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Abstract

Coalition formation is a key topic in multi-agent systems.
Coalitions enable agents to achieve goals that they may not
have been able to achieve on their own. Previous work has
shown problems in coalition games to be computationally
hard. Wooldridge and Dunne (Artifi. Intell. 2006) studied the
classical computational complexity of several natural deci-
sion problems in Coalitional Resource Games (CRG) - games
in which each agent is endowed with a set of resources and
coalitions can bring about a set of goals if they are collec-
tively endowed with the necessary amount of resources. The
input of coalitional resource games bundles together several
elements, e.g., the agent set Ag, the goal set G, the resource
set R, etc. Shrot et al. (AAMAS 2009) examine coalition for-
mation problems in the CRG model using the theory of Pa-
rameterized Complexity. Their refined analysis shows that not
all parts of input act equal - some instances of the problem are
indeed tractable while others still remain intractable.
We answer an important question left open by Shrot, Au-
mann, and Kraus by showing that the SC Problem (checking
whether a Coalition is Successful) is W[1]-hard when param-
eterized by the size of the coalition. Then via a single theme
of reduction from SC, we are able to show that various prob-
lems related to resources, resource bounds, and resource con-
flicts introduced by Wooldridge et al. are (i) W[1]-hard or
co-W[1]-hard w.r.t the size of the coalition; and (ii) Para-NP-
hard or co-Para-NP-hard w.r.t |R|. When parameterized by
|G| or |R|+ |Ag|, we give a general algorithm which proves
that these problems are indeed tractable.

I - Introduction

Coalitions

In multi-agent systems (MAS), where each agent has lim-
ited resources, the formation of coalitions of agents is a very
powerful tool (Wooldridge 2009). Coalitions enable agents
to accomplish goals they may not have been able to accom-
plish individually. As such, understanding and predicting the
dynamics of coalitions formation, e.g., which coalitions are
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more beneficial and/or more likely to emerge, is a ques-
tion of considerable interest in multi-agent systems. Unfor-
tunately, a range of previous studies have shown that many
of these problems are computationally complex (Wooldridge
and Dunne 2004; 2006). However, as noted by Garey and
Johnson (Garey and Johnson 1979), hardness results, such
as NP-completeness, should merely constitute the beginning
of research. NP-hardness just indicates that a general solu-
tion for all instances of the problem most probably does not
exist. Still, efficient solutions for important sub-classes may
well exist.

Formal Model of Coalition Resource Games

The framework we use to model coalitions is the CRG model
introduced in (Wooldridge and Dunne 2006), defined as fol-
lows. The model contains a non-empty, finite set Ag =
{a1, . . . , an} of agents. A coalition, typically denoted by C,
is simply a set of agents, i.e., a subset of Ag. The grand
coalition is the set of all agents, Ag. There is also a finite
set of goals G. Each agent i ∈ Ag is associated with a sub-
set Gi of the goals. Agent i is satisfied if at least one member
of Gi is achieved, and unsatisfied otherwise. Achieving the
goals requires the expenditure of resources, drawn from the
total set of resource types R. Achieving different goals may
require different quantities of each resource type. The quan-
tity req(g, r) denotes the amount of resource r required to
achieve goal g. It is assumed that req(g, r) is a non-negative
integer. Each agent is endowed certain amounts of some or
all of the resource types. The quantity en(i, r) denotes the
amount of resource r endowed to agent i. Again, it is as-
sumed that en(i, r) is a non-negative integer. Formally, a
Coalition Resource Game Γ is a (n+ 5)-tuple given by

Γ = 〈Ag,G,R,G1, G2, . . . , Gn, en, req〉
where:

• Ag = {a1, a2, . . . , an} is the set of agents

• G = {g1, g2, . . . , gm} is the set of possible goals

• R = {r1, r2, . . . , rt} is the set of resources

• For each i ∈ Ag, Gi is a subset of G such that any of the
goals in Gi would satisfy i but i is indifferent between the
members of Gi

