π1 = 1. Given an
initial state distribution d0 ∈ R

|S|, the distribution over
state-action pairs at time t is given by dT0 π(Pπ)t−1. The
value of a policy V π

d0
is defined as the expected discounted

return:

V π,d0 = dT0 πR+ γdT0 πPπR+ ... = dT0

∞∑
i=0

(γπP)i(πR)

In a finite MDP, often d0 is assumed to be uniform, in which
case the value function is simply given by:

V π = πR+ γπPπR+ · · · =
∞∑
i=0

(γπP)i(πR)

The well-known Bellman equation for policy evaluation re-
expresses the value function as:

V π = π(R+ γPV π)

from which V π = (I − γπP)−1πR.
In a finite MDP, there exists a unique, deterministic policy

(i.e. π(s, a) is either 0 or 1) π∗, whose value function, V ∗
is optimal for all state-action pairs: V ∗ = maxπ V

π . This
value function satisfies the Bellman optimality equation

V ∗ = max
π:deterministic

π(R+ γPV ∗)

and is the limit of a recursively defined sequence of iterates:

V n+1 = max
π:deterministic

π(R+ γPV n) with V 0 = 0

Well-known incremental sampling algorithms, such as Sarsa
and Q-learning, can be used to estimate these values. For

a more comprehensive overview see (Puterman 1994; Bert-
sekas and Tsitsiklis 1996; Sutton and Barto 1998).

Function approximation methods are used in environ-
ments that are either continuous or too large for most finite
MDP algorithms to be efficient. The value function V π is
approximated using a set F of features. Let Φ ∈ R

|S|×|F |
be the feature matrix, mapping states into their feature rep-
resentation. Any desired value function can then be obtained
by using linear approximations: V ≈ Φθ.

Representation discovery addresses the problem of find-
ing the feature map Φ in the absence of hand-engineered
basis functions (Mahadevan 2005; Parr et al. 2008; Keller,
Mannor, and Precup 2006). Mahadevan introduced spectral
methods that are used to learn simultaneously both the rep-
resentation and the control policies. Their approach is based
on the following derivation (Petrik 2007).

Let π be a policy such that there exists an orthonormal
linear map Φ ∈ R

|S|×|S| and a vector λ such that πP =
ΦDλΦ

T , where Dv denotes the diagonal map with vector v
as its diagonal. Then,

V π =
∞∑
i=0

(γπP)i(πR)

=
∞∑
i=0

γi(ΦDλΦ
T)i(Φα) for some α

=
∞∑
i=0

γiΦDi
λα since Φ is orthonormal

= Φ

(∞∑
i=0

γiDi
λα

)
= Φ

(
D−1

1−γλα
)

(1)

Hence, if an orthonormal basis Φ exists, it will provide an
ideal representation. Moreover, the basis corresponding to
the ith state has weight αi/(1 − γλi). Still, this represen-
tation is only valid for policy π, so for learning optimal
control, one would have to find a representation that works
for multiple policies. In (Mahadevan 2005) this is done by
finding eigenfunctions of diffusion models of transitions in
the underlying MDP using random policies. The set of fea-
ture vectors Φ that will be used in function approximation
is a subset of the eigenvectors of the normalized laplacian
(Chung 1997):

L = D
− 1

2

W1(DW1 −W)D
− 1

2

W1

where W ∈ R
|S|×|S| is a symmetric weight adjacency ma-

trix. Note that L has the same eigenvectors as the transition
matrix of a random walk determined by W . That is, we con-
struct a graph over the state space and generate a random
walk by transitioning with probabilities proportional to the
incident weighs. The eigenfunctions that describe the Lapla-
cian will describe the topology of the random graph under
W . Geometrically, this provides the smoothest approxima-
tion that respects the graph topology (Chung 1997). This ap-
proach imposes no restriction on the transition model, but it
ignores the reward model, which can prove to be hurtful in
some situations (Petrik 2007).

