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Abstract

Manifold learning is a powerful tool for reducing the di-
mensionality of a dataset by finding a low-dimensional
embedding that retains important geometric and topo-
logical features. In many applications it is desirable to
add new samples to a previously learnt embedding, this
process of adding new samples is known as the out-of-
sample extension problem. Since many manifold learn-
ing algorithms do not naturally allow for new samples to
be added we present an easy to implement generalized
solution to the problem that can be used with any exist-
ing manifold learning algorithm. Our algorithm is based
on simple geometric intuition about the local structure
of a manifold and our results show that it can be effec-
tively used to add new samples to a previously learnt
embedding. We test our algorithm on both artificial and
real world image data and show that our method signif-
icantly out performs existing out-of-sample extension
strategies.

Introduction
Manifold learning is a widely researched statistical tool
used to reduce the dimensionality of a dataset by pro-
jecting the high-dimensional data onto a representative
low-dimensional manifold. At its simplest form this low-
dimensional manifold can be the hyperplane of maximum
variance resulting in the data being projected onto a lin-
ear basis (Hotelling 1933). More recent techniques aim
to find a non-linear manifold upon which the data can
be projected (Tenenbaum, de Silva, and Langford 2000;
Roweis and Saul 2000). Non-linear techniques are able to
discover more complex manifolds than their linear counter-
parts and so pave the way for manifold learning to be used
as a powerful statsticial tool in image processing (Verbeek
2006), data mining (Patwari, III, and Pacholski 2005) and
classification (Strange and Zwiggelaar 2009).

One of the open questions within manifold learning is
how a new ’unseen’ sample can be mapped into a previously
learnt embedding. Consider as an example a simple classi-
fication problem involving a set of training samples and a
seperate set of test samples. We wish to use manifold learn-
ing to reduce the dimensionality of these data sets so that
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we can perform the classification in the lower-dimensional
space. The two options open are, either to combine the train-
ing and test sets into one and perform manifold learning on
this combined dataset before splitting them again in the low-
dimensional space, or to run the manifold learning algorithm
on the training set and then apply what has been learnt from
this manifold learning process to map the test set into the
low-dimensional space. The advantage of the latter approach
is that it not only potentially less computationally expensive
but it also means that new samples can be continually added
to the low-dimensional embedding without the need to re-
compute the low-dimensional manifold every time. This ap-
proach is commonly referred to as the out-of-sample ex-
tension. It is worth noting that the out-of-sample extension
problem can appear similar in many ways to the problem of
incremental learning (Law and Jain 2006), where the low-
dimensional manifold is incrementally learnt over a number
of iterations of new samples being inserted. This is different
from the out-of-sample problem where a new sample simply
needs to be mapped into the low-dimensional space with-
out affecting the low-dimensional manifold and requiring a
re-learning or change in the manifold parameterization for
future learning.

Many existing manifold learning techniques do not nat-
urally contain an out-of-sample extension so research has
been undertaken to find ways of extending manifold learn-
ing techniques to handle new samples. Bengio et al. (Bengio
et al. 2003) presented ways of extending some well known
manifold learning techniques: ISOMAP (Tenenbaum, de
Silva, and Langford 2000), Locally Linear Embeddings
(Roweis and Saul 2000), Laplacian Eigenmaps (Belkin and
Niyogi 2003) and Multidimensional Scaling (Cox and Cox
2001), to handle the out-of-sample extension problem. The
framework developed by Bengio et alṙelies on phrasing the
out-of-sample problem as a kernel problem where a con-
tinuous kernel function is defined in order to generalize
the existing embeddings to a new data point. Other ap-
proaches have been presented that attempt to extend specific
manifold learning algorithms to handle new samples (e.g.
Maximum Variance Unfolding (Weinberger and Saul 2006;
Chin and Suter 2008), LTSA & LLE (Zhang and Zha 2005;
Saul and Roweis 2003)) but at present there is little work on
creating a generalized solution to the out-of-sample prob-
lem. Recently Yang et al. (Yang et al. 2010) proposed a

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

471



Figure 1: The new sample is attached to its nearest neigh-
borhood in the high-dimensional space and then projected
onto the low-dimensional hyperplane defined by the princi-
pal components of that neighborhood.

method for a generalized out-of-sample method based on
their manifold learning technique Local and Global Regres-
sive Mapping. Regularization is used to learn a model to al-
low out-of-sample extrapolation and as such they claim that
their framework can be applied to any manifold learning al-
gorithm to enable an out-of-sample extension.

