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Abstract

In this paper, we propose a novel method to select the most in-
formative subset of features, which has little redundancy and
very strong discriminating power. Our proposed approach au-
tomatically determines the optimal number of features and se-
lects the best subset accordingly by maximizing the average
pairwise informativeness, thus has obvious advantage over
traditional filter methods. By relaxing the essential combina-
torial optimization problem into the standard quadratic pro-
gramming problem, the most informative feature subset can
be obtained efficiently, and a strategy to dynamically compute
the redundancy between feature pairs further greatly acceler-
ates our method through avoiding unnecessary computations
of mutual information. As shown by the extensive experi-
ments, the proposed method can successfully select the most
informative subset of features, and the obtained classification
results significantly outperform the state-of-the-art results on
most test datasets.

Introduction

Many applications, such as text processing, gene expression
array analysis, and combinatorial chemistry, are character-
ized by high dimensional data, but usually only a small sub-
set of features is really important. Feature selection (Guyon
and Elisseeff 2003; Jain and Zongker 1997) is thus preferred.
Feature selection can enhance subsequent classifiers’s gen-
eralization capability and remarkably speed up learning and
classification process. Moreover, it improves model inter-
pretability and significantly reduces storage requirements.

Among all feature selection methods, information theoretic
filter (ITF) has received much attention due to its close re-
lationship with Bayes error rate by Fano’s inequation (Fano
1961), and mutual information (Shannon 1948) is the most
frequently used criterion for ITF methods. For two ran-
dom variables X and Y , their mutual information is de-
noted by I(X;Y ). If X is a feature vector and Y is its
corresponding label vector, then I (X;Y ) reflects feature
X’s informativeness; if both X and Y are feature vec-

∗This work was done when Si Liu was intern at NUS.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tors, I (X;Y ) then measures the redundancy between the
two features. Our proposed method belongs to the ITF
method, and it defines a mutual information related statis-
tical criterion to rank features. In mathematical form, for
a dataset with N features denoted as X = {X1, . . . , XN},
the goal of our method is to select a Most Informative Sub-
set (MIS) of features. We denote the selected MIS of size
n as S =

{
Xm(1), . . . , Xm(n)

}
, where m (·) is a mapping

function from the MIS index to the index of the original N
features.

Existing ITF methods have two widely acknowledged prob-
lems. First, the number of selected features need to be spec-
ified in advance. In real applications, it is hard to estimate
the number of useful features before the feature selection
process. A common strategy is to use the wrapper method
(Boull’e 2007), which determines the useful feature subset
by a built-in classifier. However, the built-in classifier will
severely slowdown the training process and result in the se-
lected feature subset dependent on particular classifier set-
ting. Second, all traditional ITF methods mine the useful
feature subset in a greedy/incremental way (Brown 2009):
an empty feature pool is constructed first, then features are
added into the pool one by one until the user-defined number
is reached. The basic assumption is the best features till now
are among the best subset forever. However, this assump-
tion can be easily violated. Some methods try to handle this
problem, such as Plus-l-TakeAway-r and its extension Se-
quential Floating Search (Jain and Zongker 1997). However,
these methods only partially solve this problem and bring in
additional parameters.

In this paper, we tackle the above mentioned problems from
a global perspective. In the proposed approach all infor-
mative features are selected jointly and simultaneously. We
require the selected features in S to be jointly informative.
Measuring joint informativeness involves high-order corre-
lation between the set S and the label vector Y . However,
directly estimating such a high-order correlation is difficult
due to the scarcity of training data in most cases and is com-
putationally intractable. To balance the computational cost
and effectiveness of feature selection, only up to second-
order correlation is considered. As mentioned above, the
correlation of a feature pair {Xi, Xj} is estimated through
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Figure 1: Feature graph. Each node indicates a feature, and each
edge represents the informativeness of a feature pair. The selected
most informative features are enclosed with the red ellipse.

