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Abstract

Transfer learning allows knowledge to be extracted
from auxiliary domains and be used to enhance learn-
ing in a target domain. For transfer learning to be suc-
cessful, it is critical to find the similarity between aux-
iliary and target domains, even when such mappings
are not obvious. In this paper, we present a novel al-
gorithm for finding the structural similarity between
two domains, to enable transfer learning at a structured
knowledge level. In particular, we address the prob-
lem of how to learn a non-trivial structural similarity
mapping between two different domains when they are
completely different on the representation level. This
problem is challenging because we cannot directly com-
pare features across domains. Our algorithm extracts the
structural features within each domain and then maps
the features into the Reproducing Kernel Hilbert Space
(RKHS), such that the “structural dependencies” of fea-
tures across domains can be estimated by kernel ma-
trices of the features within each domain. By treating
the analogues from both domains as equivalent, we can
transfer knowledge to achieve a better understanding of
the domains and improved performance for learning.
We validate our approach on synthetic and real-world
datasets.

Introduction and Motivation

Re-using knowledge across different learning tasks (do-
mains) has long been addressed in the machine learning
literature (Thrun 1998; Caruana 1997; Daumé III 2006;
Dai 2008; Blitzer 2006). Existing research on this issue usu-
ally assume that the tasks are related on the low level, i.e.
they share the same feature space or the same paramet-
ric family of models, such that knowledge transfer can be
achieved by re-using weighted samples across tasks, finding
a shared intermediate representation, or learning constraints
(informative priors) on the model parameters.

However, examining knowledge transfer in human intel-
ligence, we could find that human beings do not rely on
such low-level relatedness to transfer knowledge across do-
mains. Namely, we human beings are able to make analogy
across different domains by resolving the high level (struc-
tural) similarities even when the learning tasks (domains)
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are seemingly irrelevant. For example, we can easily under-
stand the analogy between debugging for computer viruses
and diagnosing human diseases. Even though the computer
viruses (harmful codes) themselves have nothing in common
with bacteria or germs, and the computer systems is totally
different from our bodies, we can still make the analogy base
on the following structural similarities:

1. Computer viruses cause malfunction of computers. Dis-
eases cause disfunction of the human body.

2. Computer viruses spread among computers through
the networks. Infectious diseases spread among people
through various interactions.

3. System updates help computers avoid certain viruses.
Vaccines help human beings avoid certain diseases.
Understanding of these structural similarities helps us ab-

stract away the details specific to the domains, and build a
mapping between the abstractions (see Figure 1). The map-
ping builds on the high level structural relatedness of the two
domains, instead of their low level “literal similarities”. In
other words, the attributes of the “computer” and the “hu-
man” themselves do not matter to the mapping, whereas
their relationships to other entities in their own domains mat-
ter.

This is reminiscent of the learning-by-analogy paradigm
in early endeavors in intelligent planing and problem solv-
ing. However, many previous operational systems in compu-
tational analogy, such as case-based reasoning, have used a
simple similarity function between an old and new problem
domain, whereby the features in the two domains are iden-
tical, albeit weighted. This similarity measure cannot han-
dle some more intuitive cases of human problem solving,
such as the above example, in which the similarity between
the domains should be measured on the structural level. And
such a “structural similarity” can only be determined if we
can correctly identify analogues across completely different
representation spaces.

On the other hand, in cognitive science, analogical learn-
ing indeed involves developing a set of mappings between
features from different domains. Such a need is captured
in structure mapping theory (Falkenhainer 1989; Gentner
1990) of analogical reasoning, which argued for deep rela-
tional similarity rather than superficial similarity. However,
an operational computational theory has been lacking for
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Figure 1: We can make the analogy between debugging
for computer viruses and diagnosing human diseases based
on structural similarities. The dash lines bridge analogues
across domains.

how to come up with the mapping function. We try to fill
this gap in this paper.

