Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

Unsupervised Learning of Human Behaviours

Sook-Ling Chua and Stephen Marsland and Hans W. Guesgen
School of Engineering and Advanced Technology
Massey University
Palmerston North, New Zealand
{s.l.chua, s.r.marsland, h.w.guesgen} @massey.ac.nz

Abstract

Behaviour recognition is the process of inferring the be-
haviour of an individual from a series of observations
acquired from sensors such as in a smart home. The
majority of existing behaviour recognition systems are
based on supervised learning algorithms, which means
that training them requires a preprocessed, annotated
dataset. Unfortunately, annotating a dataset is a rather
tedious process and one that is prone to error. In this
paper we suggest a way to identify structure in the data
based on text compression and the edit distance between
words, without any prior labelling. We demonstrate that
by using this method we can automatically identify pat-
terns and segment the data into patterns that correspond
to human behaviours. To evaluate the effectiveness of
our proposed method, we use a dataset from a smart
home and compare the labels produced by our approach
with the labels assigned by a human to the activities in
the dataset. We find that the results are promising and
show significant improvement in the recognition accu-
racy over Self-Organising Maps (SOMs).

Introduction

Behaviour recognition has a wide range of applications, in-
cluding healthcare (e.g., monitoring the daily activities of
elderly people and detecting anomalies in a home), secu-
rity and surveillance (such as detecting unusual events or in-
teraction in airports), industrial applications (e.g., analysing
social patterns in organisations), and automation systems
(e.g., automatic HVAC control). These have made behaviour
recognition a topic of interest, which has led to a variety of
solutions based on graphical models (Chua, Marsland, and
Guesgen 2009; Hu and Yang 2008). In a smart home, the
behaviours are likely to be the standard human behaviours
of living, and the observations will depend upon the sensors
that the house is equipped with. Since sensor observations
from the home in some way represent the behaviours of the
human inhabitants, we view the behaviour recognition prob-
lem as a task of finding a mapping from a stream of sensor
information to a sequence of recognised activities performed
by the inhabitant, with the aim of the home being to monitor
their behaviour.

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

319

There are many ways to learn the mapping between sen-
sor outputs and behaviours. One is to manually label the
data, either directly when observing the activities performed
by the inhabitant or having the inhabitant keeps a diary of
what they do. The first often raises privacy concerns, while
the latter is burdensome. Regardless of whether using di-
rect or indirect observations, manual labelling is a time-
consuming process; imagine someone has to go through sev-
eral weeks of data labelling before the recognition system
can be put into use. This is rather impractical, especially
when implementing a home for the elderly. Considerations
such as these have led to the approach of training a recog-
nition system from a limited number of labeled examples,
aided by the unlabelled data in a semi-supervised approach
to learning. There have been works that attempt to trans-
fer learned knowledge to a new physical domain (Zheng,
Hu, and Yang 2009; Rashidi and Cook 2010), or use active
learning to engage users to label classes that have the lowest
confidence (Stikic, Van Laerhoven, and Schiele 2008); they
do, however, rely on some partially labelled data.

An alternative approach is to automatically learn the map-
ping between sensor information and behaviours in an un-
supervised manner. However, there are a number of chal-
lenges implicit in recognising human behaviours, such as
the fact that the sensors present only a very partial picture of
what the inhabitant is doing, are noisy, and that behaviours
present in different ways at different times (e.g., the order of
events can change, the particular events within a behaviour
vary, etc.). One common method is to use standard machine
learning approaches to unsupervised learning, such as the k-
means algorithm and Self-Organising Map (SOM), with the
aim of identifying clusters of similar patterns (Huynh and
Schiele 2005; Nguyen, Moore, and McCowan 2007; Hein
and Kirste 2008). Some works also progressed toward using
available knowledge from the web to mine models of activ-
ities (such as ‘making tea’) associating with household ob-
jects (such as ‘teapot’, ‘kettle’, etc.) (Perkowitz et al. 2004;
Wyatt, Philipose, and Choudhury 2005). The basic idea of
these methods is to identify sensors that are related to par-
ticular activities. However, relating these clusters of sensor
readings to the activities is difficult, as different people have
their own ways of performing activities. In order to address
this, the resulting output from clustering or the mined model
is usually mapped to a supervised algorithm (such as the hid-

den Markov model or dynamic Bayesian network), which is
then used to recognise behaviours.