mutual information , and it is defined as

Wi,j =
1

2
I (Xi;Y ) +

1

2
I (Xj ;Y )− I (Xi;Xj) . (1)

Wi,j is large if and only if both I (Xi;Y ) and I (Xj ;Y ) are
large (indicating both Xi and Xj are informative themselves
with respect to the class labels Y ) and I (Xi;Xj) is small
(indicating Xi and Xj are not redundant). Therefore, the
problem we consider can be expressed as selecting n ≤ N
features such that the average pairwise informativeness is
maximized, that is,

max
t,n

Qt,n =
1

n2
tTWt,

s.t. ti ∈ {0, 1} , |t| = n,
(2)

where t is an N -dimensional indicator vector such that
ti = 1 if i-th feature is selected and ti = 0 otherwise. |t|
denotes �1-norm of vector t and requiring the �1-norm of t
to be n aims to constrain the MIS size to be n. The divi-
sion by 1

/
n2 in the objective function ensures that it is the

average pairwise informativeness that is maximized. For N
features, there are N (N − 1)/2 feature pairs, therefore the
computation of all mutual information I(Xi, Xj) is usually
time-prohibitive. However, in our method, only a very small
subset of pairwise informativeness calculation is required,
which greatly reduces the computational burden and makes
our proposed method very efficient.

Formulation (2) has an intuitive geometric explanation as
shown in Figure 1. There we have 5 nodes, A, B, C, D and
E, with each node corresponding to a feature. A, B, C and
E are discriminative features, but B and E have high redun-
dancy, and B is slightly more discriminative than E. D is an
irrelevant feature with almost no discriminating power. In
Figure 1, redundant features are filled with the same color,
such as blue nodes B and E. The edge thickness is propor-
tional to the value of pairwise informativeness. Therefore,
the edges from irrelevant feature D to other features are all
thin. The selected subset of informative features is marked
with the red ellipse, where both the redundant feature E
and the irrelevant feature D are not included. Even though
both B and E are informative features, they are not pairwise-
informative because of the high redundancy between them.

This is why only one of them is selected. Intuitively speak-
ing, the formulation (2) is equivalent to searching for a dense
subgraph (Gibson, Kumar, and Tomkins 1999) defined as the
subgraph with the largest average edge weight.

In summary, our contributions can be summarized as fol-
lows. (I) We propose to select the most informative fea-
tures by maximizing features’ average pairwise informative-
ness. Different from other methods, the size of the optimal
subset is determined automatically in the proposed method.
(II) We relax the combinational feature subset selection task
to a constrained quadratic optimization problem, and pro-
pose an iterative solution whose convergence is guaranteed.
(III) Although many pairwise informativeness values are in-
volved in the objective function, only a small percentage of
them (usually < 1% in large datasets) need to be calculated,
which greatly speeds up the optimization. (IV) According to
the extracted most informative feature subset, we can rank
other features and get a complete feature ranking list, as
what traditional feature selection methods achieve.

Problem Relaxation
Based on (1), we construct a feature informativeness matrix
W = (Wij) and set Wii = 0, i.e., all diagonal entries of
W are set to zero. Since it is difficult to solve (2) due to
the binary constraint on the indicator vector t, our goal is to
relax this constraint. We first replace vector t by s = t

n .
Then the formulation (2) is equivalent to

max
s,n

Qs,n = sTWs, s.t. si ∈
{
0,

1

n

}
, |s| = 1. (3)

Since each coordinate si of s is nonnegative, |s| = 1 is
equivalent to

∑N
i=1 si = 1. By relaxing si to be within the

range of [0, 1], we obtain the final formulation of the feature
selection problem:

max
s

Qs = sTWs, s.t. s ∈ ΔN , (4)

where Δ
N

= {s | si � 0, ∀i and
∑N

i=1 si = 1} is the
standard simplex in the N -dimensional Euclidean space. By
relaxing Eq. (2) to Eq. (4), the maximum over original two
variables, t and n, is replaced with the maximum over a sin-
gle variable s. Once the solution s∗ of (4) is obtained, we
can easily recover the number of the selected features n and
the index of the selected features in MIS: a feature Xi is se-
lected if and only if s∗i > 0. Consequently, the number of
selected features n is determined by the number of positive
coordinates of s∗.

