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Abstract

This paper studies how automated agents can persuade hu-
mans to behave in certain ways. The motivation behind such
agent’s behavior resides in the utility function that the agent’s
designer wants to maximize and which may be different from
the user’s utility function. Specifically, in the strategic set-
tings studied, the agent provides correct yet partial informa-
tion about a state of the world that is unknown to the user
but relevant to his decision. Persuasion games were designed
to study interactions between automated players where one
player sends state information to the other to persuade it to
behave in a certain way. We show that this game theory based
model is not sufficient to model human-agent interactions,
since people tend to deviate from the rational choice. We use
machine learning to model such deviation in people from this
game theory based model. The agent generates a probabilis-
tic description of the world state that maximizes its benefit
and presents it to the users. The proposed model was eval-
uated in an extensive empirical study involving road selec-
tion tasks that differ in length, costs and congestion. Results
showed that people’s behavior indeed deviated significantly
from the behavior predicted by the game theory based model.
Moreover, the agent developed in our model performed bet-
ter than an agent that followed the behavior dictated by the
game-theoretical models.

Introduction

Advanced technology allows computer systems to take an
increasingly active role in people’s decision-making tasks,
whether as proxies for individuals or organizations (e.g., au-
tomatic bidder agents in e-commerce (Rajarshi et al. 2001)),
or autonomous agents that work alongside people (e.g, train-
ing systems for diplomatic negotiation (Kraus et al. 2008)).
The participants of these heterogeneous human-computer
applications share common goals, but each of the partici-
pants also has its own incentives. Consider for example a
centralized traffic control system that provides congestion
information to commuters. The system and drivers both
share the goal of getting commuters to their destination as
quickly as possible. However, the system may also wish
to increase the amount of tolls collected by drivers, while
drivers may wish to minimize this amount.
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This paper focuses on a particular class of such hetero-
geneous systems in which information is distributed across
participants, and agents need to reason about how and when
to disclose this information. There are several reasons why
this task is challenging. First, the agent needs to reason
about the potential effect of information disclosure on partic-
ipants’ possibly conflicting interests. For example, the traf-
fic center can notify drivers that a toll-free road is vacant. It
needs to reason about the effect of this notification on the toll
collection for the day and on the resulting congestion for the
toll-free road. Second, people’s decision-making deviates
from rational choice theory and is affected by a variety of
social and psychological factors (Camerer 2003). For ex-
ample, some people may prefer to use toll free roads, even
when they are heavily congested.

The paper presents a formal model of information disclo-
sure in a particular class of such systems. We construct a
formal setting that augments an existing theoretical model
of information disclosure from the literature. Participants’
utilities in our setting depend on each other’s actions (e.g.,
what information to convey to drivers, which road to choose)
and the state of the world (e.g., whether the driver arrived
on time, which toll road was chosen). The agent has pri-
vate information that is not known to the person (e.g., the
state of congestion in the different roads). The setting in-
volves a single-shot interaction in which the agent presents
true yet partial information about the state of the world to
the person, and the person chooses an action based on this
information. Our approach uses supervised machine learn-
ing to construct a probabilistic model of people’s choices.
The model constructs a utility function that depends on their
own incentives as well as domain-dependent information. It
accounts for the fact that people may deviate from their op-
timal choice given this subjective utility function. The agent
integrates this model into the decision-theory framework in
order to generate a probabilistic description of the state of
the world and presents it to people.

We evaluated this agent in an extensive study involving
more than 300 subjects participating in road selection tasks.
The computer agent generated a probabilistic description of
the state of the roads to present to people that maximized
its interests. Our results show that (1) as shown in various
different games (eg. (Cameron 1999) and (Peled, Gal, and
Kraus 2011) ) people’s behavior significantly deviates from
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that of the game theory based model; (2) the subjective util-
ity model we constructed was able to predict people’s behav-
ior; and (3) an agent using this model was able to lead people
to make choices that were beneficial to the agent while not
reducing the human participants’ benefits.

Related Work

We are interested in scenarios where advice giving can
influence the decision-making of the advice taker (see
e.g., (Bonaccio and Dalal 2006) for a taxonomy). Human
players participating in a coordination game were found to
accept a third party’s advice, even though this third party has
selfish interests in the game’s outcome (Kuang, Weber, and
Dana 2007). Furthermore, communication will affect hu-
man players even if it comes from their opponents, who are
directly involved in the game (see e.g., (Liebrand 1984)).

