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Abstract

Multi-Instance Learning (MIL) deals with problems
where each training example is a bag, and each bag
contains a set of instances. Multi-instance representa-
tion is useful in many real world applications, because
it is able to capture more structural information than tra-
ditional flat single-instance representation. However, it
also brings new challenges. Specifically, the distance
between data objects in MIL is a set-to-set distance,
which is harder to estimate than vector distances used
in single-instance data. Moreover, because in MIL la-
bels are assigned to bags instead of instances, although
a bag belongs to a class, some, or even most, of its
instances may not be truly related to the class. In or-
der to address these difficulties, in this paper we pro-
pose a novel Instance Specific Distance (ISD) method
for MIL, which computes the Class-to-Bag (C2B) dis-
tance by further considering the relevances of training
instances with respect to their labeled classes. Taking
into account the outliers caused by the weak label asso-
ciation in MIL, we learn ISD by solving an �0+ -norm
minimization problem. An efficient algorithm to solve
the optimization problem is presented, together with the
rigorous proof of its convergence. The promising results
on five benchmark multi-instance data sets and two real
world multi-instance applications validate the effective-
ness of the proposed method.

Introduction

Multi-Instance Learning (MIL) (Dietterich, Lathrop, and
Lozano-Pérez 1997) is a new paradigm in machine learn-
ing that addresses the classification of bags. In MIL, each
bag is a collection of instances with features associated
to the instance. The aim of MIL is to infer bag level la-
bels based on the assumption that a positive bag contains
at least one positive instance, whereas a negative bag con-
tains negative instances only. MIL has been found useful in
a number of real world applications (Maron and Ratan 1998;
Zhang and Goldman 2002; Zhou and Zhang 2007; Zhou,
Sun, and Li 2009; Wang, Hu, and Chia 2010; Li et al. 2011).

A prominent advantage of MIL lies in the fact that many
real objects have inherent structures, and by adopting the
multi-instance representation we are able to represent such
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objects more naturally and capture more information than
simply using the flat single-instance representation. For ex-
ample, suppose we can partition an image into several parts.
In contrast to representing the whole image as a single-
instance, if we represent each part as an instance, the par-
tition information is captured by the multi-instance repre-
sentation; and if the partition is meaningful (e.g., each part
corresponds to a region of saliency), the additional informa-
tion captured by the multi-instance representation may be
helpful to make the learning task easier to deal with.

Multi-instance representation, though usually useful, also
brings new challenges for statistical learning. First, because
in MIL an object is represented as a bag of instances, the
distance between objects turns out to be a set-to-set distance.
Thus, compared to single-instance data using vector distance
such as Euclidian distance, distance estimation in MIL is
more complicated. Second, in MIL labels are assigned to
bags but not instances, which is often called as “weak label
association”. As a result, although a bag belongs to a class,
some, or even most, of its instances may not be truly related
to the class. For example, region (instance) A of the top left
training image in Figure 1 only characterizes class “ship”,
while the entire image is labeled with both “ship” and “per-
son’. Intuitively, instance A should have much less, or even
no, impact when predicting label “person” for a query im-
age, whereas contribute a lot when predicting label “ship”.
With these recognitions, in this work we explore the diffi-
culties, as well as opportunities, of MIL to improve the clas-
sification performance on multi-instance data.

Instance Specific Distance (ISD) for MIL

Because traditional Bag-to-Bag (B2B) distance often does
not truly reflect the class relationships between data objects
(Boiman, Shechtman, and Irani 2008), in this paper we con-
sider to directly assess the relevance between classes and
query objects, and propose a novel Class-to-Bag (C2B) dis-
tance for MIL. Specifically, as illustrated in Figure 1, we
consider each class as a “super-bag”, which comprises all
instances from the bags that belong to this class. The ele-
mentary distance from an instance in a super-bag to a query
bag (red and blue arrows) is first estimated, then the C2B dis-
tance from the class to the query object is computed as the
sum of the elementary distances from all the instances in the
super-bag to the query bag. Furthermore, we also consider
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Figure 1: An illustration of the proposed Instance Specific Distance (ISD), which is defined as the Class-to-Bag (C2B) distance
from a super-bag corresponding to a class to a query bag. Instead of considering every instance in a super-bag equally when
estimating the C2B distance, we learn a Significance Coefficient (SC) for each instance with respect to each of its labeled class,
denoted as sikj , to reflect its relative importance when predicting labels for a query object. For example, the learned SC of
instance A with respect to class “person” is 0.018 indicating that it has small impact in predicting label “person”; while its
learned SC with respect to class “ship” is 0.493 indicating that it is considerably important when predicting label “ship”.