Since Wij = 1
2I (Xi;Y ) + 1

2I (Xj ;Y ) − I (Xi;Xj) for
i �= j, the objective function (2) can be expanded as:

Qt,n = max
t,n

1

n2
t
T
Wt

= max
t,n

1

n2

⎛
⎜⎝(n − 1)

∑
ti �=0

I (Xi;Y ) −
∑
ti �=0

∑
tj �=0,j �=i

I
(
Xi;Xj

)
⎞
⎟⎠

≈ max
t,n

1

n (n − 1)

⎛
⎜⎝(n − 1)

∑
ti �=0

I (Xi;Y ) −
∑
ti �=0

∑
tj �=0,j �=i

I
(
Xi;Xj

)
⎞
⎟⎠

= max
t,n

1

n

∑
ti �=0

I (Xi;Y ) − 1

n (n − 1)

∑
ti �=0

∑
tj �=0,j �=i

I
(
Xi;Xj

)

(5)
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The first term in the last row of Eq. (5) is the average infor-
mativeness of each feature, and thus describes the discrimi-
nating power of the selected feature subset. The second term
is the average redundancy between each feature pair, which
is minimized for the compactness of the final feature subset.

Pairwise Optimization

In this section, we first analyze the properties of the maxi-
mizer s∗ in (4), which are critical for algorithm design, and
then introduce our algorithm to calculate s∗.

Since (4) is a constrained optimization problem, by adding
Lagrangian multipliers λ and β1, · · ·βN with βi � 0 for all
i = 1, · · · , N , we obtain its Lagrangian function:

L (s, λ, β) = Qs − λ

(
N∑
i=1

si − 1

)
+

N∑
i=1

βisi. (6)

Any local maximizer s∗ must satisfy the Karush-Kuhn-
Tucker (KKT) condition (Kuhn and Tucker 1951), i.e., the
first-order necessary conditions for local optimality. That is,{

(Ws∗)i − λ+ βi = 0;∑
i s

∗
i βi = 0.

(7)

Since s∗i and βi are both nonnegative,
∑

i s
∗
i βi = 0 is equiv-

alent to say that if s∗i > 0, then βi = 0. Hence, the KKT
conditions can be rewritten as:

(Ws∗)i

{
� λ, s∗i = 0;
= λ, 0 < s∗i � 1.

(8)

We define the reward of feature Xi as ri (s) = (Ws∗)i. Ac-
cording to Eq. (8), there exists a constant λ such that the
rewards of all selected features are equal to λ and the re-
wards of unselected features are not larger than λ. Higher
reward indicates more informative feature. According to the
value of s, all features X fall into three disjoint subsets,
P1 (s) = {Xi |si = 0}, P2 (s) = {Xi |si ∈ (0, 1)} and
P3 (s) = {Xi |si = 1}. The set of the variables si which
are smaller than 1 is U = P1 (s) ∪ P2 (s) and the set of
nonzero variables is V = P2 (s) ∪ P3 (s).

If the objective function can be improved, to ensure the so-
lution inside a simplex, our strategy is to add a constant
value 0 < α < 1 to one variable belonging to U and at
the same time, subtract α from some variable in V . Ac-
cording to KKT condition, if s∗ is the optimal solution, then
ri (s

∗) � rj (s
∗) , ∀i ∈ U, ∀j ∈ V . On the contrary, if

∃i ∈ U, ∃j ∈ V, ri (s) > rj (s), then s is not the solution.
In fact, in such case, we can increase si and decrease sj to
increase Q (s) by

s′ =

{
sl, l �= i, l �= j;
sl + α, l = i;
sl − α, l = j.

(9)

Our goal is to find α such that Q(s′)−Q(s) > 0. Since

Q
(
s′
)−Q (s) = (Wii +Wjj − 2Wij)α

2 + 2 (ri (s)− rj (s))α,
(10)

Algorithm 1 Size Adaptive Selection of Most Informative
Features (SASMIF)

1: Input: Set X of all features and an initialization s(0).
2: while s is not a local maximizer do
3: Check all entries of W (i, j), where j ∈

{k |sk (t) �= 0} and i = 1, . . . , N . If W (i, j)
has not been calculated, then calculate it.

4: Compute the reward ri (s) for each feature Xi based
on W ;

5: Compute P1 (s) , P2 (s) , P3 (s) , U and V ;
6: Find the feature Xi with the largest reward in U and

Xj with the smallest reward in V ;
7: Compute α by formula (11) and update s (t) by for-

mula (9) to obtain s (t+ 1);
8: end while
9: Output: The selected feature subset corresponding to

the non-zero elements of s and unselected features are
ranked by ri (s).

which is a quadratic function of α, it is sufficient to set

α =

{
min (sj , 1− si) , f � 0;

min
(
sj , 1− si,− d

f

)
, f < 0,

(11)

with f = Wii +Wjj − 2Wij and d = ri (s)− rj (s).