326

Bisimulation metrics

Bisimulation metrics have been used in the context of rein-
forcement learning to find a good partition of states. In this
case, a large MDP is reduced to a smaller one by cluster-
ing states that are close based on the value of the bisimula-
tion metric. If clustering is done by grouping states at dis-
tance 0, then the bisimulation property guarantees that be-
having optimally in the aggregated MDP (i.e., the MDP over
state partitions) will result in optimal behavior in the orig-
inal MDP as well. Ferns, Panangaden, and Precup (2004)
present algorithms for computing the metrics based on find-
ing a fixed point M∗ of the following transformation on a
metric M ∈ R

|S|×|S|:

F (M)(s, s′) = max
a∈A

[(1−γ)|Ra
s−Ra

s′ |+γTK(M)(P a
s,·, P

a
s′,·)]

This recursion depends on TK , the Kantorovich metric over
two probability measures. For two vectors p, q ∈ [0, 1]n,
TK(p, q) is obtained by solving the following linear pro-
gram:

TK(M)(p, q) = max
u∈Rn

uT (p− q)

such that u1T − 1uT ≤M and 0 ≤ u ≤ 1

Suppose S′ is the state space of the aggregate MDP. Let
C : R|S|×|S

′| be the identity map of the aggregation. Then
the value function V ∗agg of the aggregate MDP satisfies the
following :

||CV ∗agg − V ∗||∞ ≤ 1

(1− γ)2
|| diag(M∗CD−1

1TC
CT)||∞

where ||v||∞ stands for the L∞ norm of a vector v. Note that
M∗CD−1

1TC
∈ R

|S|×|S′| computes the normalized distance
from a state s to a cluster c. We then apply CT to obtain the
normalized distance from s to the cluster of a state s′. Then
we consider only the diagonal entries of this map, and the
approximation error is bounded above by its L∞ norm (or
maximum distance) between a state and the states included
in the same cluster.

This bound (Ferns, Panangaden, and Precup 2004) guar-
antees that given some aggregation based on the Kan-
torovich metric, the approximation will be efficient when the
largest distance inside a cluster is small. One would like to
generalize the result to function approximation as well: we
would like to have good approximation guarantees when the
feature set used provides generalization over states that are
close according to the bisimulation metric. To do this, we
first prove a couple of useful small results.

For a fixed policy π, we denote by Kπ(M) ∈ R
|S|×|S| the

map Kπ(M)(s, s′) = TK(M)((πP)(s), (πP)(s′)). Then
we can reformulate bisimulation as:

F (M) = max
π:det.

(1− γ)|(πR)1T − 1(πR)T |+ γKπ(M)

where KM is a square |S| × |S| matrix obtained from:

Kπ(M) = max
U∈R|S|×|S2|

diag((I1(πP)− I2(πP))U)

such that I1U − I2U ≤ diag(I1MIT2)1
T and

0 ≤ U ≤ 1

where I1, I2 ∈ R
|S2|×|S| are identity maps restricted on the

first, respectively the second argument.
Lemma 1: Let V n be the sequence generated by the Bell-

man operator (i.e. V n = π(R+ γPV n−1)). Then

(1− γ)(πPV n1T − 1(πPV n)T) ≤ Kπ(F
n(0)).

Proof: First, it was proven in (Ferns, Panangaden, and
Precup 2004) that under the given circumstances, Û =
(1 − γ)V n1T is a feasible solution for the Kantorovich LP.
For this particular choice of parameters Û ,

diag((I1πP − I2πP)Û)

= (1− γ) diag((I1πPV n − I2πPV n)1T)

= (1− γ)(I1πPV n − I2πPV n)

where the last equality is a simple linear algebra result which
states that for any vector v, diag(v1T) = v. Now, we can
rearrange the above result in a |S| × |S| matrix to obtain:
(1− γ)(πPV n1T − 1(πPV n)T), and the result follows.

Eigenfunctions that incorporate reward

information

Spectral decomposition methods find eigenfunctions (to be
used as bases for value function representation); the eigen-
values are used as heuristics to choose only a subset of the
basis set (Chung 1997). Recall that

V π = Φπ
(
D−1

(1−γλ)α
)

(2)

where the importance of the ith basis function is αi/(1 −
γλi). Note the dependence of Φπ on the policy used to gen-
erate the transition model. Since the ultimate goal is to ob-
tain basis functions that are independent of π, many ”surro-
gate” diagonalizable matrices have been proposed. They are
usually reflective only of the MDP transition model, rather
than the entire MDP model (Mahadevan 2005). The main
problem with this approach was illustrated in (Petrik 2007),
and it comes from a fault in the heuristic used to select a
subset of the basis for approximation. If we only use the
eigenvalues of the transition model, the constants α in Equa-
tion (2) relative to the reward function are ignored. The qual-
ity of the approximation can be affected in these situations.
Nonetheless, these methods have the advantage of general-
izing over MDPs that only differ in the reward function.