As a result, manipulative information exchange between
players becomes an issue to exploit. For example, travel
guidance systems have been studied for their effects on the
commuting dynamics (Mahmassani and Liu 1999; Chorus,
Molin, and van Wee 2006).

Manipulative interactions are most commonly captured
by persuasion games (see e.g., (Kamenica and Gentzkow
2010)), where one player (Sender) possesses a key piece
of information and another (Receiver) can actually act in
the environment. The Sender attempts to calculate and find
that portion of information which will yield maximum per-
suasive effect, i.e. will prompt the Receiver to choose an
action most beneficial for the Sender, rather than the Re-
ceiver itself. However, to effectively manipulate the Re-
ceiver, the Sender needs to understand the motives and the
decision-making process of the Receiver. Most persua-
sion game models fail to take into account the possibility
that the Receiver’s motives may not be fully accessible to
the Sender, i.e. the Receiver has private information (or
type). The set of models that explicitly handle this case are
called information disclosure games (Rayo and Segal 2010;
Celik 2010).

The Information Disclosure Game

The game describes an asymmetric interaction between two
players: a Sender and a Receiver. Each player has a privately
observed type associated with it (v ∈ V and w ∈ W re-
spectively) that are independently sampled from commonly
known distributions (v ∼ pV and w ∼ pW ). The Sender can
send messages to the Receiver and the Receiver can perform
actions from a set A. The utilities of the interaction between
the players are given by two functions us : V × A → R for
the Sender, and ur : V ×W ×A → R for the Receiver. The
dynamics of such a game develop as follows:

• The Sender selects a finite set of messages M , and a dis-
closure rule π : V → Δ(M) that specifies the probabil-
ity π(m|v) of sending a message m given any possible
Sender’s type v. Note that v is unknown to the Sender at
the time of computing this disclosure rule. We will refer
to the disclosure rule as the Sender’s policy.

• The Sender declares and commits to (π,M).

• The players’ private types v and w are independently sam-
pled from pV and pW respectively.

• The Sender samples a message m ∼ π(·|v) and sends it
to the Receiver.

• Given the message m, the Receiver performs a Bayesian
update to calculate pmV ∝ π(m|·)T ◦pV where “◦” denotes
the entry-wise product (Horn and Johnson 1991).

• Based on pmV and w the Receiver selects an action a ∈ A.

• Players obtain their respective utilities us(v, a) and
ur(v, w, a).

Solving Information Disclosure Games

To solve the information disclosure game we represent it as
a mathematical program (which can be non-linear). Solving
such a problem consists of optimizing the expected utility of
the Sender by using a particular protocol that chooses what
messages to send given its type. At the same time the ac-
tion selection policy of the Receiver contributes the bound-
ing conditions of this mathematical program. In this Section,
we analyze such games formally and provide a solution as-
suming that the Receiver is fully rational.

Mathematical Program

Since the Sender must commit in advance to its randomized
policy, we use subgame perfect (SP) Bayesian Nash equilib-
rium where the only choice made by the Sender is selecting
the disclosure rule (we analyze the game as if a third party
sends the message to the Receiver based on the disclosure
rule given to him by the sender). In the SP equilibrium the
Receiver’s strategy is the best response to the Sender’s pol-
icy, simplifying the equilibrium calculations (Osborne and
Rubinstein 1994).

In the following we limit the general interactions in the
game to sets of Sender types V , Receiver types W and Re-
ceiver actions A that are all finite (we refer to this as the
finite sets assumption). Let pbV denote the beliefs of the Re-
ceiver about the private type of the Sender, and the Receiver
will choose an optimal action

a∗ = argmax
a∈A

Ev∼pb
V
[ur(v, w, a)] (1)

The set of feasible responses can be even further limited
if the disclosure rule π is given. By strategically construct-
ing the rule π, the Sender can influence the actions chosen
by the Receiver. Since the Sender has only partial knowl-
edge of the private value w of the Receiver, the Sender can
only compute a prediction of a∗r , pA : Δ(V ) → Δ(A), the
action choice. We denote pmA = pA(·|pmV ). Having precom-
puted the response function pA of the Receiver, the Sender
can calculate the expected utility of a specific disclosure rule
π (we removed the details of the simple mathematical ma-
nipulations).