• en : Ag ×R → N ∪ {0} is the endowment function
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• req : G×R → N ∪ {0} is the requirement function
The endowment function en extends to coalitions by sum-
ming up endowments of its members as

en(C, r) =
∑

i∈C en(i, r) ∀r ∈ R

The requirement function req extends to sets of goals by
summing up requirements of its members as

req(G′, r) =
∑

g∈G′ req(g, r) ∀r ∈ R

A set of goals G′ satisfies agent i if Gi ∩ G′ 
= ∅ and sat-
isfies a coalition C if it satisfies every member of C. A set
of goals G′ is feasible for coalition C if that coalition is en-
dowed with sufficient resources to achieve all goals in G′,
i.e., for all r ∈ R we have req(G′, r) ≤ en(C, r). Finally
we say that a coalition C is successful if there exists a non-
empty set of goals G′ that satisfies C and is feasible for it.
In general, we use the notation succ(C) = {G′ | G′ ⊆
G, G′ 
= ∅ and G′ is successful for C}. The CRG mod-
els many real-world situations like the virtual organizations
problem (Conitzer et al. 2006) and voting domains.

II - Problem Definitions and Previous Work

Problems Related to Coalition Formation

Shrot et al. 2009 considered the following four problems re-
lated to coalitions.

1. SUCCESSFUL COALITION (SC)
Instance: A CRG Γ and a coalition C
Question: Is C successful?

2. EXISTS A SUCCESSFUL COALITION OF SIZE k (ESCK)
Instance: A CRG Γ and an integer k
Question: Does there exist a successful coalition of size
exactly k?

3. MAXIMAL COALITION (MAXC)
Instance: A CRG Γ and a coalition C
Question: Is every proper superset of C not successful?

4. MAXIMAL SUCCESSFUL COALITION (MAXS)
Instance: A CRG Γ and a coalition C
Question: Is C successful and every proper superset of C
not successful?

The results from Shrot et al.2009 are summarized in the table
below.

SC ESCK MAXC, MAXSC
|G| FPT FPT FPT
|C| ? W[1]-H W[1]-H
|R| para-NP-H ? para-NP-H
|Ag|+ |R| FPT ? FPT
In this work we consider the problems which were de-

fined by Wooldridge et al. 2006 but were not considered by
Shrot et al. 2009. We define these problems in detail in the
following sections.

Parameterized Complexity

The core idea of parameterized complexity is to single out a
specific part of the input as a parameter and ask whether the
problem admits an algorithm that is efficient in all but that
parameter. The definitions in this section are from Flum and
Grohe 2006 and Downey 2003.

Definition 1 Let Σ be a finite alphabet.

1. A parametrization of Σ∗ is a mapping κ : Σ∗ → N that
is polynomial time computable.

2. A parameterized problem (over Σ) is a pair (Q, κ) con-
sisting of a set Q ⊆ Σ∗ of strings over Σ and a parame-
terization κ of Σ∗.

As stated, given a parameterized problem we seek an algo-
rithm that is efficient in all but the parameter. This is cap-
tured by the notion of fixed parameter tractability, as fol-
lows:

Definition 2 A parameterized problem (Q, κ) is fixed pa-
rameter tractable (FPT) if there exist an algorithm A, a con-
stant α, and a computable function f , such that A decides
Q in time f(κ(x))|x|α.

While the core aim of parameterized complexity is to
identify problems that are fixed-parameter tractable, it has
also developed an extensive complexity theory, allowing
to prove hardness results, e.g., that certain problems are
(most probably) not FPT. To this end, several parameterized
complexity classes have been defined. Two of these classes
are W[1] and Para-NP (PNP). There is strong evidence to
believe that both these classes are not contained in FPT
(much like NP is probably not contained in P). Thus,
W[1]-hard and PNP-Hard problems are most probably not
fixed-parameter tractable. The class W[1] can be defined by
its core complete problem, defined as follows:

SHORT NONDETERMINISTIC TURING MACHINE

COMPUTATION

Instance: A single-tape, single-head non-deterministic
Turing machine M , a word x, and an integer k
Question: Is there a computation of M on input x that
reaches the accepting state in at most k steps?
Parameter: k

Note that this definition is analogous to that of NP, with
the addition of the parameter k.