In this paper, we present a framework of transfer learn-
ing by structural analogy, which builds on functional space
embedding of distributions (Smola 2007). Specifically, we
address transfer learning in a setting that the source domain
and target domain are using completely different representa-
tion spaces. As we cannot directly compare features across
domains, we extract the structural information of the fea-
tures within each domain by mapping the features into the
Reproducing Kernel Hilbert Space (RKHS), such that the
“structural dependencies” of features across domains can be
estimated by kernel matrices of the features within each do-
main (Smola 2007). Hence the learning process is formu-
lated as simultaneously selecting and associating features
from both domains to maximize the dependencies between
the selected features and response variables (labels), as well
as between the selected features from both domains. With
the learned cross-domain mapping, a structural similarity
between the two domains can be readily computed, which
can be used in place of simple similarity measures in com-
putational analogy systems such as case based reasoning. By
treating the analogues from both domains as equivalent, we
can transfer knowledge to achieve a better understanding of
the domains, e.g. better accuracy in classification tasks.

Related Work

The idea of re-using knowledge across learning tasks (do-
mains) has been addressed in the machine learning litera-
ture in different terminologies, such as learning to learn,
multi-task learning, domain adaptation, and transfer learn-
ing (Thrun 1998; Caruana 1997; Daumé III 2006; Dai 2008;

Blitzer 2006; Mahmud 2007). To the best of our knowledge,
among these works (Dai 2008) and (Mahmud 2007) are the
only ones that address transferring knowledge across differ-
ent representations spaces. However, (Dai 2008) rely on co-
occurrence observations that bridges the two feature spaces
(such as a dictionary, which consists of co-occurrence ob-
servations of two languages), such that the cross-domain re-
lations of the features can be estimated straightforwardly.
In contrast, our work does not rely on the availability of
such co-occurrence data. (Mahmud 2007) proposed theo-
retical foundations for transfer learning between arbitrary
tasks based on Kolmogorov complexity. However they only
showed how to implement their framework in the context of
decision trees, whereas our framework of making structural
analogy between the features can be applied together with
many different learning algorithms.

Learning by analogy is one of the fundamental insights of
artificial intelligence. Humans can draw on the past experi-
ence to solve current problems very well. In AI, there has
been several early works on analogical reasoning, such as
Dynamic Memory (Schank 1982). Using analogy in prob-
lem solving, (Carbonell 1981; Winston 1980) pointed out
that analogical reasoning implies that the relationship be-
tween entities must be compared, not just the entity them-
selves, to allow effective recall of previous experiences.
(Forbus 1998) has argued for high-level structural similar-
ity as a basis of analogical reasoning. (Holyoak 1997) has
developed a computational theory of analogical reasoning
using this strategy, when abstraction rules given as input that
allow the two instances to be mapped to a unified represen-
tation.

Analogical problem solving is the cornerstone for case-
based reasoning (CBR), where many systems have been de-
veloped. For example, HYPO (Ashley 1991) retrieves sim-
ilar past cases in a legal case base to argue in support of
a claim or make counter-arguments. PRODIGY (Carbonell
1991) uses a collection of previous problem solving cases as
a case base, and retrieves the most similar cases for adapta-
tion.

However, most operational systems of analogical reason-
ing, such as CBR systems (Aamodt 1994; Watson 1997;
Leake 1996; Kolodner 1993), have relied on the assumption
the past instances and the new target problem be in the same
representational space. Most applications of CBR fall in this
case (Mark 1989; Cheetham 2007; Bayoudh 2007), where
the sets of feature that describe the old cases and new prob-
lems are the same. For example, cases for car diagnosis are
built on descriptions of automobile attributes such as battery
and engine size, although the values are allowed to be dif-
ferent between a past case and the current problem.

Approach

Estimating Structural Dependencies by HSIC

We aim at resolving the structural analogy between two do-
mains with completely different low-level representations.
For the source domain we are provided with observations
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and response variables (labels):
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(1)

where Xs is the source input domain and Ys is the source
output (label) domain. Similarity we have data for the target
domain:
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Note that Xt, Yt can be representation spaces that are com-
pletely different from Xs, Ys.