In this paper we present a generalized out-of-sample ex-
tension (GOoSE) solution. Unlike existing approaches we
do not require information to be retained from the learning
process, such as the pairwise distance matrix or the resultant
eigenvectors, we simply learn the mapping from the original
high-dimensional data and its low-dimensional counterpart.
As such our method is independent of any specific manifold
learning algorithm. The change in local geometry between
the high and low-dimensional spaces provides the informa-
tion needed to compute the transformation of new samples
into the low-dimensional space. This simplicity means that
our approach can be used to extend any manifold learning
technique to handle the out-of-sample extension problem.

The rest of this paper is structured as follows. We begin
by outlining the algorithm behind our generalized solution
before moving on to show how this generalized solution per-
forms on artificial and real world data. In the Results section
we show how using GOoSE can produce comparable results
to the existing out-of-sample techniques described above.
We end by presenting conclusions and possible directions
for future work.

Algorithm
The basic premise of our algorithm is to find the transforma-
tion that maps a new unseen sample’s neighborhood from
the high-dimensional to the low-dimensional spaces. This
transformation is equivalent, as far as possible, to running
the manifold learning technique on the given sample.

Given the original data set X = {xi}ni=1 ∈ R
p and its

low-dimensional representation Y = {yi}ni=1 ∈ R
q , where

q � p, we wish to find the low-dimensional approximation,
ϕ ∈ R

q , of an unkown sample, φ ∈ R
p, given that φ � X.

We assume that X is sampled from a hidden manifold M,
that is X ⊆M, and also that at a local scaleM is linear (i.e.
M is a C∞ manifold). Since Y is the result of manifold
learning we can describe Y in terms of a function on X.
That is

Y = f(X) (1)

Unless we are dealing with a linear manifold learning al-
gorithm such as Principal Components Analysis this func-
tion will be difficult to learn at a global scale. Instead we
can think of Y as being built up by individual functions for
each sample. That is for the i-th datapoint yi = fi(xi). The
out-of-sample problem can thus be thought of as finding a
function that best approximates the transformation under-
gone via manifold learning, that is for an unlearnt sample
min(||ϕ−ϕ′||) where ϕ is the actual embedding of the sam-
ple and ϕ′ is its estimated embedding. This problem is evi-
dently cyclical as we need the actual embedding to be able
to find the function to minimize but we need to minimize the
function to find the actual embedding.

To solve this problem it is helpful to take a step back
and consider the situation where we know the actual low-
dimensional representation, y, of a sample x. To re-create
the embedding of x we can examine the local geometric
structure around x in the high and low-dimensional spaces.
If we assume that the result of running a manifold learning
algorithm is a local change in the neighboring geometry of a
sample then we can reformulate the problem as that of find-
ing a simple linear transformation

y = AVx (2)

where A is a similarity transformation matrix and V is a
matrix that projects x into the low-dimensional space. We
now seek to find A and V that best approximates the local
transformation. Given that we know the target dimensional-
ity, q, and we take the manifold to be locally linear we can
find the projection matrix V by performing Principal Com-
ponents Analysis on a local neighborhood of the k-nearest
samples according to Euclidean distance around x. We de-
note the samples in this neighborhood as XNi and so the
principal components are found by

ΛV = CV (3)

where C is the covariance matrix of XNi
and V is a matrix

containing as columns the top q-dimensional eigenvectors
sorted according to their associated eigenvalues, Λ. We can
now find the low-dimensional representation of x by project-
ing onto the eigenvectors, y = Vx (Figure 1).

Figure 2: Since we assume that the transformation under-
gone as a result of manifold learning can be approximated
as a local linear transform we aim to find that transform. By
applying that transform to the new sample we can find its
approximate low-dimensional image.
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To find the similarity transformation matrix we need
to examine the change in local geometry. We first need
to project the local neighborhood XNi

into the lower-
dimensional space by projecting onto the eigenvectors V
(3). We represent this low dimensional projected neighbor-
hood as Y′ and the same neighborhood of points in the low-
dimensional embedding as Y. For convenience we drop the
subscripted Ni so when referring to Y we actually mean
YNi

and similary Y′ is Y′Ni
.

We know that

Y ≈ AY′ (4)

and that the transformation matrix A can be represented in
terms of a seperate scale and rotation component

Y ≈ BRY′ (5)

where B is a non-isomporphic scale matrix and R is the
rotation matrix. The task now becomes to find the scale and
rotation that transforms Y′ to Y (Figure 2).

To find the solution to this problem we use a method from
statistical shape theory and find the singular value decompo-
sition (SVD) of the matrix Y′TY.