the relative importance of a training instance with respect
to its labeled classes by assigning it one weight for each la-
beled class, called as Significance Coefficient (SC) . Ideally,
the learned SC of an instance with respect to its true belong-
ing class should be large, whereas its SC with respect other
classes should be small. We call the learned C2B distance as
Instance Specific Distance (ISD) , which is interesting from
a number of perspectives as following.
• Through the proposed ISD, we embrace, rather than ig-

nore, the complexity of multi-distance data. To the best of
our knowledge, we are the first to explicitly address the
weak label association in MIL.

• The learned SCs of an instance reflect its relative impor-
tance with respect to its labeled classes, thereby provide a
clearer insight of a multi-instance data set.

• Different from traditional B2B distance, the learned C2B
distance can be directly used to predict object labels.

• In order to address the outliers caused by the weak label
association in MIL, we learn ISD by solving an �0+ -norm
minimization problem. An novel yet efficient algorithm to
solve the optimization problem is presented, and its con-
vergence is rigorously proved.

• Promising experimental results on five benchmark multi-
instance data sets and two real world multi-instance ap-
plications show that our method is highly competitive to
state-of-the-art MIL methods.

Problem Formalization

Given a multi-instance data set with K classes and
N training samples D = {(Xi,yi)}Ni=1, each Xi =
[xi1, . . . ,xi,ni

] ∈ R
d×ni is a bag of ni instances, where

xij ∈ R
d is an instance. The label indicator yi ∈ {0, 1}K

is a binary vector. In the setting of MIL, if there exists
g ∈ {1, . . . , ni} such that xig belongs to the k-th class,
Xi is assigned to the k-th class and yi (k) = 1; otherwise
yi (k) = 0. Yet the concrete value of the index g is unknown.
We write Y = [y1, . . . ,yK ]

T . If
∑K

k=1 Yik = 1, i.e., each
data object (bag) belongs to exactly one class, the data set

is a single-label data set; if
∑K

k=1 Yik ≥ 1, i.e., each bag
may be associated with more than one class label, the data
set is a multi-label data set (Wang, Ding, and Huang 2010a;
2010b). Our task is to learn from D a classifier that is able
to predict labels for unseen bags.

Instance Specific Distance (ISD) for MIL

In this section, we first propose a novel ISD for MIL and de-
velop the optimization objective to learn it. Then we present
a novel yet efficient algorithm to solve the optimization
problem, followed by the rigorous proof of its convergence.

Formulation of ISD

In order to compute the C2B distance, we represent every
class as a super-bag consisting of the instances from all its
training bags:

Ck = {xij | i ∈ πk} , (1)

where πk = {i | Yik = 1} is the index set of all training
bags belonging to the k-th class. Then we may compute the
elementary distance from an instance of a super-bag Ck to a
data object bag Xi′ using the distance from the instance to
its nearest neighbor instance in Xi′ :

dk (xij , Xi′) = ‖xij − x̃ij‖2 , ∀ i ∈ πk, (2)

where x̃ij is the nearest neighbor of xij in Xi′ . Hence the
C2B distance from a super-bag Ck to Xi′ is computed as:

D (Ck, Xi′) =
∑
i∈πk

ni∑
j=1

dk (xij , Xi′) . (3)

The C2B distance defined in Eq. (3) does not take into
account the instance level labeling ambiguity caused by the
weak label association, thus we further develop it by weight-
ing the instances in a super-bag upon their relevance.