Let π be a fixed policy. Building on (2), we could use the
same eigenvalues as heuristics, but with a different set of
eigenfunctions:

V π = Φπ
(
D−1

(1−γλ)α
)

= ΦπD−1
(1−γλ)Dα1 = (ΦπDα)

(
D−1

(1−γλ)1
) (3)

Each eigenfuntion is normalized based on the representation
α of the reward under the given policy. Then the value func-
tion V π is only represented by eigenfunctions of low order
1/(1 − γλi) values. Therefore, if the eigenvalues are to be
used as a heuristic in feature extractor selection, one should
extract linear state relationships that reflect the interaction

327

�

�

�

�
� �

�

	

�

	

��

��

�

� �

	

�

����

�	�

��

�� ��

�� ��

��

Figure 1: Left: The Cycle MDP is controlled by 2 actions:
the first one moves uniformly in the cycle with prob. 0.5,
and transitions to state 11 with prob. 0.5. The second has
prob. 0.3, 0.7 respectively. From state 11 one can use the ac-
tions to move deterministically back in the cycle or to the
reward state. A reward of 10 is obtained upon entering state
12, where any action transitions back in the cycle. Right:
The Hierarchical MDP is controlled by 3 actions that either
move uniformly at random in each cycle, or jump to an adja-
cent cycle. Inter-cycle transitions happen with prob. 0.5, 0.7,
and 0.3 respectively, based on the action choice. Rewards of
10 and 15 are obtained upon entering states 0 and 10, respec-
tively.

between reward and transition models, similarly to the way
in which reward parameters α normalize the eigenfunctions
of the transition model. As seen, bisimulation metrics are
generated iteratively by combining reward and transition in-
formation. We now establish theoretical results that will mo-
tivate our feature generation algorithm.

Extending bisimulation bounds for general

feature maps

One of the nice properties of the bisimulation metrics in-
troduced in (Ferns, Panangaden, and Precup 2004) is the
fact that if one aggregates states faithfully to the bisimula-
tion metric, the resulting MDP has an optimal value func-
tion whose approximation error, compared to the true value
function, is bounded. Below, we prove an analogous result
for the case of function approximation.

Let Φ ∈ R
|S|×|F | be a feature map with the property

that Φ1 = 1. This generates an MDP model PΦ, RΦ of
transitions over features rather than states, but using the
same actions. The new problem becomes a smaller MDP
〈F,A, PΦ, RΦ, γ〉, with

PΦ = D−1
ΦT 1

ΦTPΦ and RΦ = D−1
ΦT 1

ΦTR. (4)

We overload the notation and use Φ as the same map from
S → F and from (S × A) → (F × A), depending on the
matrix dimensions required. Note that PΦ determines the
probability to transition from a state-action pair to a feature,
and the map D−1

ΦT 1
ΦT is just a normalized average based on

Φ. Also, these are well defined since RΦ ∈ [0, 1] and

PΦ1 = D−1
ΦT 1

ΦTPΦ1 = D−1
ΦT 1

ΦTP1 = D−1
ΦT 1

ΦT1 = 1

Figure 2: 7x7 and 9x11 Grid Worlds are controlled by 4 ac-
tions representing the four movement directions in a grid.
Upon using any action, the corresponding movement is per-
formed with prob. 0.9, and the state does not change with
prob. 0.1. If the corresponding action results in collision with
wall, the state does not change. Rewards of 10 are obtained
upon entering goal states labelled by dots.

One could now solve this new MDP and find V ∗Φ . The quality
of the feature selection can be evaluated by comparing ΦV ∗Φ
to V ∗, similar to the approach used for aggregation methods
in (Ferns, Panangaden, and Precup 2004).

Theorem 1: Given an MDP, let Φ ∈ R
|S|×|F | be a set of

feature vectors with the property Φ1 = 1. Then the follow-
ing holds:

||ΦV ∗Φ − V ∗||∞ ≤ 1

(1− γ)2
|| diag(M∗ΦD−1

1TΦ
ΦT)||∞

Proof: First, note the following preliminary properties:

ΦD−1
ΦT 1

(ΦT1) = Φ1 = 1 (5)

diag(v1T) = diag(1vT) = v ∀v ∈ R
n (6)

max
π:deterministic

(πΦT v) ≤ ΦT max
π:deterministic

πv ∀v ∈ R
n (7)

The last property is a simple application of the triangle in-
equality where all values are positive.