Since (4) is non-convex and usually has many local maxi-
mizers, we propose a heuristic initialization strategy: s (0)
is an N -dimensional vector, whose i-th element is one and
others are zeros. Here, i corresponds to the feature with the
highest mutual information I (Xi;Y ). In the proposed algo-
rithm, we iterate (9) until ri (s) � rj (s) , ∀i ∈ U, ∀j ∈ V .
The algorithm is summarized in Algorithm 1. Intuitively,
Algorithm 1 iteratively chooses the “best” feature in U and
the “worst” feature in V and then updates their correspond-
ing components of s. Hence in each iteration, we only need
to consider two components of s, which makes both the up-
date of rewards and the update of s (t) very efficient. As
Qs (s (t)) increases, the number of candidate pairs for the
operation in (9) decreases quickly, thus Qs (s) converges to
a local maximum quickly. Suppose the number of iteration
is T , and the computational complexity of each iteration is
proportional to the number of edges E in a very sparse fea-
ture graph, so the total computational complexity is O (TE).

Dynamic Edge Calculation When the feature dimension
is large, estimating all entries in W becomes time consum-
ing. Note that it is unnecessary to calculate every entry of
W beforehand. Actually, W only affects features’ reward
computing. According to the definition of reward, in the t-
th round, feature Xi’s reward ri (s(t)) = (Ws(t− 1))i can
be interpreted as the weighted pairwise informativeness be-
tween feature Xi and the selected feature set in the (t− 1)-
th round. The weighting coefficient is s(t − 1). In most
cases, the selected feature set is very small, only the entries
of columns of W need to be computed that correspond to
nonzero entries in vector s(t − 1). Additionally, to avoid
multiple unnecessary calculations, the value of Wij will be
calculated only when it has never been computed before.
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Table 1: Datasets used in our experiments.
dataset b c hep ion spa LYM B T leu L C 14 T
fea-num 10 19 34 57 4026 5920 5327 12600 15009
sam-num 683 80 351 4601 96 90 72 203 308

Complete Feature Ranking SASMIF focuses on mining
a compact MIS which is composed of {Xj

∣∣∣s∗j �= 0}. The
features inside the MIS are both highly discriminative them-
selves and with the minimum level of mutual redundancy.
Based on MIS, we can calculate the rewards of each feature
Xu inside unselected features set U = {Xu |s∗u = 0} as:

ru (s
∗) = (Ws∗)u =

∑
s∗j �=0

Wujs
∗
j =

∑
Xj∈MIS

Wujs
∗
j , (12)

which summarizes the pairwise informativeness between
feature Xu and each feature inside the MIS. Higher re-
ward indicates more informative feature. Therefore, ru (s∗)
is used as a natural measure to rank remaining features
Xu ∈ U . Consequently, we can obtain a complete feature
ranking list, which starts from the size of MIS and ends at
any user-specified fixed number.

Experimental Evaluation
In this section, we compare SASMIF with other state-of-the-
art methods for feature selection on many real datasets.

Experimental Settings
We compare the proposed SASMIF with seven other base-
line methods: mRMR (Peng, Long, and Ding 2005),
MIFS (Battiti 1994), ReliefF (Kira and Rendell 1992),
MIM (Brown 2009), Pearson’s correlation (PC), JMI (Yang
and Moody 1999) and CIFE (Lin and Tang 2006). All base-
line methods belong to filter methods. We do not com-
pare the proposed SASMIF with supervised methods, such
as wrapper (Zhang 2008) or embedded (Bach 2008). The
results of all methods are estimated by leave-one-out cross
validated errors when using an SVM classifier with the fea-
tures selected by these methods. We run linear SVM with
LIBSVM (Chang and Lin 2001). The SVM regularization
parameter is set to 1. To calculate the mutual information,
we first quantify each feature Xi into 3-bin discrete variable
X̃i as Peng did (Peng, Long, and Ding 2005). The quanti-
tative thresholds are X̄i − 0.5σ (Xi) and X̄i + 0.5σ (Xi),
where X̄i and σ (Xi) are the mean and standard variation of
Xi respectively. Then the mutual information is calculated
as I (Xi;Y ) =∑

y∈Y

∑
x∈X̃i

p (x, y) log (p (x, y)/(p1 (x) p2 (y))),

where p (x, y) is the joint probability distribution function of
X and Y , and p1 (x) and p2 (y) are the marginal probability
distribution functions of X and Y respectively. I (Xi;Xj)
can be estimated similarly.