Definition 3 The class W[1] contains all parameterized
problems FPT-reducible (defined hereunder) to Short-
Nondeterministic-Turing-Machine-Computation.

Definition 4 A parameterized problem (Q, κ) is in Para-
NP (PNP) if there exists a non-deterministic Turing ma-
chine M , constant α, and an arbitrary computable func-
tion f , such that for any input x, M decides if x ∈ Q in
time ≤ |x|αf(κ(x)).
Establishing hardness results most frequently requires
reductions. In parameterized complexity, we use FPT-
reduction, defined as follows:

Definition 5 Let (Q, κ) and (Q′, κ′) be parameterized
problems over the alphabets Σ and Σ′ respectively. An
FPT-reduction (FPT many-to-one reduction) from (Q, κ) to
(Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such that:

1. For all x ∈ Σ∗ we have x ∈ Q ⇔ R(x) ∈ Q′.
2. R is computable in time f(κ(x))|x|α for some constant α

and an arbitrary function f .
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3. There is a computable function g : N → N such that
κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

III - Our Results & Techniques

We consider problems regarding resources bounds and re-
source conflicts which were shown to be computationally
hard in Wooldridge et al. (2006) but were not considered
in Shrot et al. We also solve three open questions posed in
Shrot et al. by showing that

1. SC parameterized by |C| is W[1]-hard
2. ESCK parameterized by |Ag|+ |R| is FPT
3. ESCK parameterized by |R| is PNP-hard
We study the complexity of NR, SNR, CGRO, RPEGS,
SCRB, and CC problems when parameterized by natural pa-
rameters |G|, |C|, |R|, and |Ag|+|R|. We also give a general
integer program which with slight modifications for each
problem shows that these problems are FPT when param-
eterized by |G| or |Ag| + |R| (except CC parameterized by
|Ag|+ |R| which is open). We note that Shrot et al. showed
that SC parameterized by |R| is PNP-hard. We complete this
hardness result by showing that SC parameterized by |C| is
W[1]-hard and thus answer their open question. Using these
hardness results and via a single theme of parameter pre-
serving reductions we show that hardness results for all of
the above problems when parameterized by |R| and |C|. We
also show that Theorem 3.2 of (Shrot, Aumann, and Kraus
2009) is false - which claims that ESCK is FPT when param-
eterized by |G|. We give a counterexample to their proposed
algorithm and show that the problem is indeed PNP-hard.
These results help us to understand the role of various com-
ponents of the input and identify which ones actually make
the input hard. Since all the problems we considered re-
main intractable when parameterized by |C| or |R|, there is
no point in trying to restrict these parameters. On the other
hand, most of the problems are FPT when parameterized by
|G| or |Ag| + |R| and thus we might enforce this restric-
tion in real-life situations to ensure the tractability of these
problems.

Due to the lack of space some of the proofs are omitted.
The full version of the paper is available on arXiv.

IV - Problems Left Open in Shrot et al. (2009)

First we show that SC parameterized by |C| is W[1]-hard.

Theorem 1 SC is W[1]-hard when parameterized by |C|.
Proof. We prove this by reduction from Independent Set
(parameterized by size of independent set) which is a well-
known W[1]-complete problem. Let H = (V,E) be a graph
with V = {x1, . . . , xn} and E = {e1, . . . , em}. Let k be a
given integer. We also assume that H has no isolated points
as we can just add those points to the independent set and
decrease the parameter appropriately. We build a CRG Γ as
follows:

Γ = 〈Ag,G,R,G1, G2, . . . , Gk, en, req〉
where
• Ag = {c1, . . . , ck}

• Gi = {g1i , . . . , gni } for all i ∈ [k]

• G =
⋃k

i=1 Gi

• R = {r1, . . . , rm}
• For all i ∈ [k], j ∈ [m] , en(ci, rj) = 1

• For all i ∈ [k], j ∈ [m] and � ∈ [n], we have req(g�i , rj) =
k if ej and x� are incident in H and req(g�i , rj) = 0 oth-
erwise

We claim that H has an independent set of size k if and
only if the grand coalition Ag is successful in Γ. Note that
|Ag| = k, |G| = nk, |R| = m thus this reduction shows that
the SC problem is W[1]-hard. �

We note that the SC problem can be solved in O(|G||C|×
|R|) time (since we only need to check the subsets of size
at most |C| of G) and thus SC parameterized by |C| is not
PNP-hard. Now we answer the only remaining open prob-
lem by Shrot et al. by showing that ESCK parameterized
by |R| is PNP-hard.