Us[π] = E[us] =
∑
v∈V

∑
a∈A

us(v, a)p(v, a) (2)

=
∑
v∈V

∑
a∈A

∑
m∈M

us(v, a)pV (v)pA(a|pmV )π(m|v)
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Since we have assumed that both V and M are finite,
we can formulate the disclosure rule construction as an
optimization problem over the space of stochastic policies
π(m|v) and the message space M :

π∗ = arg max
M,π:V→Δ(M)

Us[π]

The following theorem shows that if an optimal solution
exists, then the set of messages selected by the Sender can
be limited to the size of |V |.
Theorem 1. Given an information disclosure game,
〈V, pV ,W, pW , A, ur, us〉, with the finite sets assumption:
If there is an optimal solution (π,M), then there exists an
optimal solution (π̃, M̃), where |M̃ | ≤ |V |.

The sketch of the proof is as follows. Assume π is an
optimal solution with minimum messages. We assume by
contradiction that π has more than |V | messages. When
represented as a matrix where each row represents a mes-
sage and each column represents a sender type (v), there are
more rows in π than columns. Therefore, there exists a lin-
ear dependence between the rows, and there is some linear
combination of the rows which yields �0. Choose the row
with the highest absolute coefficient in this combination and
write is as a linear combination of the other rows. W.l.g as-

sume m0 =
|M |∑
i=1

αimi (note that ∀i, |αi| ≤ 1). Denote E[m]

as the expected utility for the system when sending message

m. We now compare E[m0] with
|M |∑
i=1

αiE[mi]. If E[m0] is

greater, construct a new disclosure rule π′ by replacing m0

with m0 +
|M |∑
i=1

αimi and for each i ≥ 1 replace mi with

mi · (1− αi). (We merely shift probabilities from one mes-
sage to another, therefore π′ is a valid disclosure rule). This
will result with Us[π

′] � Us[π] contradicting π’s optimality.

If however E[m] ≤
|M |∑
i=1

αiE[mi], then a new disclosure rule

π′′ which removes m0 and replaces mi with mi·(1+αi) will
have at least one message less (m0) and will still be optimal,
contradicting the minimality of π.

Finding an Optimal Policy

Unfortunately, it is intractable to find an optimal policy by
solving the maximization problem of (2), since it includes
non-linear constraints of the form argmax. The purpose of
this constraint is to take into consideration the best response
of the Receiver as specified in (1). Thus we need to ex-
press this requirement on the Receiver’s choice using linear
constraints. Toward this goal we begin with the following
intuition: The real purpose of every message is to lead the
Receiver to take an action that is beneficial to the Sender.
However, this action should be the best response of the Re-
ceiver, given his type and the belief he forms on the state of
the world. The choice of the stochastic policy is the key for
influencing the Receiver’s beliefs.

We begin by generating messages for each possible Re-
ceiver’s response. Note that the response will depend on
the Receiver’s type. Formally, we define a set of functions:
F = {f : W → A}. f specifies an action for each Re-
ceiver’s type. For each function f we create a set of mes-
sages. From Theorem 1 we know that for an optimal policy
there is a need for at most |V | messages. So, in particular,
there is no need for more than |V | messages to lead to a spe-
cific behaviour that is described by a function f . Thus, we
create a set M of messages such that for every f ∈ F we
generate V messages denoted by mj

f , 1 ≤ j ≤ |V |.
Using this set of messages, with a size of |V ||F |, we

would like to consider possible policies and choose the one
that maximizes the Sender’s expected utility. However, we
need to focus only on policies π that given a message mj

f a
Receiver of type w will really choose an action f(w). We
achieve this formally by designing a set of inequalities that
express this condition as follows.