To find the rotation matrix R and the scale value b we
first find the singular value decomposition

Y′TY = UΣVT (6)

the rotation matrix can then be found by

R = UVT (7)

Once the rotation has been applied we find the scale ma-
trix by

B =

⎡
⎢⎢⎣

max(Y1)−min(Y1)
max(Y′1)−min(Y′1) . . . . . .

...
. . .

...
. . . . . . max(Yq)−min(Yq)

max(Y′q)−min(Y′q)

⎤
⎥⎥⎦
(8)

where Y1 indicates the column vector containing all sam-
ples along the first dimension of Y and Yq indicates the
column vector containing all samples along the qth dimen-
sion.

Now we return to the original problem of finding the
low-dimensional representation, ϕ, of an unlearnt sample
φ. As we have shown above, an approximation of the low-
dimensional embedding of a neighborhood in the high-
dimensional space can be found. So a simple solution to
finding the low-dimensional representation of an unlearnt
sample is to find the rotation and scale transformations of the
sample’s nearest neighbors and then applying these trans-
forms to the unlearnt samples. This can be done by find-
ing the k-nearest neighbors of φ in X, XNφ

. We then find
the projection matrix of XNφ

according to (3) and the ro-
tation and scale values according to (7) and (8). The low-
dimensional representation, ϕ, of φ then becomes

ϕ = BRVNφ
φ (9)

This process is described in algorithmic form in Algo-
rithm 1.

Algorithm 1 Generalized Out-of-Sample Extension
Require: x ∈ R

D,X ∈ R
D,Y ∈ R

d, k � |X|
1: idx← nn(x,X,Y, k)
2: ΛV = CXV
3: Z′ = XidxV1...d

4: (UΣV)← svd(Z′Yidx)
5: B← eye(d, d)

6: diag(B) = [
range(Y1

idx)

range(Z1
idx)

. . .
range(Yd

idx)

range(Zd
idx)

]

7: T← UVT

8: y ← xV1...d

9: y ← ByT
10: return y

Discussion & Results
In this section we provide both visual and quanititative eval-
uation of our method. We begin by defining an embedding
error which can be used to analyse the performance of an
out-of-sample extension algorithm.We then move on to dis-
cuss how GOoSE’s only parameter, k, affects the accuracy
of the estimated low-dimensional embedding before finally
displaying results using both artificial data as well as real
world image data.

Embedding Error
To be able to analyse the performance of out-of-sample ex-
tensions we need to first define an embedding error. Given
a dataset D we create a training set, B, and test set, C,
such that B ∪ C = D, B ∩ C = ∅ and |B| = |D| −
|C|. As in (Yang et al. 2010) we can obtain the low-
dimensional embedding, Y, by running a manifold learning
algorithm on the entire dataset D. We can then express Y as
Y = [Ytrain,Ytest]T where Ytrain and Ytest are the low-
dimensional embeddings of the training and test data. Once
Y is know we can use B to obtain the training set of the
manifold and then use an out-of-sample extension method
to estimate the low-dimensional embedding of C. We de-
note the estimated low-dimensional embedding of the test
data Y′

test, we can now define an embedding error based on
the root mean square error between the actual and estimated
test sets

e =

√∑
(Ytest −Y′

test)
2

n
(10)

where n is the number of elements in the test set and both
Ytest and Y′

test are transformed according to the rotational
difference between Ytrain and B to remove the effect of
the manifold learning algorithms mapping the datasets into
different low-dimensional spaces1. This error measure now

1This is something that is not considered by Yang et al. in (Yang
et al. 2010) but without this step the results obtained are meaning-
less as the two low-dimensional embeddings are in different co-
ordinate spaces
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Figure 3: The effect of the neighborhood size parameter
k on the embedding error of a dataset with a known low-
dimensional manifold.

provides us with a basis of analysing the performance of an
out-of-sample extension method, with a low value of e sig-
nifying that the estimated test embedding is closer to the ac-
tual test embedding than that of a test embedding with a high
value of e.

Parameter Selection

Our algorithm has only one free parameter, the neighbor-
hood size k. To test how this parameter affects the perfor-
mance we ran a set of experiments on a known manifold with
a known low-dimensional embedding. We used the Swiss
Roll manifold with 2000 samples and the low-dimensional
embedding learnt by LTSA (we could have used any mani-
fold learning algorithm but LTSA produces the most faith-
ful result as shown in Figure 4). The data was randomly
split into training and test sets with each set having a size
of 1000. For each permutation of training and test we used
the GOoSE algorithm to try and embed the test set into the
low-dimensional space with varying parameters of k within
the range [3, 19]. The RMSE of the test data for each value
of k was recorded and averaged over a series of 10 runs.