Theorem 2 Checking whether there exists a successful
coalition of size k (ESCK) is PNP-hard when parameterized
by |R|.
Proof. We prove this by reduction from SC which was
shown to be PNP-hard with respect to the parameter |R| in
Theorem 3.8 of (Shrot, Aumann, and Kraus 2009).
Let (Γ, C) be a given instance of SC. We consider an in-
stance (Γ′, k) of ESCK where Ag′ = C,R′ = R, k = |C|,
and G′

i = Gi ∀ i ∈ C. We claim that SC answers YES if
and only if ESCK answers YES. Note that |Ag′| = k, |G′| =
|G|, |R′| = |R| thus this reduction shows that the ESCK
problem is PNP-hard. �

V - Problems Related to Resources

For a coalition C, we recollect the notation we use:
succ(C) = {G′ | G′ ⊆ G ; G′ 
= ∅ and G′ both satisfies
C and is feasible for it}. In this section we show hardness
results for three different problems related to resources.

Necessary Resource (NR)

The idea of a necessary resource is similar to that of a veto
player in the context of conventional coalition games. A re-
source is said to be necessary if the accomplishment of any
set of goals which is successful for the coalition would need
a non-zero consumption of this resource. Thus if a necessary
resource is scarce then the agents possessing the resource be-
come important. We consider the NECESSARY RESOURCE
problem: Given a coalition C and a resource r answer YES
if and only if req(G′, r) > 0 for all G′ ∈ succ(C). NR was
shown to be co-NP-complete in Wooldridge et al. 2006. We
note that if C is not successful, then NR vacuously answers
YES. We give a reduction from SC to NR.

Lemma 1 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′, r′) of NR such that SC answers YES iff
NR answers NO.
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SC ESCK NR, CGRO, RPEGS SNR SCRB CC
(NPC) (NPC) (co-NPC) (Dp-complete) (NPC) (co-NPC)

|G| FPT PNP-hard FPT FPT FPT FPT

|C| W[1]-hard W[1]-hard co-W[1]-hard W[1]-hard co-W[1]-hard co-W[1]-hard

|R| PNP-hard PNP-hard co-PNP-hard PNP-hard co-PNP-hard co-PNP-hard

|Ag|+ |R| FPT FPT FPT FPT FPT ?

Theorem 3 The parameterized complexity status of Neces-
sary Resource is as follows:
FPT when parameterized by |G|
co-W[1]-hard when parameterized by |C|
co-PNP-hard when parameterized by |R|
Proof. When parameterized by |G|, we consider all 2|G| sub-
sets of G. For each subset, we can check in polynomial time
if it is a member of succ(C) and if it requires non-zero quan-
tity of the resource given in the input.
The other two claims follow from Lemma 1, Theorem 3.8 in
Shrot et al., and Theorem 1. �

Strictly Necessary Resource (SNR)

The fact that a resource is necessary does not mean that
it will be used. Because the coalition in question can be
unsuccessful and hence the resource is trivially necessary.
So we have the STRICTLY NECESSARY RESOURCE prob-
lem: Given a coalition C and a resource r answer YES
if and only if succ(C) 
= ∅ and ∀ G′ ∈ succ(C) we
have req(G′, r) > 0. SNR was shown to be strongly Dp-
complete in Wooldridge et al. 2006. To prove the parameter-
ized hardness results, we give a reduction from SC to SNR.

Lemma 2 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′, r′) of SNR such that SC answers YES iff
SNR answers YES.