In this paper we present an unsupervised learning ap-
proach based on compression and text analysis that can au-
tomatically cluster the unlabelled data and segment the data
stream into behaviours without the need of training a super-
vised algorithm. The main reason why a set of activities
form a behaviour is because they are repeated. For an exam-
ple, making a beverage is a behaviour, since it might well be
repeated several times a day, and showering is a behaviour
because it is probably repeated daily. However, answering
a phone call while having dinner is not a behaviour since it
does not occur frequently. Based on this reasoning, it seems
clear that we can identify behaviours from a set of sensors
that are seen repeatedly in the data, which can be considered
as ‘redundant’ in the representational sense and therefore de-
tectable. It turns out that compression can be used to exploit
the redundancy in the sensory stream without any prior hu-
man labelling.

To illustrate how compression can be achieved, we repre-
sent the sensor stream as a sequence of tokens (e.g. letters
from the Roman alphabet), where a token could be the direct
representation of the current sensor states being triggered
(e.g. bathroom light is turned off, kitchen door is opened,
microwave is turned on, etc.). Hence, a behaviour can be
identified in the data stream as a repeated set of ‘words’,
albeit with variations, during the inhabitant’s daily activi-
ties. Any dictionary-based compression algorithm, such as
Lempel-Ziv-Welch (LZW) (Welch 1984), could be used to
exploit the repetitions by creating a codebook of potential
patterns (i.e. ‘words’), which is defined by a set of prototype
vectors of clusters. However, patterns (e.g. ‘AAAI’) often
do not repeat perfectly each time they are seen, such as the
ordering of certain tokens being additionally present (e.g.
‘AAyAl’) or absent (e.g. ‘AAT’), that the tokens could be in
different order (e.g. ‘AAIA’), or that there is minor variation
in a token (e.g., ‘ABAI’). We hence want to recognise vari-
ations in the patterns. Unfortunately, the LZW method does
not generalise to variations of the input. To allow for vari-
ability, a lossy compression is more suited to our problem.
We do this by extending the LZW method to perform lossy
compression based on edit distance (Levenshtein 1966).

In this paper, we test our proposed method on a dataset
collected from a real smart home and compare it to the Self-
Organising Map (SOM) (Kohonen 1990). We also show that
the proposed method can be used in a semi-supervised ap-
proach by providing labels to training data for a supervised
algorithm. We evaluate the effectiveness of our proposed
method with a baseline supervised method.

Our Proposed Approach

Compression has been a topic of interest since the birth of
information theory in the work of Shannon (1948), with the
aim of reducing the size of data for storage and/or trans-
mission. Compression exploits the repetition in the data by
building a dictionary of codewords, and then replacing each
incidence of the word with an index into the dictionary, with
shorter indices being used for frequent words, and longer

320

unlabelled sensor stream

[mousemousemousemouse]
Lossless compression
(using Lempel-Ziv-Welch)
Dictionary
mo mou mous mouse
Dictionary
ou ous ouse ousem
quantisation mouse
us use usem usemo
se sem semo semou Lossy compression

(using edit distance)

em emou emous

Figure 1: Lossless compression is first performed on the un-
labelled sensor stream using the Lempel-Ziv-Welch (LZW)
method, which creates a dictionary of phrases. There are in-
dices associated to each substring in the dictionary, but they
are omitted for clarity. The dictionary is then quantised us-
ing edit distance. The word ‘mouse’ after quantisation rep-
resents a behaviour.

indices for less frequently used words. Provided that the in-
dices are shorter than the words in the codebook, compres-
sion is achieved. Most compression algorithms require no
prior knowledge about the input data stream and can deal
with codewords of different lengths without problem.

Figure 1 shows an overview of our approach. Standard
lossless compression of the data stream is performed using
the LZW algorithm (Welch 1984), which adaptively builds
a codebook of commonly seen words. This will include a
number of variations of each word, and we then edit this dic-
tionary to produce individual prototype datapoints. Based on
this reduced dictionary, lossy matching (i.e., allowing some
relatively minor changes between the input and the dictio-
nary words) is used to find the closest matching word in the
dictionary.