Figure 3 shows the results of this test. The graph is shown
with associated error bars indicating the standard deviation
of the results per value of k. The results show that a min-
ima is reached around k = 7± 2, after this point the RMSE
increases along with the standard deviation meaning that re-
sults obtained with a larger value of k are more unstable.
Although this optimum value of k will change depending on
what dataset is used, experiments do show that a local min-
ima will always exist. Since the GOoSE algorithm is fast to
run it is easy to find an optimum value of k by performing a
simple parameter search.

Results
To test our algorithm we use 3 main datasets: a 3-
dimensional Swiss Roll, a moving image dataset and the
ISOMAP faces data. Each of these datasets presents a dif-
ferent challenge for a manifold learning algorithm and sub-
sequently an out-of-sample extension algorithm.

Swiss Roll The Swiss Roll dataset consists of a 2-
dimensional manifold embedded within R

3. This 2-
dimensional manifold is a highly-curved plane that is rolled
up to resemble a Swiss Roll (Figure 4). A manifold learning
algorithm should be able to ’unwrap’ this Swiss Roll and
embed it into R

2. We used 2000 points sampled from the
Swiss Roll and this was randomly split into 1000 samples
for training and 1000 samples for test. We used four dif-
ferent manifold learning algorithms (LLE (Roweis and Saul
2000), LTSA (Zhang and Zha 2005), Eigenmaps (Belkin
and Niyogi 2003) and LGRM (Yang et al. 2010)) to learn
the low-dimensional training embedding before applying
GOoSE to estimate the test set’s low-dimensional embed-
ding. These algorithms were chosen due to the fact that they
all either inherently contain, or have been extended to cope
with, the out-of-sample extension problem. For LLE, LTSA
and Eigenmaps the neighborhood size parameter was set to
8 and for LGRM we used the parameters shown in (Yang et
al. 2010). The results of running our algorithm on the Swiss
Roll dataset using the GOoSE k parameter of k = 7 are
shown in Figure 4. The top row shows the 1000 training
samples and the bottom row shows the results of running
GOoSE on the test samples. In all cases GOoSE is able to
embed the novel samples within the trained manifold to ob-
tain a meaningful embedding of the test set. It is worth not-
ing that the failure of Laplacian Eigenmaps, and to some ex-
tent LLE, to produce meaningful low-dimensional embed-
dings is due to the fact that the problem is under-sampled.
As such these techniques are unable to build an adequate
model of the manifold from the training set leading to an
incorrect low-dimensional embedding. However, this does
enable us to show that even in the case of a distorted em-
bedding GOoSE is able to embed novel samples according
to the shape of the trained embedding.

To obtain quantative analysis of our algorithm and to com-
pare it against existing approaches we measured the embed-
ding error of our algorithm using a 10 fold cross validation
approach. The data was randomly split into 10 folds with 9
being used for training and 1 for test. This was repeated un-
til all folds had been used as a test set. A manifold learning
algorithm was then used to obtain the full low-dimensional
embedding as well as the training set’s low-dimensional em-
bedding. For each run the RMSE was recorded when using
GOoSE and also when using the given manifold learning
algorithm’s out-of-sample extension. For LLE and LTSA
we used the out-of-sample approach outlined in (Saul and
Roweis 2003); for Eigenmaps we used the approach out-
lined in (Bengio et al. 2003) and we used LGRM’s built in
approach (Yang et al. 2010). Thus for each run of the exper-
iment using a given manifold learning algorithm we obtain
two different error scores: the error obtained from using the
out-of-sample extension associated with the given algorithm
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Figure 4: Results of running the GOoSE algorithm on the Swiss Roll data with 1000 samples used from training and 1000
samples used for test. GOoSE’s k parameter was set to k = 7. The neighborhood size parameter for LLE, LTSA and Eigenmaps
was set to 8 while the parameters for LGRM were set according to (Yang et al. 2010).