For both the source and the target domain, we denote their
feature domains as Φs and Φt. In practice, features are rep-
resented by their profiles1 in the training set:
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1 , f
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2 , · · · , f (s)

S } ⊂ Φs, (3)

{f (t)
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For vector representations, (f (s)
1 , f

(s)
2 , · · · , f (s)

S ) is simply
the transpose of (x

(s)
1 , x

(s)
2 , · · · , x(s)

N ). Nevertheless, our
framework is applicable to more sophisticated representa-
tions (such as graphs etc.) as it is kernelized, which accesses
data only through the kernel function.

Let Hs, Ht, Gs, Gt, Fs, and Ft be reproducing kernel
Hilbert spaces (RKHS) on the domains Xs, Xt, Ys, Yt, Φs

and Φt, with associated kernel functions ms, mt, ls, lt, ks
and kt respectively. Then we are able to estimate depen-
dencies across domains using the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton 2005; 2007; Smola 2007),
which is defined as the square of the Hilbert-Schmidt norm
of the cross-covariance operator bridging the two RKHS.

Specifically, for the RKHS Fs and Ft on the feature do-
mains Φs and Φt, in terms of the kernel functions ks, kt the
HSIC can be expressed as

D(Fs, Ft, Prst) = Ess′tt′ [ks(s, s
′)kt(t, t′)]

+Ess′ [ks(s, s
′)]Ett′ [kt(t, t

′)]
−2Est[Ex′ [ks(s, s

′)]Ey′ [kt(t, t
′)]], (5)

where Prst is the joint distribution of source and target do-
main features over Φs×Φt, and (s, t), (s′, t′) are distributed
independently according to the joint distribution.

Given a sample

F = {(f (s)
1 , f

(t)
1 ), (f
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W , f
(t)
W )} (6)

of the joint distribution Prst, HSIC can be estimated using
the kernel matrices (Song 2007):

D(Fs, Ft, F) =
1

W (W − 3)
[tr(KsKt)

+
1�Ks11�Kt1

(W − 1)(W − 2)
− 2

W − 2
1�KsKt1], (7)

where Ks(i, j) = (1 − δij)ks(f
(s)
i , f

(s)
j ) and Kt(i, j) =

(1− δij)kt(f
(t)
i , f

(t)
j ) are the kernel matrices with diagonal

entries set to zero.
1The “profile” of a feature is defined as its feature value on all

instances of a dataset.

Similarly, we can estimate the dependencies across the
domains (Xs,Ys) and (Xt,Yt) by the corresponding ker-
nel matrices Ms, Ls, Mt and Lt computed by the samples
S, T (in (1) and (2)) from the joint distributions Pr(s)xy and

Pr(t)xy , where Ms(i, j) = (1−δij)ms(x
(s)
i , x

(s)
j ), Ls(i, j) =

(1 − δij)ls(y
(s)
i , y

(s)
j ), Mt(i, j) = (1 − δij)mt(x

(t)
i , x

(t)
j )

and Lt(i, j) = (1− δij)lt(y
(t)
i , y

(t)
j ).

Estimating dependencies by HSIC is a crucial component
in our learning framework, which requires estimating depen-
dencies for the three pairs of domains, namely the source in-
put and output domain (Xs,Ys), the target input and output
domain (Xt,Yt), and the source and target feature domain
(Φs,Φt)

Transfer Learning by Structural Analogy

The joint distributions Pr(s)xy and Pr(t)xy are well characterized
by the samples S and T. So estimating HSIC for (Xs,Ys)
and (Xt,Yt) can be carried out straightforwardly. However
we have no direct sample from the joint distribution Prst
because the samples in (3) and (4), i.e. the features from dif-
ferent domains, are not associated. Actually how to associate
the features depends on the structures of each domain, and
we therefore name the cross-domain dependency as “struc-
tural dependency”, which can only be determined if we un-
derstand the structural analogy across the domains.