First, given a message m ∈ M , a Receiver of type
w ∈ W and a policy π, the Receiver will choose an ac-
tion a ∈ A only if he believes his expected utility from this
action is higher than his expected utility from any other ac-
tion. Note that after receiving a message m, the Receiver’s
belief that the state of the world is v ∈ V is proportionate to
pV (v)π(m|v). Thus, the set of constraints is

∀a′ ∈ A
∑
v∈V

ur(v, w, a)pV (v)π(m|v) ≥
∑
v∈V

ur(v, w, a
′)pV (v)π(m|v) (3)

Focusing on a specific message mj
f , we want to satisfy

these constraints for any type w ∈ W and require that the
chosen action will be f(w). Putting these together after
some mathematical manipulations we obtain the following
constraints for ∀w ∈ W and ∀a′ ∈ A:∑
v∈V

(ur(v, w, f(w))− ur(v, w, a
′))pV (v)π(m|v) ≥ 0 (4)

Note that there may be many functions for which we
will not be able to find a policy π that will satisfy the re-
quired constraints. However, given such a π and a func-
tion f we can calculate the probability πA(a|mj

f ) that an
action a ∈ A will be chosen when the Receiver gets the
message mj

f , regardless of his type. Formally, given a
set W ′ ⊆ W , let πW (W ′) =

∑
w∈W ′ pW (wi). Then,

πA(a|mj
f ) = πW (f−1(a)).

Putting it all together, we obtain the following optimiza-
tion problem:

π̃∗ = argmax
π

∑
mj

f∈M

∑
a∈A
v∈V

us(v, a)pV (v)πW (f−1(a))π(mj
f |v)

s.t.
∀mj

f ∈ M, ∀ w ∈ W ∀a′ ∈ A∑
v∈V

(ur(v, w, f(w))− ur(v, w, a
′))pV (v)π(m

j
f |v) ≥ 0

∀v ∈ V
∑

mj
f∈M

π(mj
f |v) = 1 and ∀mj

f ∈ M,π(mj
f |v) ≥ 0
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That is, given a message mj
f ∈ M (for all such messages),

we calculate the expected utility for the Sender us(v, a).
The probability that v will occur is pV (v). The proba-
bility that a will be chosen given our discussion above is
πW (f−1(a))π(mj

f |v). The second and third constraints ver-
ify that π is an appropriate policy.

Given π̃∗ we will repeatedly remove utility dominated
messages based on their linear dependency on other rows
of π̃∗ from M .

The complexity of solving the optimization problem
within the above algorithm is polynomial in |A| and |V |,
but exponential in |W | since |F | ∝ |A||W |. Nevertheless,
we found that in practice, due to an implicit dominance re-
lation between actions, the set of appropriate functions F
is much smaller than |A||W |. Thus, we were able to gener-
ate an agent that follows this game theory approach and find
its policy by solving the above maximization problem. We
refer to this agent as Game Theory Based Agent (GTBA).

People Modeling for Disclosure Games in

Multi-attribute Road Selection Problems

Trying to influence people’s action selection presents novel
problems for the design of persuasion agents. People do not
adhere to the optimal, monolithic strategies that can be de-
rived analytically. Their decision-making process is affected
by a multitude of social and psychological factors (Camerer
2003). For this reason, in addition to the theoretical analysis,
we propose to model the people participating in information
disclosure games and integrate that model into the formal
one. We assume that the agent interacts with each person
only once, thus we propose a general opponent modeling
approach, i.e., when facing a specific person, the persuasion
agent will use models learned from data collected on other
people.

The opponent modeling is based on two assumptions of
human decision-making1:
• Subjective utility functions: People’s decision-making

deviates from rational choice theory and their subjective
utility is a function of a variety of factors.

• Stochastic decision-making: People do not choose ac-
tions that maximize their subjective utility, but rather
choose actions proportional to this utility. A formal model
of such decision-making has been shown in (Lee 2006;
Daw et al. 2006) to be of the form:

a∗r(a|w, pbV ) ∝ exp
(
Ev∼pb

V
[ur(v, w, a)]

)
The study of the general opponent approach and its com-

parison with the formal model was done in the context of
Road Selection Problems, which will be described next.