Now, let V 0 = V 0
Φ = 0, and generate the sequences

{V n}∞n=1 and {V n
Φ }∞n=1 that will converge to the optimal

values using the Bellman operator. Then,

|ΦV n+1
Φ − V n+1|

= |Φmax
π:det

π(RΦ + γPΦV
n
Φ)−max

π:det
π(R+ γPV n)|

= |Φmax
π:det

πD−1
ΦT 1

ΦT (R+ γPΦV n
Φ)−max

π:det
π(R+ γPV n)| (by (4))

= | diag(Φmax
π:det

πD−1
ΦT 1

ΦT (R+ γPΦV n
Φ)1T)

− diag(ΦD−1
ΦT 1

ΦT1max
π:det

(π(R+ γPV n))T | (by (5),(6))

≤ | diag(ΦD−1
ΦT 1

ΦT max
π:det

π(R+ γPΦV n
Φ)1T)

− diag(ΦD−1
ΦT 1

ΦT max
π:det

1(RT + γ(V n)TPT)πT)| (by (7))

≤ diag(ΦD−1
ΦT 1

ΦT

max
π:det

|π(R+ γPΦV n
Φ)1T − 1(RT + γ(V n)TPT)πT |)

328

Figure 3: Illustration of the features obtained with intro-
duced modification(top) and without (bottom). In this partic-
ular case we show the first 4 features based on the ordering
provided by eigenvalues.

Algorithm 1

Given an MDP and a policy π
W stands for the similarity matrix
if desired method is based on bisimulation then
M∗ ← bisimulation metric to some precision
W ← inverse exponential of M∗, normalized in [0, 1]

else
desired method is based on state topology
∀s, s′ ∈ S,W (s, s′) ← 1 if s
→ s′ or vice-versa has
probability > 0, and W (s, s′)← 0 otherwise

end if

F ← eigenvectors of D−
1
2

W1(DW1 −W)D
− 1

2

W1
Φ← the k vectors in F with highest eigenvalues
ΦON ← orthonormal basis of Φ
V π ← (I − γP)−1πR, exact value function of π
ΦVφ ← V π’s projection on ΦON

Next, working on the rightmost factor, we have:

max
π:det

|π(R+ γPΦV n
Φ)1T − 1(RT + γ(V n)TPT)πT | ≤

≤ max
π:det

(|πR1T − 1(πR)T |+ γ|πPV n1T − 1(V n)T (πP)T |)
+ γmax

π:det
|πP (φV n

Φ − V n)1T |
≤ max

π:det
(1− γ)−1((1− γ)|πR1T − 1(πR)T |

+ γ|(πP)(1− γ)V n1T − 1(1− γ)(V n)T (πP)T |)
+ γmax |ΦV n

Φ − V n|11T

≤ (1− γ)−1Mn + γ||ΦV n
Φ − V n||∞11T

Note that the last derivation is a result of Lemma 1. Putting
it all together we get:

|ΦV n+1
Φ − V n+1|

≤ diag(ΦD−1
ΦT 1

ΦT ((1− γ)−1Mn+

+ γmax ||ΦV n
Φ − V n||∞11T))

≤ (1− γ)−1 diag(ΦD−1
ΦT 1

ΦTMn) + γ||ΦV n
Φ − V n||∞1

We obtain the result of the statement by recursion and by
taking the limits of the inequality.

Empirical Results

From a practical point of view, the result above suggests that
selecting features that respect the bisimulation metric guar-
antees that the error in the approximation is not large. To
illustrate this idea, we modify the spectral decomposition
methods presented in (Mahadevan 2005) to incorporate the
bisimulation metric.

We start by defining a similarity matrix WB that reflects
the bisimulation metric M∗. We first apply to each entry of
M∗ the inverse exponential map, x
→ e−x, and then nor-
malize the entries to the interval [0, 1], by applying the map
x
→ (x−minx)/(maxx−minx). WB is then contrasted to
other similarity matrices that have previously been studied,
known as accessibility matrices: WA, desscribed in Algo-
rithm 1.

Next, the normalized Laplacian is computed for both
weight matrices, and the feature vectors will be selected
from its set of eigenvectors, ΦK and ΦA, respectively:

L = D
− 1

2

W1(DW1 −W)D
− 1

2

W1

Since most of the time these sets of eigenvectors are linearly
independent, they will both allow one to represent the ex-
act value function for a policy on the underlying MDP. Still,
for control purposes, one seeks to use only a limited number
of feature vectors, much smaller than the number of states,
chosed with heuristics based on based on (1) and (3). Algo-
rithm 1 outlines this approach.

Experimental setup

The environments used in the experiments are presented in
Figures 1 and 2. A set of 300 policies were randomly gener-
ated for these MDPs and Algorithm 1 was used to evaluate
them when different number of features were used for ap-
proximation.