Theorem 4 The parameterized complexity status of Strictly
Necessary Resource is as follows:
FPT when parameterized by |G|
W[1]-hard when parameterized by |C|
PNP-hard when parameterized by |R|
Proof. When parameterized by |G|, we consider all 2|G| sub-
sets of G. For each subset, we can check in polynomial time
if it is a member of succ(C) and if it requires non-zero quan-
tity of the resource given in the input.
The other two claims follow from Lemma 2, Theorem 3.8 in
Shrot et al., and Theorem 1. �

(C,G0, r)-Optimality (CGRO)

We may want to consider the issue of minimizing usage of
a particular resource. If satisfaction is the only issue, then
a coalition C will be equally happy between any of the
goal sets in succ(C). However in practical situations we
may want to choose a goal set among succ(C) which mini-
mizes the usage of some particular costly resource. Thus we
have the (C,G0, r)-OPTIMALITY problem: Given a coali-
tion C, resource r, and a goal set G0 ∈ succ(C) an-
swer YES if and only if req(G′, r) ≥ req(G0, r) for all

G′ ∈ succ(C). CGRO was shown to be strongly co-NP-
complete in Wooldridge et al. 2006. To prove the param-
eterized hardness results, we give a reduction from SC to
CGRO.

Lemma 3 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′, G0, r

′) of CGRO such that SC answers
YES iff CGRO answers NO.

Theorem 5 The parameterized complexity status of
(C,G0, r)-Optimality is as follows:
FPT when parameterized by |G|
co-W[1]-hard when parameterized by |C|
co-PNP-hard when parameterized by |R|
Proof. When parameterized by |G|, we consider all 2|G|
subsets of G. For each subset, we can check in polynomial
time if it is a member of succ(C) and if it requires atleast
req(G0, r

′) quantity of resource r′ where G0 and r′ are
given in the input.
The other two claims follow from Lemma 3, Theorem 3.8 in
Shrot et al., and Theorem 1. �

VI - Problems Related to Resource Bounds

R-Pareto Efficient Goal Set (RPEGS)

We use the idea of Pareto Efficiency to measure the optimal-
ity of a goal set w.r.t the set of all resources. In our model
we say that a goal set G′ is R-Pareto Efficient w.r.t a coali-
tion C if no goal set in succΓ(C) requires at most as much
of every resource and strictly less of some resource. More
formally we say that a goal set G′ is R-Pareto Efficient w.r.t
a coalition C if and only if ∀ G′′ ∈ succΓ(C),

∃ r1 ∈ R : req(G′′, r1) < req(G′, r1) ⇒ ∃ r2 ∈ R :
req(G′′, r2) > req(G′, r2)

We note that G′ is not necessarily in succ(C). Thus we
have the R-PARETO EFFICIENT GOAL SET problem: Given
a coalition C and a goal set G0 answer YES if and only
if G0 is R-Pareto Efficient w.r.t C. Wooldridge et al. 2006
show that RPEGS is strongly co-NP-complete. To prove the
parameterized hardness results, we give a reduction from SC
to RPEGS.

Lemma 4 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′, G0) of RPEGS such that SC answers
YES iff RPEGS answers NO.

Theorem 6 The parameterized complexity status of R-
Pareto Efficient Goal Set is as follows:
FPT when parameterized by |G|
co-W[1]-hard when parameterized by |C|
co-PNP-hard when parameterized by |R|
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Proof. When parameterized by |G|, we consider all 2|G| sub-
sets of G. For each subset, we can check in polynomial time
if it is a member of succ(C) and if it shows that G0 is not
R-Pareto Efficient.
The other two claims follow from Lemma 4, Theorem 3.8 in
Shrot et al., and Theorem 1. �

Successful Coalition With Resource Bound (SCRB)

In real-life situations we typically have a bound on the
amount of each resource. A resource bound is a function
b : R → N with the interpretation that each coalition has at
most b(r) quantity of resource r for every r ∈ R. We say
that a goal set G0 respects a resource bound b w.r.t. a given
CRG Γ iff ∀ r ∈ R we have b(r) ≥ req(G0, r). Thus we
have the Successful Coalition With Resource Bound prob-
lem: Given a coalition C and a resource bound b answer
YES if and only if ∃G0 ∈ succ(C) such that G0 respects b.
Wooldridge et al. 2006 show that SCRB is strongly NP-
complete. To prove the parameterized hardness results, we
give a reduction from SC to SCRB.
Lemma 5 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′, b’) of SCRB such that SC answers YES
if and only if SCRB answers NO.