Multi-attribute Road Selection Problem

The multi-attribute road selection problem is defined as an
information disclosure game Γ with two players: a driver

1There are other models that reflect how people integrate the
advice with their own private opinion (see e.g., (Boll and Larrick
2009; Yaniv 2004)). However, we chose to follow the model which
is both the simplest and has been confirmed by medical studies.

and a center. The center, playing the role of the sender,
can provide the driver, playing the role of the receiver, with
traffic information about road conditions. In particular, the
driver needs to arrive at a meeting place in w minutes. There
is a set H of n highways and roads leading to his meeting
location. Each road h ∈ H is associated with a toll cost
c(h). There are several levels of traffic load L on the roads
and a set of highway network states V . A highway network
state is a vector �v ∈ V specifying the load of each road, i.e.,
�v =< l1, ..., ln >, li ∈ L. The traffic load yields different
time durations for the trip denoted d(�vh, h) (where �vh de-
notes the traffic load on road h in state �v). If the driver arrives
at the meeting on time, he gains g dollars, however he is pe-
nalized e dollars for each minute he is late. Denote the cho-
sen road by a. Putting this together, the driver’s monetary
utility is given by: ur(�v, a, w) = g−max{d(a,�v)−w, 0}·e.
The driver does not know the exact state of the highway
network, but merely has a prior distribution belief pV over
V . The center however, when providing information to the
driver, knows the exact state, but only has prior beliefs, pW ,
on the possible meeting times, W . Once given the state,
the center sends a message m to the driver which may re-
veal data on the traffic load of the various roads. The cen-
ter’s utility depends on the state and the driver’s chosen
road us(�va, a). It increases with the toll road c(a) and
decreases with a’s load as specified in �v (see below two
examples of such utility functions). The center must de-
cide on a disclosure rule and provide it to the driver in ad-
vance (before the center is given the state). For the cen-
ter, the road selection problem is therefore: given a game
Γ = 〈H,L, V,W,M, c, d, pV , pW , us, ur〉, choose a disclo-
sure rule which will maximize E[us].

Since the center’s utility depends on the driver, we present
a method for predicting human responses given a publicized
policy and a specific message they received.

Non-monetary Utility Estimation

Given a game Γ =< H,L, V,W,M, c, d, pV , pW , us, ur >
we assume the driver chooses the road based on a non-
monetary subjective utility function, denoted ūΓ

r (here and
in the functions defined below, we omit Γ when it is clear
from the context). We further assume that ūr is a lin-
ear combination of three parameters given the chosen road:
travel time, road load and the toll of the road. We associate
different weights (α′s) with each of these parameters: αd

for the trip duration time, αc for the toll cost, and for all
li ∈ L, we have αli . That is, given a game Γ, assuming the
driver knew the highway network load �v and chose road a,
ūr(�v, a) = αd ·d(�v, a)+αc ·c(a)+α�va . Note that the utility
associated with a given road depends only on the given road
and its load and not on the load of other roads according to
the state.

We assume stochastic decision-making and therefore,
given Γ, we assume the driver chooses road h with a prob-
ability of p(a = h|Γ, �v) = eūr(�v,h)

∑

h′∈H

eūr(�v,h′) . However when

choosing an action, the driver does not know �v but only m.
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Thus, the probability of choosing a road h is:

p(a = h|Γ,m) =
eE[ūr(·,h|m)]∑

h′∈H

eE[ūr(·,h′|m)]

Consider a set of games G such that they all have the same
set of levels of traffic load.

In order to learn the weights of the subjective utility func-
tion associated with G, we assume that a set of training data
Ψ is given. The examples in Ψ consist of tuples (Γi,m, a)
specifying that a subject playing the driver role in the game
Γi ∈ G chose road a ∈ H after receiving the message
m ∈ M . We further assume that there is a predefined thresh-
old τ > 0 and for each m that appears in Ψ there are at least
τ examples. Denote by prop(Γi,m, a) the fraction of ex-
amples in Ψ of subjects who, when playing Γi and receiving
message m, chose road a.

Next, given Ψ we aim to find appropriate αs that mini-
mize the mean square error between the prediction and the
actual distribution of the actions given in the set of exam-
ples Ψ. Note that we propose to learn αs across all the
games in G. Formally we search for αs that minimize∑
Γi,m,h

(p(a = h|Γi,m)− prop(Γi,m, h))2.

One may notice that the subjective utility function that we
propose does not depend on the meeting time w. This is be-
cause the meeting time w is a private value of the driver and
therefore is not specified in the examples in Ψ. However,
since we are interested in the expected overall response per
message of the whole population and not in predicting each
individual response, if the distribution of the meeting time is
left unchanged, dependence on the meeting time is embed-
ded in the utility results. (We actually learn pmA directly and
therefore don’t depend on w).