Due to the weak association between instances and labels,
not all the instances in a super-bag really characterize the
corresponding class. For example, in Figure 1 instance A
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(ship) is in the super-bag of “person” class, because the en-
tire image (top left) is labeled with both “person” and “ship”.
As a result, intuitively, we should give it a smaller, or even
no, weight when determining whether to assign “person” la-
bel to a query image; and give it a higher weight when de-
ciding “ship” label. More precisely, let sikj be the weight
associated with xij with respect to the k-th class, we wish to
learn the C2B distance from the k-th class to Xi′ as:

D (Ck, Xi′) =
∑
i∈πk

ni∑
j=1

sikj dk (xij , Xi′) . (4)

We call sikj as the Significance Coefficient (SC) of xij with
respect to the k-th class, and the C2B distance computed in
Eq. (4) as our proposed Instance Specific Distance (ISD).

Optimization Objective

Armed with the C2B distance defined in Eq. (4), we can
learn sikj for instance xij with respect to the k-th class using
least square regression to minimize the following objective:

J1 (wk, sik) =
∑
i∈πk

⎛
⎝wT

k

ni∑
j=1

xijsikj − Yik

⎞
⎠

2

+ γ‖wk‖2,

=
∑
i∈πk

(
wT

k Xisik − Yik

)2
+ γ‖wk‖2, (5)

s.t. sik ≥ 0, eT sik = 1, ∀ 1 ≤ k ≤ K,

where wk ∈ R
d is the projection vector for the k-th class,

sik = [sik1, . . . , sikni ]
T ∈ R

ni , γ > 0 is the regulariza-
tion parameter to avoid over-fitting, and e = [1, . . . , 1]

T

is a constant vector with all entries to be 1. Note that, in-
stead of learning one single regression vector for all K
classes, we decide to learn K different projection vectors
wk (1 ≤ k ≤ K), one for each class, to capture the class-
wise data variances following (Xiang, Nie, and Zhang 2008;
Wang, Hu, and Chia 2010). In addition, we constrain the
overall weight of a single bag to be unit, i.e., sik ≥
0, eT sik = 1, such that all the training bags are fairly used.
This constraint is equivalent to require the �1-norm of sik to
be 1 and implicitly enforce sparsity on sik (Tibshirani 1996;
Nie et al. 2010), which is in accordance with the fact that
one class label of a bag usually arises from only one or a
few of its instances but not all.

Despite its clear intuition and closed-form solution, the
least square loss function used in Eq. (5) is sensitive to out-
liers. Due to the weak label association, outlier instances are
abundant in multi-instance data, such as instance A in the
super-bag “person” and instance B in the super-bag “ship”
in Figure 1. Therefore, a robust loss function is expected:

J2 (wk, sik) =
∑
i∈πk

∣∣∣∣∣∣
wT

k

ni∑
j=1

xijsikj − Yik

∣∣∣∣∣∣

p

+ γ‖wk‖2,

=
∑
i∈πk

∣∣wT
k Xisik − Yik

∣∣p + γ‖wk‖2, (6)

s.t. sik ≥ 0, eT sik = 1, ∀ 1 ≤ k ≤ K .

When p = 2, J2 is exactly J1. When 0 < p < 2, the
outliers have less importance in the first term of J2 than the
sum of squared residues in J1 (Nie et al. 2010). The smaller
p is, the more robust against outliers J2 is. When p = 1,
the loss function is the sum of the absolute values of the
residues, which is similar to LASSO (Tibshirani 1996). In
this paper, we set p → 0, which is more desirable for MIL.
Therefore, we call solving objective J2 as �0+ -norm mini-
mization method.

Optimization Algorithm and Its Convergence

When p = 1, the optimization problem J2 can be reformu-
lated and solved as a LASSO (Tibshirani 1996) problem.
However, when p→ 0 as expected in MIL, the optimization
problem is hard to solve in general and traditional optimiza-
tion methods can not be used. In the rest of the section, we
derive a novel yet efficient optimization algorithm to solve
J2 and present the rigorous proof of its convergence.

Following standard optimization procedures, we alterna-
tively optimize the two variables, wk and sik, of J2.