Identifying patterns in unlabelled data streams

The only input that we expect to see for our approach is
the unannotated data stream. The LZW algorithm is used
to parse this and to identify potential sequences that can be
added to the dictionary. As an example, the second time the
phrase ‘mo’ is seen in the token sequence ‘mousemouse-
mousemouse...”, it will take the index of ‘mo’ found in the
dictionary and extend the phrase by concatenating it with
the next character from the sequence to form a new phrase
(‘mou’), which is later added to the dictionary. The search
then continues from the token ‘u’. The dictionary produced
by LZW is typically large, since it contains everything that
has been learnt during training, including all the substrings
of each dictionary word (see Figure 1).

To identify patterns, we are only interested in the longest
frequent words in the dictionary. To illustrate this, assuming
for now, we use the word ‘mouse’ to represent the tea mak-
ing behaviour, where token ‘m’ could be a sensor event on
the kitchen door, ‘o’ that the tap was running, ‘ux’ that the
kettle was switched on, ‘s’ that the fridge was opened and
‘e’ that the teapot was in use. Since LZW organises around

a dictionary by concatenating a phrase found in the dictio-
nary with the next character from the token sequence, this
will result in the dictionary containing many similar phrases
such as ‘mo’, ‘ou’, ‘us’, ‘mou’, ‘ous’, etc. We want to iden-
tify the longest common ‘words’, arguing that they represent
patterns; thus we want ‘mouse’ to represent one complete tea
making behaviour rather than ‘mo’ and ‘use’ separately.

Lossy compression can help to deal with variability and
noise in the data, provided that the component that is lost is
not important, or is the noisy part of the data. For this reason,
we extend the LZW algorithm to perform lossy compres-
sion. The aim of dictionary reduction is to find a single pro-
totype vector for typical data entries. We address this prob-
lem using the edit distance (Levenshtein 1966) (also known
as Levenshtein edit distance), which measures the similarity
between pairs of strings. The edit distance can be efficiently
computed by dynamic programming and is commonly used
for biological sequence analysis (Sokol, Benson, and Tojeira
2006) and spell checkers (Brill and Moore 2000). It works
by computing the minimum number of actions required to
transfer one string p into another string ¢, where an action
is a substitution, deletion, or insertion of a character into the
string. For example, given p =‘TAAI’ and ¢ ="AAAI, the
edit distance is 1 since we only need to substitute the first
letter ‘I in ‘TAAID” with ‘A’.

The algorithm for computing the edit distance uses a two-
dimensional matrix (size (|p| + 1) x (|g| + 1), where |p|
is the word length of string p and |¢| is the word length of
string q) to keep track of the edit distance values. The al-
gorithm begins by initialising for the first column to have
value [0, 1,2, ..., |p|] and likewise for the first row to have
the value [0,1,2,...]|¢|]. The entry for each remaining cell
in the matrix is computed using Equation 1:

0 if p[i] = qlj]

min disti-1j-1 + 1 otherwise)
dZ‘Sti, 1,5 + 1
diSti,jfl + 1

where dist; ; is the element of the i*" row and j'* column
of the dist matrix.

To perform lossy compression, we have found experimen-
tally that the most effective way to quantise the dictionary is
to pick a phrase in the dictionary and find its ‘neighbouring’
phrases, i.e., those that are edit distance 1 away. The word
with the highest frequency count and longest word length is
selected as the potential pattern. The algorithm iterates until
the pattern does not change. Algorithm 1 shows the steps of
using the edit distance for lossy compression.

Once the prototype ‘words’ for the dictionary have been
selected, the next task is to use these prototypes to identify
words in the data stream, which is described next.

Recognising patterns in the unlabelled data stream

Given a dictionary, we need to parse the data stream to
recognise dictionary exemplars and allowable variations on
them. To formulate the problem, given the data stream
S = {di,ds,ds,...d;} and the quantised set of words
D = {wy,wy,ws,...wy,} in the dictionary, we are trying

321

Algorithm 1 Lossy Compression using Edit Distance

Input: LZW dictionary D
Initialisation: m = length of D
P = get first phrase from D
while not end of m do
for! =1tomdo
w < Using Eq. 1, find phrases where dist(P, D;) =
1
end for
if w # 0 then
select w C w where max(freq count 4+ word length)
delete w from D
P=w
else
P = get next phrase from D
end if
end while
output quantised dictionary D’

to find a match w,.; r = 1,...,n for some subset of .S, and
then make that subset maximal given w,., so that the distance
between w and d is minimal.