For a given association of the source and target domain
features, as in (6), structural dependency between the do-
mains can be estimated by (7). That means, by maximizing
the estimated structural dependency, we find the “correct”
association of the features from both domains, i.e. we make
the analogy across domains.

Formally, given W ≤ min(S, T ), let σs and σt be injec-
tives from {1, · · · ,W} to {1, · · · , S} and {1, · · · , T} respec-
tively, we could describe the learning problem as selecting a
ordered set of features

{f (s)
σs(1)

, f
(s)
σs(2)

, · · · , f (s)
σs(W )}, and

{f (t)
σt(1)

, f
(t)
σt(2)

, · · · , f (t)
σt(W )} (8)

from both the source and the target learning task, such
that the objective function combining dependencies between
(Xs,Ys), (Xt,Yt) and (Φs,Φt) is maximized:

(σ̂s, σ̂t) = argmax
σs,σt

[D(Fs, Ft, F)

+λsD(Hs, Gs, S) + λtD(Ht, Gt, T)] (9)

where F = {(f (s)
σs(1)

, f
(t)
σt(1)

), · · · , (f (s)
σs(W ), f

(t)
σt(W ))} is the

pseudo-sample from the joint distribution Prst constructed
by associating the selected features from both domains. All
the three terms in (9) are estimated by the estimator (7) with
kernel matrices Ks, Kt, Ms, Ls, Mt and Lt computed us-
ing the selected features in (8). λs and λt are free parameters
controlling the relative influences the terms.

After determining σs and σt, each sample of the source
domain can be “translated” into a sample for the target do-
main by treating the features f

(s)
σs(i)

and f
(t)
σt(i)

(analogues)
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as equivalent. Then standard supervised learning methods
can be applied to the expanded training set of the target do-
main. Computing the structural similarity between the do-
mains also becomes straightforward. One can directly mea-
sure the structural similarity by D(Fs, Ft, F).

It is noticeable that the above described learning paradigm
bears some key features that can be viewed as prototype
models of the components in human’s learning by analogy:

1. The learner knows the key concepts in a familiar case
(source domain).

2. The learner identifies key concepts in a new problem (tar-
get domain) by both analyzing the new problem itself and
making the analogy from a previous familiar case base on
their structural similarities.

3. The learner gains better understanding of the new problem
thanks to the knowledge transferred from the previous fa-
miliar case.

Algorithm

We have presented the general framework of learning by
structural analogy. However, finding the globally optimal so-
lution to the optimization problem in (9) is not straightfor-
ward. In this paper, we present a simple algorithm to im-
plement the framework by finding a local minimum of the
objective.

Our algorithm first selects features from both domains
by maximizing D(Hs, Gs, S) and D(Ht, Gt, T) respec-
tively, without considering relations between the two do-
mains. Then we find the analogy by sorting the selected fea-
tures for the source domain to maximizeD(Fs, Ft, F). One
advantage of this implementation is that we actually do not
have to determine the weights λs and λt as the correspond-
ing terms are maximized in separate procedures.

For feature selection, we simply sort all the features ac-
cording the estimated HSIC (as in (7)) using the kernel ma-
trix computed by only one feature. And then selected the
top W features with largest estimated HSIC. This proce-
dure ignores possible interactions between the features, but
achieves better efficiency especially when dealing with large
scale problems (such as the one in our real-world data exper-
iment).

Then, sorting the selected features of the source domain to
“make the analogy” is achieved by the algorithm proposed in
(Quadrianto 2008). Specifically, we aim to find the optimal
permutation π∗ from the permutation group ΠW :

π∗ = arg max
π∈ΠW

tr K̄tπ�K̄sπ (10)

where K̄t = HKtH, K̄s = HKsH and Hij = δij −W−1.
This optimization problem is solved iteratively by:

πi+1 = (1− λ)πi + λ arg max
π∈ΠW

[
tr K̄tπ�K̄sπi

]
(11)

Since tr K̄tπ�K̄sπi = tr K̄sπiK̄
tπ�, we end up solv-

ing a linear assignment problem (LAP) with the cost matrix
−K̄sπiK̄

t. A very efficient solver of LAP can be found in
(Cao 2008).