When wk is fixed, the objective in Eq. (6) can be decou-
pled by different i. Then we can solve the following simpler
problem for each i independently:

min
sik≥0, eT sik=1

∣∣wT
k Xisik − Yik

∣∣p , (7)

which is equivalent to the following Quadratic Program-
ming(QP) problem:

min
sik≥0, eT sik=1

(
wT

k Xisik − Yik

)2
. (8)

Note that the number of instances in a bag, i.e., ni, is usually
small, thus the optimal solution to this QP problem can be
easily obtained without heavy computation.

When fixing sik, we propose an efficient algorithm to
minimize the objective in Eq. (6) with respect to wk. De-
note X(k) = [X1s1k, X2s2k, . . . , Xisik, . . . , XNk

sNkk] ∈
R

d×Nk (i ∈ πk) where Nk = |πk| is the number of bags be-
longing to the k-th class, and y(k) = [Y1k, Y2k, ..., YNk]

T ∈
R

Nk . The detailed algorithm to minimize J2 in Eq. (6) is
described in Algorithm 1.

Now, we will prove that Algorithm 1 monotonically de-
creases the objective value of J2 in Eq. (6) in each iteration
by the following lemma and theorem, which guarantees the
convergence of the algorithm.

Lemma 1 |x̃|p − p
2 |x|p−2

x̃2 ≤ |x|p − p
2 |x|p−2

x2

Proof: Denote σ =
∣∣ x̃
x

∣∣2 and h(σ) = 2σ
p
2 − pσ + p − 2,

then h′(σ) = pσ
p−2
2 − p and h′′(σ) = p(p−2)

2 σ
p−4
2 . Ob-

viously, when 0 < p ≤ 2, we have h′′(σ) ≤ 0, then h(σ)
is a concave function. Note that h′(1) = 0 , so h(1) = 0
is a global maximum of h(σ), that is, h(σ) ≤ 0. Therefore,
|x|p

(
2
∣∣ x̃
x

∣∣p − p
∣∣ x̃
x

∣∣2 + p− 2
)
≤ 0. Thus we have

|x|p
(
2
∣∣ x̃
x

∣∣p − p
∣∣ x̃
x

∣∣2 + p− 2
)
≤ 0

⇒ |x̃|p − p
2 |x|p−2

x̃2 ≤ 2−p
2 |x|p

⇒ |x̃|p − p
2 |x|p−2

x̃2 ≤ |x|p − p
2 |x|p−2

x2,

(9)

which complete the convergence proof. �
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Data: Xi(1 ≤ i ≤ N) ∈ R
d×ni , Y ∈ R

N×K

Result: wk(1 ≤ k ≤ K) ∈ R
d,

sik(1 ≤ i ≤ N, 1 ≤ k ≤ K) ∈ R
ni

Initialize Dk(1 ≤ k ≤ K) ∈ R
N×N as an identity

matrix;
repeat

1. Update wk(1 ≤ k ≤ K) by
wk = (X(k)DkX

T
(k) + γI)−1X(k)Dky(k);

2. Update sik(1 ≤ i ≤ N, 1 ≤ k ≤ K) by
minsik≥0, eT sik=1

(
wT

k Xisik − Yik

)2
;

3. Calculate the diagonal matrix
Dk(1 ≤ k ≤ K), where the i-th diagonal
element is p

2

∣∣wT
k Xisik − Yik

∣∣p−2
;

until Converges;
Algorithm 1: An efficient iterative algorithm to min-
imize the objective in Eq. (6).

Theorem 1 Algorithm 1 will monotonically decrease the
objective of Eq. (6) in each iteration.

Proof: Let aik = wT
k Xisik−Yik. Denote the updated wk by

w̃k, and the corresponding updated aik by ãik. According to
step 1 in the algorithm, we have
n∑

i=1

p

2
|aik|p−2 ã2

ik + γ ‖w̃k‖2 ≤
n∑

i=1

p

2
|aik|p−2 a2

ik + γ ‖wk‖2

(10)
According to Lemma 1, we have
n∑

i=1

|ãik|p−
n∑

i=1

p

2
|aik|p−2 ã2

ik ≤
n∑

i=1

|aik|p−
n∑

i=1

p

2
|aik|p−2 a2

ik

(11)
Adding Eq. (10) and Eq. (11) in both sides, we have

n∑
i=1

|ãik|p + γ ‖w̃k‖2 ≤
n∑

i=1

|aik|p + γ ‖wk‖2 (12)

Thus the objective value of J2 is decreased. According to
step 2 in the algorithm, the objective value of J2 is further
decreased, which completes the proof of the theorem. �

Note that the objective J2 in Eq. (6) is obviously lower
bounded by 0, thus Algorithm 1 will converge.