One of the challenges in segmentation is that the presen-
tation of a behaviour will almost always vary between in-
stances of the same behaviour. For this reason, we use the
edit distance to identify the matches between the data stream
and the set of words that correspond to behaviours in the
quantised dictionary. Segmentation of the data stream can
be summarised in a three-step procedure:

1. Compute the matches between each w, and the data
stream .S using edit distance.

We compute the matches for each w, in the quantised dictio-
nary and the data stream S using edit distance. The distance
values are stored in a two-dimensional matrix (dist). Here
the value for the first row is initialised as 0, which is shown
in Figure 2. This enables an approximate match for some
subset of .S.

2. Select the maximal ‘word’ in S with edit distance be-
low some threshold e.

A threshold ¢ is chosen to control how much variation is
allowed between word samples. Based on experiments, the
€ value that we used is half the word length of the word in
the dictionary. Referring to the example in Figure 2, the €
value for the dictionary word ‘mouse’ is 2.5. Looking at the
figure, the distance values in the last row for columns 4 and
12 are less than 2.5, which indicates a match.

3. Perform backward-traversal

We can distinguish two types of match: perfect matches (i.e.
matches with a distance value of 0, such as the last row of
column 12 in Figure 2) and matches with errors (i.e. those
with a distance value greater than 0, but less than €). When
a perfect match is found, we can determine the number of
steps to move backwards through the word length. In the
example, the word length for ‘mouse’ is 5 and thus we can
move backward 5 steps. However, if the edit distance is 1,

column: 1 2 3 4 5 6 7 8 9 10 1 12

Data Stream m o s e X y z m o u s e
0 0 0 0 0 0 0 0 0 0 0 0 0
m 1 0 1 1 1 1 1 1 0 1 1 1 1
N
2
S o 2 1 0 1 2 2 2 2 1 0 1 2 2
<
s 4
= '
g u 3 2 1 - 1 2 3 3 3 2 1 0 1 2
s 4 3 2 M 2 3 4 4 3 2 1 0 1
x
dist(i-1.j-1) \\T dist(i-1.j)
e 5 4 3 2+—1 2 3 4 4 3 2 1 0

dist(i,j-1)
length=35

Figure 2: Illustration of how backward traversal is per-
formed on the distance matrix to identify the starting point of
the word boundary. When a perfect match is found i.e., when
the distance is 0 (column 12), the number of steps to move
backward is based on word length. When there is an error
(column 4), the algorithm recursively traverses the distance
matrix back and upward by finding the minimum distance
(shown in dashed arrow). For details, see the text.

i.e. there is an error, then this approach is not sufficient, as it
is hard to know if there is a missing or extra letter included
(e.g. ‘mose’) or a switch of a letter (e.g. ‘moues’). An exam-
ple of this is shown in column 4 of Figure 2. In this case the
starting point of word boundary can be identified by travers-
ing the dist matrix back and upward to find the minimum
distance of min(dist[i,j — 1],[¢ — 1,5 — 1], [— 1, j]) and
thus segment the data stream according to the ‘words’ in the
quantised dictionary.

Experimental Results

In this section, we describe our experiment setup and the
datasets used. In the three experiments reported here, we
used the annotation in the training set only to attach a recog-
nisable label to the words in the quantised dictionary, and
used the annotation of the test set as a ground truth. Recog-
nition accuracy is the ratio of the total number of activities
correctly identified by the algorithm over the total number
of activities used for testing.

The Smart Home Data

To demonstrate our system, we used a real smart home
dataset from the MIT PlaceLab (Tapia, Intille, and Lar-
son 2004). They collected data using a set of 77 state-
change sensors that were installed in an apartment over
a period of 16 days. The sensors were attached to ob-
jects within the home such as the washing machine, toaster,
refrigerator, etc. The dataset was annotated by the sub-
ject herself, meaning that there is a ground truth segmen-
tation of the dataset. To simplify the experiment, we
examine 5 different behaviours (i.e. toileting/showering,
grooming/dressing, preparing meal/snack/beverages, wash-
ing/putting away dishes and doing/putting away laundry).
Based on these behaviours, there are a total of 310 activity
examples and 1805 token observations.