(the default method) and the error obtained from running
GOoSE as the out-of-sample method. For each test GOoSE
was run multiple times with differing values of k and the
minimum RMSE was taken. The averaged results are shown
in the graph in Figure 5. When compared with existing out-
of-sample approaches our algorithm is able to consistently
out perform current methods. The average RMSE across all
methods for GOoSE is e = 0.0002 when compared with
e = 0.0043 for using the algorithms’ built in out-of-sample
methods. There is also large variation in the performance of
existing out-of-sample methods, σ = 0.0044, with LLE per-
forming the worst (e = 0.010) and LGRM performing the
best (e = 0.0008). The variation between different mani-
fold learning algorithms when using GOoSE is considerably
lower, σ = 0.0001. This shows the stability of GOoSE and
its effectiveness regardless of what manifold learning algo-
rithm is used to learn the low-dimensional embedding.
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Figure 5: Average embedding quality for each of the out-
of-sample extension algorithms on the Swiss Roll and
ISOMAP faces datasets. Due to the large range in results the
plot is shown with the Y axis scaled as log( 1

RMSE ), mean-
ing a larger value indicates a better quality embedding.

Moving Image To test our algorithm on image data we
use two different datasets the first of which consits of an
image moving across a black background. The dataset con-
tains 4096 images of size 96 × 96 pixels and so the high-
dimensional data lies in R

9216. The training data consists
of 2048 randomly selected samples and the remaining sam-
ples are used as test. Local Tangent Space Alignment (Zhang
and Zha 2005) with parameter k = 8 was used to learn
the low-dimensional embedding of the training set as it was
able to find a meaningful low-dimensional embedding of the
data. Figure 6 shows the resulting 2-dimensional embedding
with the training data indicated by blue dots ( ) and the test
data indicated by a red plus-signs ( ). As can be seen the
test samples fit nicely into the ‘gaps’ of the training data
as would be expected. The data consists of dense regions
of samples around the corners and a sparser region of sam-
ples in the center (this is due to the manifold being curved
at the edges and so is not truely 2-dimensional). Even with
the more sparsely sampled central region GOoSE manages
to place the unlearnt samples into the correct regions.

ISOMAP Faces The second image dataset used is the
ISOMAP faces dataset (Tenenbaum, de Silva, and Langford
2000) consisting of a set of 698 faces in R

4096 under differ-
ent pose and illumination conditions. This dataset is interest-
ing as it has intrinsic dimensionality of 4 (Kégl 2002) mean-
ing the quality of results are not visually assessable. There-
fore our algorithm’s performance on this dataset along with
the performance of other out-of-sample methods is shown
in Figure 5. The neighborhood size parameters for LLE,
LTSA and Eigenmaps were set to 8 while the parameters
for LGRM were set according to (Yang et al. 2010). GOoSE
was run multiple times with differing values of k and the
minimum RMSE was taken. As with the Swiss Roll dataset
we used a 10 fold cross validation approach and averaged
the results (the full details are described in the Swiss Roll
section above). Again GOoSE is able to outperform exist-
ing out-of-sample techniques. The average embedding error
for GOoSE on the ISOMAP faces data is e = 0.0048 with
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Figure 6: Result of running the GOoSE algorithm on high-
dimensional image data. The data consists of 4096 images
of size 92×92 split randomly using half as training and half
as test. The blue dots represent the training samples and the
red plus-signs represent the samples learnt using GOoSE.

standard deviation of σ = 0.0026. For the existing out-of-
sample methods the average error is e = 0.0144 with stan-
dard deviation of σ = 0.0052. Although the standard devia-
tion of the results from the GOoSE algorithm on this dataset
is higher it is still able to consistently out perform existing
out-of-sample methods.

Conclusions & Future Work
We have presented a novel and simple technique to solve
the generalized out-of-sample extension problem in mani-
fold learning. Our algorithm, GOoSE, applies the local geo-
metric change between neighborhoods in the high and low-
dimensional space to any unlearnt sample to obtain its low-
dimensional embedding. The method works by learning the
transformation that maps the neighborhood of the unlearnt
sample from the high to the low-dimensional space. This
transformation is then applied to the new sample to obtain
an estimation of its low-dimensional embedding.

The results show that this method is able to succesfully
embed new datapoints into non-linear manifolds. We have
shown that the GOoSE algorithm is able to embed new sam-
ples into previously learnt manifolds regardless of the mani-
fold learning technique used. GOoSE also significantly out-
performs existing out-of-sample techniques when tested on
artificial and real world data. This make GOoSE a powerful
and versatile tool for statistical learning as it is indepenent
of the manifold learning technique used and only requires
access to the original data and the learnt low-dimensional
embedding.

We are currently working on a version of the GOoSE al-
gorithm that reverses the out of sample process, that is it
aims to solve the pre-image problem (given a sample in the
low-dimensional space we wish to find its high-dimensional
image). Using similar methodology outlined in this paper we
aim to produce a pre-image algorithm that can be combined
with the GOoSE algorithm to form a framework for easily
mapping between the high and low-dimensional spaces.
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