Incorporating Class-Specific Adaptations

Besides ski, the objectives J1 and J2 have another variable
wk. Upon solution, the learned wk (1 ≤ k ≤ K) capture
the class-wise data variances of the training data. Therefore,
we may make use of them to improve the classification ac-
curacy. To be more specific, for the k-th class, we can first
project the training bags as X̂i = wT

k Xi (1 ≤ i ≤ N) and
the query bag as X̂ = wT

k X , then compute the correspond-
ing ISD. It can be verified that the resulted ISD is

D (Ck, Xi′) =
∑
i∈πk

ni∑
j=1

sikj d̂k (xij , Xi′) , (13)

where

d̂k (xij , Xi′) =
∥∥wT

k (xij − x̃ij)
∥∥2 , ∀ i ∈ πk, (14)

and x̃ij is the nearest neighbor of xij in Xi′ . Thus, the ISD
computed by Eq. (13) can be seen as C2B distance enhanced
by both instance-specific and class-specific adaptations.

Label Prediction Using ISD

Given a test object, using the learned sikj by Algorithm 1,
we can compute the ISDs D (Ck, Xi) (1 ≤ k ≤ K) from
all the classes to the test bag using either Eq. (4) or Eq. (13).
Sorting D (Ck, X), we can easily assign labels to the test
bag.

For a single-label multi-instance data set, in which each
object belongs to one and only one class, we can assign X
to the class with minimum ISD:

l (X) = argmin
k

D (Ck, X) . (15)

For a multi-label multi-instance data set, in which an ob-
ject can be associated with more than one class label, we
need a threshold to make prediction (Wang, Huang, and
Ding 2009; Wang, Ding, and Huang 2010a). For every class,
we learn a threshold from the training data as following:

bk =
N∑
i=1

YikD (Ck, Xi) /
N∑
i=1

Yik, (16)

which is the average ISD from the k-th class to all its training
bags. Thus we can classify X by the following rule: assign
X to the k-th class if D (Ck, X) < bk, and not otherwise.

Experimental Results

In this section, we empirically evaluate the proposed method
on five benchmark multi-instance data sets and two real
world applications. In all our evaluations, we set p = 0.01.

Benchmark Tasks

We first evaluate the proposed ISD method on five bench-
mark data sets popularly used in studies of MIL, including
Musk1, Musk2, Elephant, Fox and Tiger. All these data
sets have only two classes, therefore binary classification is
conducted on each of them respectively. Musk1 contains 47
positive and 45 negative bags, Musk2 contains 39 positive
and 63 negative bags, each of the other three data sets con-
tains 100 positive and 100 negative bags. More details of the
data sets can be found in (Dietterich, Lathrop, and Lozano-
Pérez 1997; Andrews, Hofmann, and Tsochantaridis 2002).

We evaluate the proposed ISD method, which uses Eq. (4)
and solves J2 in Eq. (6), via standard 5-fold cross-validation,
where the parameter γ in Eq. (6) is fine tuned by an internal
5-fold cross-validation on the training data of each of the
5 trials in the range of

{
10−5, 10−4, . . . , 1, . . . , 104, 105

}
.

In addition, we also evaluate the following variations of the
proposed method: (A) ISD without SCs by using Eq. (3), de-
noted as “C2B”, in which no learning is involved; (B) ISD
learned by using least square objective in Eq. (5), denoted
as “ISD-LS”; (C) ISD with class-specific adaptations using
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Table 1: Classification accuracy on benchmark data sets.
Method Musk1 Musk2 Elephant Fox Tiger

C2B 0.828 0.767 0.739 0.604 0.807
ISD-LS 0.840 0.781 0.755 0.620 0.816
ISD-CD 0.851 0.781 0.779 0.635 0.847
ISD 0.853 0.790 0.768 0.632 0.853