We present three experiments using the MIT PlaceLab
data. The objective of the first experiment is to test the pro-
posed unsupervised approach based on compression and edit

322

Proposed Method SOM

Test No. of Activity No. of Activities Unidentified | Recognition | Recognition

Sets Examples Correctly Identified Activities Accuracy Accuracy

Ist Set 31 25 2 81% 56%
2nd Set 54 41 7 76% 57%
3rd Set 20 18 0 90% 69%
4th Set 33 30 0 91% 56%
Sth Set 49 41 3 84% 57%
6th Set 34 27 2 79% 64%
7th Set 37 32 2 86% 75%
8th Set 52 41 3 79% 47%
Average 83% 60%

Table 1: A comparison results between our proposed method
based on compression and edit distance, and the self-
organising map (SOM)

distance to identify words that are seen frequently in the sen-
sor stream and then segment the data stream into words by
finding the closest words in the dictionary using edit dis-
tance. We evaluate the performance of our method by com-
paring it with an unsupervised method based on SOM. The
second experiment investigates a semi-supervised approach,
i.e. using the output of compression to train a supervised
method. This is done by training the hidden Markov model
(HMM) based on the ‘words’ in the quantised dictionary.
The third experiment trains a baseline supervised classifier
using HMMs, with the aim to evaluate the effectiveness of
the unsupervised and semi-supervised methods.

We used a leave-two-out cross validation method for each
evaluation in order to calculate the confusion matrix and
measure the recognition accuracy. From the total of 16 days
of data, we used 14 days for training and the remaining two
days for testing. We repeated the process 8§ times, and the
final recognition accuracy is calculated by averaging the ac-
curacies in each run.

Experiment 1: Unsupervised Learning

In this experiment, we used the LZW algorithm to build a
dictionary of substrings based on the tokens in the training
set. We next performed a lossy compression using edit dis-
tance to quantise the dictionary. Once we had the quantised
dictionary, our next task was to segment the data stream into
behaviours. This was performed by parsing the tokens from
the test set into the set of quantised words in the dictionary.
A visualisation of the output of the system is shown in Fig-
ure 3. The tokens that have been segmented into behaviours
are then validated against the ground truth annotations on
the test set. The results are shown in Table 1.

Some behaviours were too rare and compression simply
could not be achieved, which results in some behaviours
(such as ‘doing/putting away laundry’ and ‘washing/putting
away dishes’) not being identified when building the dictio-
nary. These are shown as ‘unidentified activities’ in Table 1.
However, it is still instructive to see if there are consistent
reasons for these to occur. Instances of these behaviours
vary from the usual norm and the behaviour is often inter-
rupted as another event or noise from the sensors. This re-
sults in a high value in the edit distance, and our algorithm
is unable to recognise the word.

Since the Self-Organising Map (SOM) is an unsupervised
learning method that builds a codebook of prototype vectors,
we used the SOM as a baseline to test how effective our pro-
posed method is. The difference is that the SOM determines

=== Dressing/Grooming
""" Washing Dishes

====* Toileting/Showering

Preparing Meal/Beverages

Quantised Dictionary

We | w | x| w]|v]|V

Wid | p
w23 | |
w26 | |
w29 | g
w3t | g
F
0
h

W36
w39
W42

Tlx|law|w |3 |20

d
w
w
d
s
f
J

h

Figure 3: Visualisation of the output of the proposed method with ground truth. The lower case letters on the x-axis show the
sensor readings, while the y-axis shows the potential behaviours (which correspond to the top-right of the figure). The notation
‘W6’ refers to one of the words in the quantised dictionary (shown on the bottom-right of the figure). The example is based on

5 activity examples in the 3rd test set.

the similarity between the input vector and codebook vec-
tors by minimising the Euclidian distance, while our method
minimises the edit distance between the input vector and the
‘words’ in the dictionary. The data from the sensor stream
is presented to the SOM by taking the frequency count of
each sensor activation using a window that slides over the
data. The size of the window is determined by taking the
average number of sensor observations that describe the be-
haviours. The training of the SOM was in batch mode and
the learning rate was set to 0.05. Recognition accuracy in
the SOM is calculated by determining the nodes that are the
best match according to the target classes in the map after
training. The results are presented in Table 1, which shows
that our method has a higher recognition accuracy compared
to the SOM. Our method did well because it can deal with
codewords of different lengths, while in the SOM, the size
of the input vector is chosen in advance. This means that the
number of tokens that are presented is preset, here to 3.