Next, given a specific Γ we incorporate the learned func-
tion p(a = h|m) as an instantiation of pmA into the calcula-
tion of the expected utility of a disclosure rule:

Us[π] =
∑
�v∈V

∑
h∈H

∑
m∈M

us(�v, h)pV (�v)p(h|m).

Unfortunately, it means that Us[π] has a very non-trivial
shape (involving positive and negative exponential and poly-
nomial expressions of its argument), and even such proper-
ties as convexity were hard to verify analytically. As a result,
we chose to use the standard pattern search algorithm to find
a reasonable approximation of the optimal disclosure rule
with respect to Us[π]. We will call this approach Opponent
Model Based Agent (OMBA).

Experimental Evaluation

In the experiments, subjects were asked to play one of two
variations of the multi-attribute road selection game. Each
subject played only once. All of our experiments were run
using Amazon’s Mechanical Turk service (AMT) (Amazon
2010)2. Participation in our study consisted of 308 subjects
from the USA: 177 females and 131 males. The subjects’
ages ranged from 18 to 68, with a mean of 36.

2For a comparison between AMT and other recruitment meth-
ods see (Paolacci, Chandler, and Ipeirotis 2010)

Since the experiment was based on a single multiple-
choice question, we were concerned that subjects might not
truly attempt to find a good solution. Therefore we only se-
lected workers with a good reputation; they were required to
pass a test before starting; and they received relatively high
bonuses proportionate to the monetary utility they gained.
We intended to remove all answers produced quicker than
10 seconds as being unreasonably fast. However, the aver-
age time to solve our task was greater than 1.5 minutes, and
the fastest response took 23 seconds. We concluded that the
subjects have considered our tasks seriously.

Our experiments aimed at answering three questions:

1. How well did the game theory based agent that finds the
optimal policy of the information disclosure game, as-
suming that people choose the best response according to
ur (GTBA), do against people?

2. How good is OMBA at predicting drivers’ road choice?

3. Does OMBA improve the center’s results in comparison
to the optimal policy?

Experimental Design

We consider two variations of the multi-attribute road selec-
tion game. The first one was used for answering the first two
questions and to collect data for the opponent modeling pro-
cedure. The second game was used for answering the third
question, using the collected data of the first game as the
training data set.

In the first game, Γ1, the players had to choose one of
three roads: a toll free road, a $4 toll road and an $8 toll
road (i.e. H = {h1, h2, h3}, c(h1) = 0, c(h2) = 4 and
c(h3) = 8). Each road could either have flowing traf-
fic which would result in a 3 minute ride, heavy traffic
which would take 9 minutes of travel time or a traffic jam
which would cause the ride to take 18 minutes. That is,
L = {flowing, heavy, jam}, and d(hi, f lowing) = 3,
d(hi, heavy) = 9 and d(hi, jam) = 18, for all hi ∈ H . An
example of a state v could be 〈heavy, flowing, flowing〉
indicating that there is heavy traffic on the toll free road
and traffic is flowing on the other two toll roads. Arriving
on time (or earlier) yields the player a gain of $23 and he
will be penalized $1 for every minute that he is late. Fi-
nally, the meeting could take place in either 3, 6, 9, 12 or 15
minutes, i.e., W = {3, 6, 9, 12, 15}. Thus ur(�v, a, w) =
23 −max{d(a,�v) − w, 0} · 1. The prior probabilities over
V and W were uniform.

The center’s utility was as follows: if the subject took the
toll free road, the center received $0 regardless of the state.
If the subject took the $4 toll road, the center received $4 if
the traffic was flowing, $2 if there was heavy traffic and $0
if there was a traffic jam. If the subject took the $8 toll road,
the center received $8 if the traffic was flowing, $2 if there
was heavy traffic and lost $4 if there was a traffic jam.