DD 0.785 0.732 0.718 0.563 0.776
EM-DD 0.769 0.740 0.723 0.583 0.791
MIMLSVM 0.810 0.769 0.747 0.601 0.803
miGraph 0.833 0.770 0.751 0.606 0.810
MIMLSVM+ 0.831 0.772 0.750 0.610 0.808

Eq. (13), denoted as “ISD-CD”. The average classification
accuracies are reported in Table 1, which also shows the
performances of several most recent MIL methods includ-
ing (1) Diversity Density (DD) method (Maron and Ratan
1998), (2) EM-DD method (Zhang and Goldman 2002), (3)
MIMLSVM method (Zhou and Zhang 2007), (4) miGraph
method (Zhou, Sun, and Li 2009) and (5) MIMLSVM+
method (Li et al. 2011). The parameters of these methods
are set as their optimal according to the original papers.

The results in Table 1 show that our methods consistently
outperform other compared methods, sometimes very sig-
nificantly, which demonstrate their effectiveness in MIL. Be-
sides, the C2B method is not as good as the other three varia-
tions of the proposed method. This is consistent with the the-
oretical formulations in that C2B method is a lazy learning
method without involving any learning process and does not
take into account the special properties of MIL. In addition,
the proposed ISD method is better than ISD-LS method. The
latter uses least square loss function thereby by nature is not
able to handle the outliers caused by the weak label associa-
tions. Finally, ISD-CD exhibits the best performance in two
test data sets, which confirms the usefulness of incorporating
class-specific adaptations.

Image Categorization Task

Image categorization is one of the most successful applica-
tions of MIL thanks to the recent advances in image repre-
sentation techniques using semi-local, or patch-based, fea-
tures, such as SIFT and geometric blur. These algorithms
choose a set of patches in an image, and for each patch com-
pute a fixed-length feature vector. This gives a natural multi-
instance representation of an image data set, i.e., a set of
vectors per image, where the size of the set can vary from
image to image. Therefore we evaluate the proposed ISD
method in the image categorization task.

We use PASCAL VOC 2010 data set (Everingham et
al. 2010) in our evaluations, which contains 13321 images
with 20 classes. Each image contains several objects, each
of which is denoted by a rectangle bounding box as shown in
the training and query images in Figure 1. The region in each
bounding box is considered as an instance, and a set of low-
level features are extracted from the region including region
size, color correlogram, color moments, wavelet texture and
shape descriptor following (Chen and Wang 2004). In order
to run the experiments on contemporary personal comput-

ers, we randomly select images from the data set, such that
at least 100 images are selected for each class, which leads
to 1864 images used in our experiments.

Because PASCAL VOC 2010 data set is a multi-label data
set, we measure the classification performances of the com-
pared methods using five widely used multi-label evaluation
metrics, as shown in Table 2, where “↓” indicates “the small
the better” while “↑” indicates “the bigger the better”. De-
tails of these evaluation metrics can be found in (Schapire
and Singer 2000).

We evaluate the proposed ISD method and its variations
by comparing them against the same MIL methods used
in benchmark task evaluations. Because DD, DD-SVM and
miGraph methods are single-label classification methods,
we conduct binary classification on every class of the data
set using the one-vs.-rest strategy. We still use standard 5-
fold cross-validation to evaluate the compared methods and
fine tune the parameters in a same way as before. The aver-
age classification performance (mean ± standard deviation)
over the 5 trials of the experiments are reported in Table 2,
which again clearly demonstrate the advantages of the pro-
posed methods in multi-instance multi-label classification.

Finally, we study the SCs learned for the instances in the
super-bags by our method. In Figure 1, we show the SCs for
the two instances of the top left training image in PASCAL
VOC 2010 data set. It shows that a same object may have
different SCs when it is in different super-bags. To be more
specific, the ship instance in region A of the image has com-
parably higher SC (0.493) than that (0.097) of the person
instance in region B when considering “ship” class. In con-
trast, when it is in the super-bag of “person”, its SC (0.018)
is lower than that (0.532) of the person instance. These ob-
servations are consistent with our intuitions and theoretical
analysis, because the ship instance contributes considerably
large in characterizing the “ship” semantic concept, while
it contributes much less, or even possibly harmful, in char-
acterizing the “person” concept. The same observations can
also be seen on almost all the training images, which are not
shown due to space limit. These results provide a concrete
evidence of proposed ISD method’s capability in revealing
the semantic insight of multi-instance data.