The whole procedure is formalized in Algorithm 1.

Algorithm 1 Transfer Learning by Structural Analogy
Input: S and T.
Output: {f (s)

σs(1)
, f

(s)
σs(2)

, · · · , f (s)
σs(W )}

and {f (t)
σt(1)

, f
(t)
σt(2)

, · · · , f (t)
σt(W )}.

Compute Ls and Lt;
for i = 1 to Ns do

Compute Ms using only f
(s)
i ;

Estimate the HSIC D(Hs, Gs, S) using Ms and Ls;
end for
Find W features from Φs with largest estimated HSIC;
for i = 1 to Nt do

Compute Mt using only f
(t)
i ;

Estimate the HSIC D(Ht, Gt, T) using Mt and Lt;
end for
Find W features from Φt with largest estimated HSIC;
Compute K̄s and K̄t with all selected features together;
Initialize permutation matrix π0;
for i = 0 to MAX− 1 do

Compute cost matrix −K̄sπi−1K̄
t;

Solve the LAP with the cost matrix;
Update permutation matrix as in (11);
if converged then

break;
end if

end for

Experiments

Ohsumed Dataset

We apply our method to the Ohsumed (Hersh 1994) text
dataset2. The Ohsumed dataset consists of documents on
medical issues covering 23 topics (classes) with ground truth
labels on each document. The preprocessed corpus is bag-
of-words data on a vocabulary of 30689 unique words (di-
mensions). We randomly picked 2 classes from the dataset,
namely “Respiratory Tract Diseases” and “Cardiovascular
Diseases”. For each class we randomly sampled 200 positive
examples and 200 negative examples, and we will try to au-
tomatically make analogy between these two domains, such
that knowledge can be transferred for classification tasks.

We let W = 10 in our algorithm, and we automatically
learned the top 10 words in each domain that are supposed
to be “analogues” as in Table 1. We can see that the top
10 words selected from the two domains have almost no
overlap, i.e., they are in different low-level representations.
However, the structural relatedness enables us to find ana-
logues across domains. As we can see in Table 1, the au-
tomatically learned words indeed constitute several pairs of
plausible analogues. For example, “infect” and “pneumonia”
(“pneumonia” means infection in the lung); “valv” and “res-
piratori”; “cell” and “lung” (“cell” means an enclosed cav-
ity in the heart); “aortic” and ”tract” (they are both major
passages in each sub-system of the body). Note that these
analogues are automatically discovered without making use

2The dataset is downloaded from P.V. Gehler’s page
http://www.kyb.mpg.de/bs/people/pgehler/rap/index.html
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Table 1: Learned analogy between the two domains

CARDI. DISEASES RESPIRATORY TRACT DISEASES
ENDOCARD INFECT

INFECT PNEUMONIA
HEART PULMONARI
VALV RESPIRATORI
CELL LUNG

COMPLIC CULTUR
CARDIAC BACTERI
AORTIC TRACT
STUDI CASE

EFFECT INCREAS

of any co-occurrence information between the words from
different domains.

To further justify the analogy found by our algorithm, we
trained a linear classifier for the source domain documents,
and applied it to the target domain documents by treating
the analogues as equivalent. This procedure yields an accu-
racy of 80.50% on the target domain3, which justified that
the analogy found by our algorithm greatly helped in under-
standing the target domain.

Synthetic Learning Scenario

In order to further illustrate the importance of exploiting
“structural” information within each domain in making the
analogy. We show experimental results in a synthetic learn-
ing scenario.