Datasets
We run experiments on 9 datasets as shown in Table 1:
breast-cancer (abbr. b c), hepatitis (hep), ionosphere (ion),

spambase (spa), LYM, Brain Tumor1 (B T), Leukemia1
(leu), LungCancer (L C) and 14 Tumors (14 T). All of the
9 datasets are publicly available, b c, hep, ion and spa are
from the UCI repository1; LYM is microarray gene expres-
sion data sets2; B T, leu, L C and 14 T are cancer diagnosis
datasets3. Table 1 lists the total number of original features
(denoted by fea-num) and the sample numbers (represented
by sam-num) in each dataset. Note that in many datasets,
the number of features is much larger than the number of the
data points, which makes the feature selection task challeng-
ing. Among these data sets, 4 are relatively small with less
than 100 features; the remaining 5 datasets have above 4000
features each. Datasets with such wide dimension ranges
serve as a good platform for a comprehensive evaluation.

Results and Analysis

Figure 2 illustrates the error rate as a function of the number
of features selected. The red lines with diamond markers is
the proposed SASMIF. Traditional filtering methods cannot
automatically determine the number of useful features, thus
exhaustively guess the number from 1 to a pre-defined fixed
number; however, our proposed SASMIF automatically de-
termines the size of MIS and thus start from this number.
As Figure 2 shows, in most cases, our method achieves the
best results at the MIS number, and also outperform the best
results of other baseline methods, such as in Figure 2 (a, b,
e, g), which verifies that our method can automatically de-
termines the most informative feature subset. In some cases,
adding some top ranked features outside MIS can further
improve the results, such as in Figure 2 (d), this is because
our proposed method just selects most informative features,
and may miss some features that are a little informative. In
such case, the feature ranking list obtained by our method
provides a natural order to add more features.

For clear comparison, we summarize the classification er-
ror rates of different methods in Table 2. In the last row,
the error rate of SASMIF and the automatically determined
MIS number are reported. To make a fair comparison, sup-
pose that the MIS number is n, for each baseline method, we
measure three error rates around n (including n − 1, n, and
n + 1), and take the minimum of the three as the baseline
performance. For each dataset, the best result of all meth-
ods is emphasized in bold. As demonstrated in the table, on
8/9 datasets, SASMIF achieves better performance around
MIS number. As shown in the last column of Table 2, our
algorithm reaches the lowest average error rate across dif-
ferent datasets. The results further verify that SASMIF can
select more informative feature subset than baselines if the
number of selected features is around MIS number. The im-
provement mainly derives from the dynamic feature selec-
tion mechanism, i.e., SASMIF iteratively increases and de-
creases feature selection probabilities until reaching a steady
state, while existing ITF methods only add features.

1http://www.ics.uci.edu/ mlearn/MLRepository.html
2http://penglab.janelia.org/proj/mRMR/index.htm
3http://www.gems-system.org/
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Figure 2: The error rate of different algorithms with respect to the number of features selected.

Based on the mined MIS, we rank remaining features. The
best results of all methods are shown in Table 3. In the table,
the error rate is shown first and the number of features se-
lected when reaching the best performance is reported in the
following bracket. The best result for each dataset is high-
lighted in bold. Overall, SASMIF reaches the best result on
8/9 datasets. Even though MIFS gets the best performance
with 50 features on spa dataset, SASMIF achieves compa-
rable result with much smaller number of features, i.e., only
33 features. What’s more, it is apparent from the last col-
umn that average error rate of SASMIF is also much lower
than other 7 baselines. The relative improvement from the
best baseline to SASMIF is shown in the last row, in terms of
error rate, which validates that SASMIF can select features
that substantially reduce the error rate over the state-of-the-
art approaches. The improvement is particularly obvious for
the dataset LYM and L C, where the error rate have been
reduced by 31.4% and 40.0%, respectively.