Text Categorization Task

We further evaluate the proposed methods in one more
real world application of text categorization. We use the
MIL text data set published in (Zhang and Zhou 2009),
which is derived from Reuters-21578 collection. The seven
most frequent categories are used, and 2000 bags are gen-
erated, in which each instance is represented by a 243-
dimensional feature vector. Following the same way as be-
fore, we evaluate the compared methods via standard 5-fold
cross-validation. The results in Table 3 show that our meth-
ods are more effective in text classification task.

Conclusions
In this paper, we proposed a novel Instance Specific Dis-
tance (ISD) method for Multi-Instance Learning (MIL). Tak-
ing into account the challenges of MIL including Bag-to-
Bag (B2B) distance between multi-instance data objects and
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Table 2: Comparison of multi-label classification performances (mean ± std) on PASCAL VOC 2010 image data set.
Method Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑
C2B 0.185± 0.017 0.322± 0.027 0.998± 0.073 0.180± 0.012 0.481± 0.029
ISD-LS 0.153± 0.011 0.286± 0.021 0.973± 0.070 0.165± 0.014 0.491± 0.025
ISD-CD 0.131± 0.010 0.274± 0.019 0.895± 0.062 0.156± 0.011 0.511± 0.030
ISD 0.129± 0.012 0.263± 0.017 0.904± 0.067 0.158± 0.013 0.521± 0.031

DD 0.199± 0.023 0.387± 0.020 1.243± 0.075 0.202± 0.018 0.431± 0.025
DD-SVM 0.195± 0.021 0.367± 0.024 1.142± 0.076 0.191± 0.016 0.460± 0.020
MIMLSVM 0.180± 0.018 0.349± 0.029 1.064± 0.084 0.181± 0.014 0.479± 0.026
miGraph 0.169± 0.010 0.306± 0.019 1.015± 0.069 0.179± 0.012 0.480± 0.023
MIMLSVM+ 0.175± 0.013 0.321± 0.025 0.997± 0.076 0.175± 0.010 0.484± 0.021

Table 3: Comparison of multi-label classification performances (mean ± std) on text (Reuters-21578 collection) data set.
Method Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑
C2B 0.141± 0.007 0.306± 0.014 0.979± 0.081 0.170± 0.012 0.281± 0.016
ISD-LS 0.115± 0.004 0.255± 0.010 0.911± 0.073 0.154± 0.013 0.296± 0.020
ISD-CD 0.103± 0.003 0.241± 0.009 0.869± 0.061 0.147± 0.010 0.311± 0.019
ISD 0.106± 0.005 0.250± 0.013 0.870± 0.071 0.145± 0.011 0.317± 0.019

DD 0.160± 0.011 0.319± 0.017 1.098± 0.076 0.198± 0.020 0.261± 0.018
DD-SVM 0.151± 0.008 0.307± 0.018 0.972± 0.081 0.186± 0.017 0.270± 0.016
MIMLSVM 0.132± 0.006 0.294± 0.012 0.945± 0.074 0.167± 0.013 0.285± 0.017
miGraph 0.121± 0.004 0.276± 0.015 0.927± 0.069 0.159± 0.012 0.290± 0.021
MIMLSVM+ 0.117± 0.004 0.268± 0.016 0.917± 0.067 0.153± 0.012 0.292± 0.016

the weak label association, we classified multi-instance data
using ISD computed by Class-to-Bag (C2B) distance with
further consideration on the relevances of training instances
with respect to their labeled classes. In order to address the
outliers inherent in multi-instance data, we learned ISD by
solving an �0+ -norm minimization problem. We presented
an efficient algorithm to solve the problem, together with
the rigorous proof of its convergence. We conducted exten-
sive empirical studies on five benchmark multi-instance data
sets and two real world multi-instance applications of im-
age and text categorizations. Promising experimental results
demonstrated the effectiveness of the our method.
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