Figure 4 presents a summary of the results obtained. As
it can be seen, using bisimulation can provide considerable
improvement in terms of the approximation power. Using
feature sets that ignore reward information results in an er-
ror that becomes negligible when the number of features is
as large as the state space. With the exception of the 9x11
Grid World, negligible error was obtained quite early when
using bisimulation. Last but not least, we studied the behav-
ior of the newly introduced methods when the precision of
the bisimulation metric is reduced in order to improve com-
putation time. In the case of the smaller MDP based on cy-
cles, precision was not a factor, as the same results were ob-
tained for metrics computed within 10−1 to 10−7 precision.
This was not the case with the larger grid MDPs. In the 7x7
grid, which was specifically designed so that the topology is
very indicative of the value function, bisimulation only has
an advantage when computed with high precision. However,
in the larger 9x11 MDP, where the transition structure is not
sufficiently correlated to the value function, even a rougher
approximation for bisimulation provides improvements.

329

� �� �� �� ���

�

��

��

��

�	
�
�	�

�������������
��
��	���	������

� �� �� �� ���

��

��

��

�	
�
�	�

������������
��
��	���	������

� �� �� �� ���

��

��

��

��

�	
�
�	�

� �������

� �� �� �� ���

��

��

��

��

�	
�
�	�

� ������

� � �� �� �� ���

�

��

��

�	
�
�	�

!�	�
��"��
��#$�

� � �� �� ���

�

��

��

��

��

�	
�
�	�

%&��	�#$�

'��	�������&
(���)
�
����

Figure 4: Empirical results are shown as comparisons between the two methods described. The best approximations possible
are plotted as functions of the number of features.This is done on the MDPs described in Figures 1, 1, and 2. For 300 randomly
generated policies, Algorithm 1 was used to compute the best approximation to the value function using both bisimulation and
the accessibility matrix for state similarity. The graphs represent average L2-error in approximation. The last two graphs were
generated by running the same algorithm at different numerical precision(between 10−7 and 10−1) of the bisimulation metric.

Conclusion and future work

We presented an approach to automatic feature construction
in MDPs based on using bisimulation methods and spectral
clustering. The most important aspect of this work is that
we obtain features that are reward-sensitive, which is empir-
ically necessary, according to our experiments. Even when
the precision of the metric is reduced to make computation
faster, the features we obtain still allow for a very good ap-
proximation of the value function.

The use of bisimulation allows us to obtain solid theoreti-
cal guarantees on the approximation error. However, the cost
of computing or even approximating bisimulation metrics
is often prohibitive. The results presented here were meant
as a proof-of-concept to illustrate the utility of bisimulation
metrics for feature construction. We are currently exploring
the use of other reward-based feature construction methods,
with smaller computational costs. More empirical validation
of our approach is also necessary.

Acknowledgements

This work was founded in part by FQRNT and ONR. We
would like to thank Pablo Samuel Castro for useful discus-
sions and support. We also want to thank the anonymous
reviewers for their useful comments.

References

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific, Bellman, MA.
Chung, F. 1997. Spectral Graph Theory. CBMS Regional
Conference Series in Mathematics.
Ferns, N.; Panangaden, P.; and Precup, D. 2004. Metrics
for Finite Markov Decision Processes. In Conference on
Uncertainty in Artificial Intelligence.

Ferns, N.; Panangaden, P.; and Precup, D. 2005. Metrics for
Markov Decision Processes with Infinite State Spaces. In
Conference on Uncertainty in Artificial Intelligence.
Keller, P. W.; Mannor, S.; and Precup, D. 2006. Automatic
Basis Function Construction for Approximate Dynamic Pro-
gramming and Reinforcement Learning. In International
Conference on Machine Learning, 449–456. New York,
New York, USA: ACM Press.
Mahadevan, S., and Maggioni, M. 2005. Proto-Value Func-
tions: A Laplacian Framework for Learning Representa-
tion and Control in Markov Decission Processes. Machine
Learning 8:2169–2231.
Mahadevan, S. 2005. Proto-Value Functions: Developmen-
tal Reinforcement Learning. In International Conference on
Machine Learning, 553–560.
Parr, R.; Painter-Wakefiled, H.; Li, L.; and Littman, M. L.
2008. Analyzing Feature Generation for Value Function
Approximation. In International Conference on Machine
Learning, 737–744.
Petrik, M. 2007. An Analysis of Laplacian Methods for
Value Function Approximation in MDPs. In International
Joint Conference on Artificial Intelligence, 2574–2579.
Puterman, M. L. 1994. Markon Decission Processes: Dis-
crete and Stochastic Dynamic Programming. Wiley.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. MIT Press.
Tsitsiklis, J. N., and Van Roy, B. 1997. An Analysis of
Temporal-Difference Learning with Function Approxima-
tion. IEEE Transactions on Automatic Control 42(5):674–
690.

330