Theorem 7 The parameterized complexity status of Suc-
cessful Coalition With Resource Bound (SCRB) is as fol-
lows:
FPT when parameterized by |G|
co-W[1]-hard when parameterized by |C|
co-PNP-hard when parameterized by |R|
Proof. When parameterized by |G|, we consider all 2|G| sub-
sets of G. For each subset,we can check in polynomial time
if it is a member of succ(C) and if it requires non-zero quan-
tity of the resource given in the input.
The other two claims follow from Lemma 5, Theorem 3.8 in
Shrot et al., and Theorem 1. �

VII - Problems Related to Resource Conflicts

Conflicting Coalitions (CC)

When two or more coalitions desire to use some scarce re-
source, it leads to a conflict in the system. This issue is
a classic problem in distributed and concurrent systems.
In our framework we say that two goal sets are in con-
flict w.r.t a resource bound if they are individually achiev-
able within the resource bound but their union is not. For-
mally a resource bound is a function b : R → N with
the interpretation that each coalition has at most b(r) quan-
tity of resource r for every r ∈ R. We say that a goal
set G0 respects a resource bound b w.r.t. a given CRG
Γ if and only if ∀ r ∈ R we have b(r) ≥ req(G0, r).
We denote by cgs(G1, G2, b) the fact that G1 and G2 are
in conflict w.r.t b. Formally, cgs(G1, G2, b) is defined as
respects(G1, b)∧ respects(G2, b)∧¬respects(G1 ∪G2, b).
Thus we have the CONFLICTING COALITIONS problem:
Given coalitions C1, C2 and a resource bound b answer YES
if and only if ∀ G1 ∈ succ(C1) and ∀ G2 ∈ succ(C2) we
have cgs(G1, G2, b). Wooldridge et al. 2006 show that CC is

strongly co-NP-complete. To prove the parameterized hard-
ness results, we give a reduction from SC to CC.

Lemma 6 Given an instance (Γ, C) of SC we can construct
an instance (Γ′, C ′

1, C
′
2, b) of CC such that SC answers YES

if and only if CC answers NO.

Theorem 8 The parameterized complexity status of Con-
flicting Coalitions (CC) is as follows:
FPT when parameterized by |G|
co-W[1]-hard when parameterized by |C|
co-PNP-hard when parameterized by |R|
Proof. When parameterized by |G|, we consider all 2|G|
choices for G1 and G2. Given a choice (G1, G2) we can
check in polynomial time if G1 and G2 are members of
succ(C1) and succ(C2) respectively. Also we can check the
condition cgs(G1, G2, b) in polynomial time.
The other two claims follow from Lemma 6, Theorem 3.8 in
Shrot et al., and Theorem 1. �

VIII - The Parameter |Ag|+ |R| : Case of

Bounded Agents plus Resources

Considering the results in previous sections, we see that even
in the case that the size of the coalition or the number of
resources is bounded the problem remains computationally
hard. A natural question is what happens if the total number
of agents plus resources is bounded? Shrot et al. 2009 show
that by this parameterization the problems SC, MAXC, and
MAXSC have FPT algorithms and they left the correspond-
ing question for the ESCK open. We generalize the integer
program given by Shrot et al. to give a FPT algorithm for
ESCK. By using a similar approach we design FPT algo-
rithms for the five other problems (NR, SNR, CGRO, SCRB,
RPEGS) considered in this paper.

The integer program we define is a satisfiability problem.
It consists of a set of constraints, and the question is whether
there exists an integral solution to this set. Consider the fol-
lowing general integer program (which we call GIP):

∀i ∈ Ag :
∑

g∈Gi

xg ≥ yi (1)

∀r ∈ R :
∑

g∈G

xg × req(g, r) ≤
∑

i∈Ag

yi × en(i, r) (2)

yi,xg ∈ {0, 1}
In this setting for each i ∈ Ag, yi indicates the event that
agent i is participating in the coalition and for each g ∈ G,
xg indicates the event that goal g is achieved. One can show
that any solution for GIP is a coalition of agents and a suc-
cessful set of goals for that coalition.
The above integer program has |Ag| + |R| constraints and
in Flum and Grohe 2006 it is shown that INTEGER LIN-
EAR PROGRAMMING is FPT wrt number of constraints or
number of variables. We give tractable algorithms for each
problem by adding a few constraints to our general integer
program.