The system that we are proposing will essentially report
which behaviour is identified at each time. However, this
might not always be sufficient, depending upon what the
aim of the smart home is. For example, suppose that we
wish to add other information, such as context (Guesgen and
Marsland 2010), or to detect abnormal behaviour. Neither of
these would be easy to do using the current method. An al-
ternative is to use the unsupervised learning approach as a
way to provide labels to training data for a supervised algo-
rithm in a bootstrap approach to learning. This supervised
algorithm can then be used to recognise behaviours from that
point onwards. We will now demonstrate how we use the
output of our algorithm to train a supervised classifier.

Experiment 2: Semi-Supervised Learning

This experiment trains a supervised algorithm (i.e. the hid-
den Markov model (HMM)) based on the ‘words’ in the
quantised dictionary. In our work, the observations are the
tokens from the sensors and the hidden states are the events
that caused the observations. For example, the token could
be that the shower faucet is turned on and the possible state

323

I Recognition Accuracy |
| Semi-supervised Learning | Supervised Learning |

Sets

‘ Test H No. of Activity
Ex 1

Ist Set 31 84% 90%
2nd Set 54 87% 91%
3rd Set 20 95% 95%
4th Set 33 94% 91%
Sth Set 49 90% 92%
6th Set 34 88% 91%
7th Set 37 92% 95%
8th Set 52 83% 85%

Average 89% 91%

Table 2: A comparison results between semi-supervised and
supervised learning methods. The semi-supervised method
used the learned ‘words’ from the quantised dictionary to
train a supervised method (i.e. HMM), while the supervised
method trains the HMMs directly from the ground truth.

that caused this token is that somebody is showering. We
train a set of HMMs, where each HMM represents one be-
haviour (e.g. we have one HMM to represent the ‘toilet-
ing’ behaviour, another to represent the ‘doing laundry’ be-
haviour, etc.), using the standard Expectation-Maximization
(EM) algorithm (Rabiner 1989). We use the method de-
scribed in (Chua, Marsland, and Guesgen 2009) to perform
segmentation and behaviour recognition.

The general idea of the method is to slide an initial
window of length 10 along the sensor stream and present
the 10 observations in the window to the sets of trained
HMMs for competition. A winning HMM,), is cho-
sen based on the HMM that maximises the likelihood of
the 10 observations (O, Os, ..., O1g) in the window, (i.e.
argmax, P(O1, Oa,...,019|\)). Since it is unlikely that
all of the sequences in the window belong to one behaviour,
a re-segmentation is performed by using the forward algo-
rithm (Rabiner 1989) to calculate the likelihood of each ob-
servation in the window according to the winning HMM.
The results are shown in Table 2.

Experiment 3: Supervised Learning

The aim of this experiment is to build a baseline classifier
on the annotated data, where the sensors and activities are

known a priori. This enables us to obtain a baseline recog-
nition systems. We followed the method described in (Chua,
Marsland, and Guesgen 2009). Since all HMMs are trained
from the examples of the training datasets, there are no
unidentified activities reported. The results of supervised
learning are presented in Table 2.

From Tables 1 and 2, the results of the unsupervised
method have recognition accuracy of 83%, which is com-
parable to the supervised method with an accuracy of 91%,
considering that our method works on unannotated data
streams. This means that the unsupervised method presented
in this paper works effectively to identify behaviours from
the unlabelled data stream. The ouput of our method can
also be used to train a supervised classifier, achieving an ac-
curacy of 89%.

Conclusions

In this paper, we present a new approach based on com-
pression and edit distance to exploit the redundancy in an
unlabelled data stream, which we define to be behaviours.
In order to allow variations in the behaviours, we extend
the Lempel-Ziv-Welch method to perform lossy compres-
sion using edit distance, which is also used to segment the
unlabelled data stream into behaviours that we have identi-
fied. The results are promising since the method does not
need any prior human labelling, which is effective for a real
implementation, where the smart home can be built up from
nothing when the sensors are placed into a new environment,
learning from the unlabelled sensor stream to perform be-
haviour recognition. Hence, generalisation is not an issue
for our system. We also show how the output of the un-
supervised method described in this paper can be used to
train a supervised classifier in a bootstrap approach to learn-
ing. One challenge with unsupervised learning is that there
is no guarantee that the identified behaviour will match pre-
cisely the labels that would have been assigned by a human.
For example, if a person always has a shower before having
breakfast, the algorithm may well decide that there is only
one behaviour here.