Suppose that a learner is presented with a task of dis-
tinguishing two classes represented by two 10-dimensional
Gaussian distributions with full covariance. The two classes
are created such that they are hardly distinguishable in all
the individual dimensions, but can largely be separated by a
hyper-plane in the 10-dimensional space. For evaluation we
hold out a test set of 2000 samples with known ground truth
labels. The learner is required to learn a hyperplane to dis-
tinguish the two classes, without recourse to the test samples
(standard inductive learning).

In our scenario, the learner only have 100 unlabeled sam-
ples in the training phase. With standard machine learning
techniques, we first cluster the samples with the K-means
algorithm, then train a classifier on the resulted two clusters
(using standard linear discriminant analysis, i.e. fits a multi-
variate Gaussian density to each group, with a pooled esti-
mate of covariance). The classifier obtained from this proce-
dure yields an accuracy 72.35% on the test set.

The above scenario is quite difficult for traditional ma-
chine learning methodologies since the learner is only pro-
vided with a small number of unlabeled samples, which im-
plicates that the learner have very limited understanding of
the learning task. According to the learning-by-analogy phi-
losophy, in such situations the learning should have recourse
to a previous familiar case in order to solve the current prob-
lem. But the “previous familiar case” could have different
representations from the current problem, which means the

3A non-informative classifier would give an accuracy of 50% in
this setting.

Table 2: Experiment results on the synthetic task

METHODS ACCURACY ON TEST SET
WITHOUT PREVIOUS CASE 72.35%
INAPPROPRIATE ANALOGY 76.40%

OUR METHOD 94.25%

learner has to make an analogy across the two domains in-
stead of directly copying the previous solution.

We synthesize such a “previous familiar case” by ran-
domly permutating the 10 dimensions together with 10 addi-
tional noise dimensions which bear no information to distin-
guish the two classes. The learner is presented with 1000 la-
beled samples (500 for each class) from the 20-dimensional
distribution, which indicates that the learner is quite familiar
with this “previous case”. However, such a “previous case”
is of no use in traditional machine learning techniques as the
feature space is different.

It is noticeable that there is rich “structural” information
among the dimensions for us to exploit (as the data are
generate from Gaussian distributions with full covariances).
Specifically we apply our framework (let W = 10) to make
an analogy between the 10 dimensions in the current prob-
lem and the 20 dimensions in the “previous familiar case”.
Note that the term D(Ht, Gt, T) vanishes as we have no la-
beled data for the target task, and Kt is estimated using the
100 unlabeled samples. After determined the “analogues”
of the current problem’s dimensions in the “previous famil-
iar case”, we translate the 1000 labeled samples to the cur-
rent problem by treating the “analogues” as equivalent. We
then apply standard linear discriminant analysis to the trans-
lated samples, and obtain a classifier for the current problem,
which yields an accuracy of 94.25% on the test set.

Note that resolving the “structures” among the dimen-
sions within each domain plays an essential role in success-
fully making the analogy. To verify this, we also tried to
ignore the term D(Fs, Ft, F) and merely rank the dimen-
sions according to their relevances to the label. In this way
we obtain a classifier which yields an accuracy of 76.40%.

As summarized in Table 2, we can conclude that,

1. We cannot achieve satisfiable performance when we have
limited understanding of the current problem and do not
have recourse to previous cases.

2. We achieve little performance improvement if we have
recourse to a previous familiar case but do not carefully
analyze the structural of both domains and make an inap-
propriate analogy.

3. We finally achieve satisfiable understanding of the current
problem through correctly making the analogy to a previ-
ous familiar case.

Conclusion

In this paper we addressed the problem of transfer learning
by structural analogy between two domains with completely
different low-level representations. By making use of statis-
tical tools, we tried to bridge transfer learning and the old
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paradigm of learning by analogy, and extend them to more
general settings. The current work and our future research
aim at automatically making structural analogies and deter-
mine the structural similarities with as few prior knowledge
and background restrictions as possible.
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