In order to illustrate the computational benefits of the dy-

Table 4: Percentage of entries of matrix W that were calculated.
Dataset LYM B T leu L C 14 T

Ratio(%) 1.77 0.90 0.81 0.47 0.36

namic edge calculation strategy, we report the percentage of
computed entries of W for large database in Table 4. We can
find that in most datasets, we calculate less than one percent
of entries of W . For example, 14 Tumors (14 T) has 15009
features, and consequently, W is of size 15009 × 15009,
which is extremely large. Thus, the fact that only 0.36% el-
ements of W are calculated means significant saving in time
of computation.

Conclusion
We have proposed a method to automatically select the most
informative feature subset. The number of selected features
is automatically determined, depending on the data and la-
bel distribution. And only a small portion of mutual in-
formation is dynamically calculated, which makes the pro-
posed method very efficient. Experimental results showed
that the obtained most informative feature subset is com-
pact yet sufficient for classification. Even though sometimes
the classification results of the selected features are not the
optimal, they are close to optimum with much fewer fea-
tures. The mined MIS also lays a good foundation for a
complete feature ranking as demonstrated by the experimen-
tal results. Until now, only up to second-order relations of
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Table 2: Performance comparison of error rate (in %) at MIS number of different feature selection algorithms on different
datasets. The best results are highlighted in bold.

dataset b c hep ion spa LYM B T leu L C 14 T avg
JMI 3.22 10.0 12.0 11.6 9.38 22.2 2.78 7.89 45.5 13.8
CIFE 3.22 10.0 21.4 12.6 11.5 24.4 8.33 7.39 44.2 15.9
ReliefF 3.22 15 19.0 12.6 16.7 16.7 9.72 13.3 58.5 18.3
PC 3.22 16.3 13.1 12.6 26.0 26.7 11.1 10.3 64.0 20.4
MIFS 3.22 10.0 12.3 17.8 8.33 13.3 8.33 7.39 46.5 14.1
mRMR 3.22 8.75 12.0 22.8 5.21 23.3 5.56 6.40 45.1 14.7
MIM 3.22 11.3 12.3 12.4 19.8 14.4 6.94 12.8 52.9 16.2
SASMIF 3.07(8) 7.5(5) 12.5(5) 11.5(8) 3.48(27) 13.2(18) 2.70(14) 5.75(21) 42.9(25) 11.4

Table 3: Performance comparison of minimum error rates (in %) of different feature selection algorithms on different datasets.
The best results of each dataset are highlighted in bold. ‘Improve’ shows the improvements obtained by SASMIF in comparison
the best baseline methods as percentage of error rate reduction.

dataset b c hep ion spa LYM B T leu L C 14 T avg
JMI 3.22(6) 10.0(2) 12.0(5) 7.11(57) 4.17(45) 15.6(12) 2.78(15) 4.92(44) 41.0(41) 11.2
CIFE 3.22(7) 10.0(2) 16.5(23) 7.08(55) 5.21(46) 16.7(48) 4.17(5) 6.90(42) 42.2(37) 12.4
ReliefF 3.22(9) 13.8(1) 11.4(17) 7.11(57) 13.5(41) 16.7(12) 4.17(37) 7.39(42) 50.3(48) 14.2
PC 3.22(8) 13.8(1) 12.0(17) 7.11(57) 17.7(37) 18.9(5) 6.94(48) 7.88(41) 55.2(39) 15.9
MIFS 3.22(9) 8.75(3) 10.8(16) 6.89(50) 6.25(37) 10.0(42) 6.84(16) 4.93(41) 41.9(49) 11.1
mRMR 3.22(6) 8.75(5) 12.0(6) 15.3(56) 4.17(46) 17.8(5) 2.78(22) 5.41(87) 43.2(34) 12.5
MIM 3.22(8) 11.3(4) 10.8(16) 7.11(57) 13.5(38) 14.4(13) 4.17(50) 5.91(37) 45.8(49) 12.9
SASMIF 3.07(8) 7.50(5) 10.8(14) 7.04(33) 2.86(28) 9.52(20) 2.70(14) 2.95(43) 39.3(39) 9.52
Improve 4.65% 14.3% 5.26% -2.18% 31.4% 4.80% 2.88% 40.0% 4.15% 14.2%

features and corresponding labels are considered, while intu-
itively, higher-order relations may improve the feature selec-
tion. Our future work will focus on efficient representation
of high-order relations among features, such as representa-
tion by hypergraphs.
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