The MIT PlaceLab dataset uses 77 state-change sensors to
describe approximately 20 activities in the home although
some sensors are not used. We are currently working on
detecting informative sensors in the data stream. For that
we need to determine the amount of information that we can
get from each sensor to identify a behaviour. We also plan
to extend our work by exploring other effective method for
quantisation, such as the fuzzy clustering method.

Acknowledgments

The financial support from Massey University is
gratefully acknowledged. @~ We also acknowledge the
support of the other members of the MUSE group
(http://muse.massey.ac.nz). We would like to thank MIT
PlaceLab for providing access to their dataset.

References

Brill, E., and Moore, R. C. 2000. An improved error model for
noisy channel spelling correction. In ACL ’00: Proceedings of the

324

38th Annual Meeting on Association for Computational Linguis-
tics, 286-293.

Chua, S.-L.; Marsland, S.; and Guesgen, H. W. 2009. Behaviour
recognition from sensory streams in smart environments. In Aus-
tralasian Conference on Artificial Intelligence, 666—675.

Guesgen, H. W., and Marsland, S. 2010. Spatio-Temporal Reason-
ing and Context Awareness. Berlin, Germany: Springer. 609-634.

Hein, A., and Kirste, T. 2008. Towards recognizing abstract ac-
tivities: An unsupervised approach. In Behaviour Monitoring and
Interpretation, 102-114.

Hu, D. H., and Yang, Q. 2008. Cigar: concurrent and interleaving
goal and activity recognition. In AAAI’08: Proceedings of the 23rd
Conference on Artificial Intelligence, 1363—-1368.

Huynh, T., and Schiele, B. 2005. Analyzing features for activ-
ity recognition. In Proceedings of the 2005 joint conference on
smart objects and ambient intelligence, 159-163. New York, USA:
ACM.

Kohonen, T. 1990. The self-organising map. Proceedings of the
IEEE 78(9):1464-1480.

Levenshtein, V. 1966. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics Doklady 10:707—
710.

Nguyen, A.; Moore, D.; and McCowan, I. 2007. Unsuper-
vised clustering of free-living human activities using ambulatory
accelerometry. In Proceedings of the Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society,
4895-4898.

Perkowitz, M.; Philipose, M.; Fishkin, K.; and Patterson, D. J.
2004. Mining models of human activities from the web. In WWW
'04: Proceedings of the 13th international conference on World

Wide Web, 573-582. New York, NY, USA: ACM.

Rabiner, L. 1989. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings of the IEEE
77(2):257-286.

Rashidi, P., and Cook, D. J. 2010. Activity recognition based on
home to home transfer learning. In AAAI’10: Proceedings of the
24th conference on Artificial intelligence, 45-52. AAAI press.

Shannon, C. E. 1948. A mathematical theory of communication.
Bell System Technical Journal 27:379-423, 625-56.

Sokol, D.; Benson, G.; and Tojeira, J. 2006. Tandem repeats over
the edit distance. Bioinformatics 23(2):e30—e35.

Stikic, M.; Van Laerhoven, K.; and Schiele, B. 2008. Explor-
ing semi-supervised and active learning for activity recognition. In
ISWC’08: Proceedings of the 12th IEEE International Symposium
on Wearable Computers, 81-88. Washington, DC, USA: IEEE
Computer Society.

Tapia, E. M.; Intille, S. S.; and Larson, K. 2004. Activity recogni-
tion in the home using simple and ubiquitous sensors. In Pervasive,
158-175.

Welch, T. A. 1984. A technique for high-performance data com-
pression. Computer 17(6):8-19.

Wyatt, D.; Philipose, M.; and Choudhury, T. 2005. Unsupervised
activity recognition using automatically mined common sense. In
AAAI’05: Proceedings of the 20th National Conference on Artifi-
cial Intelligence, 21-27. AAAI Press.

Zheng, V. W.; Hu, D. H.; and Yang, Q. 2009. Cross-domain activity
recognition. In Ubicomp’09: Proceedings of the 11th International
Conference on Ubiquitous Computing, 61-70.