Theorem 9 ESCK parameterized by |Ag|+ |R| is FPT.
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Proof. In ESCK we have to insure that exactly k num-
ber of agents will be selected. Therefore adding the con-
straint

∑
i∈Ag yi = k to GIP gives the integer program for

the ESCK problem. Since the number of constraints, (i.e.,
|Ag|+ |R|+ 1) is fixed the proof is complete. �

In the other five problems NR, SNR, CGRO, SCRB, and
RPEGS the coalition C is given. Thus we change the vari-
ables yi’s to constants where yi is set to 1 iff i ∈ C. We call
this new integer program a Fixed Coalition Integer Pro-
gram (FCIP). It is clear that a coalition is successful if and
only if FCIP is satisfiable.

Theorem 10 When parameterized by |Ag| + |R|, the NR,
SNR, CGRO, SCRB, and RPEGS problems are FPT.

Proof. Due to the lack of space we omit the details and we
only mention the required changes for each problem.

• NR: For all goals g ∈ G where req(g, r) > 0 we change
the variable xg to zero.

• SNR: First we should check if the coalition is success-
ful. If FCIP was satisfiable, for all goals g ∈ G where
req(g, r) > 0 we have to set the variable xg to zero.

• CGRO: We add the constraint
∑

g∈G xg × req(g, r) < β

where β = req(G0, r).

• SCRB: For every resource r ∈ R we bound its usage by
adding the constraint

∑
g∈G xg × req(g, r) ≤ b(r).

• RPEGS: Since G0 is given, req(G0, r) is known to us.
We write |R| instances of FCIP such that in the FCIP
for resource r, we have the constraint req(G′, r) <
req(G0, r), and |R| − 1 constraints req(G′, r′) ≤
req(G0, r

′), one for each resource r′ 
= r.

�

IX - Revisiting ESCK Parameterized by |G|
Shrot et al. (Shrot, Aumann, and Kraus 2009) show in The-
orem 3.2 of their paper that ESCK parameterized by |G| is
FPT. We first show their proposed FPT algorithm is wrong
by giving an instance when their algorithm gives incorrect
answer. Then we show that in fact the problem is PNP-hard
via a reduction from the independent set problem.

Counterexample to the Algorithm Given in
Theorem 3.2 of Shrot et al. 2009

The algorithm is as follows:

1. For each G′ ⊆ G

• Let C ′ be set of all agents satisfied by G′

• If |C ′| 
= k , go to 1.
• If G′ is feasible for C ′, return TRUE

2. return FALSE

We give an instance Γ where the above algorithm gives an
incorrect answer. Suppose |Ag| > k, each agent has 1 unit
of endowment of each resource, each goal requires 0 of each
resource, and Gi = G for all agents i ∈ Ag. Thus each
coalition is successful and ∀ G′ ⊆ G we have C ′ = Ag

which means that |C ′| = |Ag| > k and so the algorithm
answers NO while the correct answer is YES. Indeed by re-
ducing Independent Set to a CRG instance with |G| = 1, we
prove the following theorem.
Theorem 11 ESCK parameterized by |G| is PNP-hard.

X - Directions for Future Work

The study of problems arising in coalitions of agents in
multi-agents systems using the parameterized complexity
paradigm was initiated by Shrot et al. In this paper we have
tried to take a further step in this direction which we believe
is still unexplored. There are various (classically) compu-
tationally hard problems which need to be better analyzed
through the rich theory of parameterized complexity.
Both in Shrot et al. and this paper only the CRG model has
been considered. In CRG model the status of CC parame-
terized by |Ag| + |R| is left open. Alternatively one might
consider other natural parameters like |Ag| or try to examine
other models like the QCG model (Wooldridge et al. 2004)
through parameterized complexity analysis.
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