In the second game, Γ2, the meeting time was changed
to be 12, 13, 14 and 15 minutes, i.e., W = {12, 13, 14, 15}.
The center’s utility has also changed: the center received $1
if the driver chose the most expensive road among those with
the least traffic. Otherwise the center received $0.
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Table 1: Percentage of road usage by subjects
Prediction Actual

m Toll free $4 toll $8 toll Toll free $4 toll $8 toll
m1 0.9996 0.0003 0 0.9524 0.04761 0
m2 0.1748 0.825 0.0003 0.375 0.625 0
m3 0.1998 0.0588 0.7414 0.2727 0.0909 0.6364
m4 0.9488 0.0324 0.0189 0.625 0.0833 0.2916

In both games the subjects were given the description of
the game including the center’s preferences. Before starting
to play, the subjects were required to answer a few ques-
tions verifying that they understood the game. For each
subject the center received a state drawn randomly and sent
a message using the disclosure rule described (see section
on Information Disclosure Game). To support the sub-
jects’ decision-making, we presented them with the distri-
bution over the possible states that was calculated using the
Bayesian rule given the message, the prior uniform distribu-
tion and the center’s policy. That is, the subjects were given
pMV (m). The subjects then selected a single road. As a mo-
tivation, the subjects received bonuses proportionate to the
amount they gained in dollars. Comparisons between differ-
ent means were performed using t-tests.

Experimental Results

We first let the subjects play with the GTBA agent. This
agent computes the game theory based policy of Γ1, solv-
ing the maximization problem presented in the formal model
section. Note that even though the complexity of solving this
problem is high, we were able to find the optimal policy for
the multi-attribute road selection games in reasonable time.

The policy of GTBA included 13 messages but 5 of them
were generated with very low probability. Thus, from the
169 subjects that participated in the experiment, most of
them (166 subjects) received one of 8 messages, and 3 of
the subjects each received a different message.

The center received on average $2.15 per driver. This re-
sult is significantly (p < 0.001) higher than the utility the
center would receive if all subjects were rational (i.e., maxi-
mizing ur), which, in expectation, was only $0.56 per driver.
Another deviation from full rationality was observed by the
correlation between the time to the meeting and the road se-
lection. For a fully rational player, the longer he has till the
meeting the less likely he is to choose a toll road. However,
this negative correlation between the time to the meeting and
the road selection was as low as −0.05, suggesting the sub-
jects almost ignored the meeting time. These two observa-
tions lead to the conclusion that humans tend to concentrate
on the traffic in each road and it’s toll, but ignore the actual
monetary value which supports our general opponent mod-
eling approach.

Comparing OMBA and GTBA

Using the settings of the second game, Γ2, we ran two
agents, GTBA and OMBA. We used the results obtained
from the 166 subjects that played Γ1 as the training set data

Ψ for OMBA. That is, the α’s for ūΓ2

r were learned from
the subjects playing Γ1, i.e., G = {Γ1}. Both OMBA and
GTBA generated 4 messages for Γ2. 72 subjects played with
OMBA and 64 with GTBA. OMBA performed significantly
better (p < 0.0001) than GTBA, gaining an average of 0.58
vs. 0.28 points per driver.

The three leftmost columns of Table 1 present the OBMA
prediction of the probability that a person will choose one of
the roads given the message that it received. The rightmost
columns of Table 1 present the actual percentage of subjects
receiving the messages that chose the specified roads. Us-
ing these data we found out that OMBA prediction was very
accurate. There was a nearly perfect correlation of 0.94 be-
tween the prediction and actual percentage.

We also consider the best response to OMBA’s messages,
assuming that the subjects choose the road that maximizes
their expected ur (as assumed by the GTBA). It turned out
that the rational response to all four messages of OMBA
would be to choose the toll free road regardless of the meet-
ing time. However, as we expected, the subjects deviated
from this expectation and as presented in Table 1, the major-
ity of subjects did not choose the toll free road when receiv-
ing messages m2 and m3.

We also checked the actual dollars earned by the sub-
jects. When playing with OMBA the average gain per sub-
ject was $19.94 and when playing with GTBA the average
was slightly higher, $20.42, but this difference was not sig-
nificant. Furthermore, even when considering the subjects
subjective utility the difference was not significant (7.89 vs
7.18). Thus we can conclude that while the center using
OMBA obtains significantly higher utility than when using
the GTBA, the drivers’ outcomes were not affected.

Conclusions

In this paper we consider information disclosure games in
which an agent tries to lead a person to take an action that
is beneficial to the agent by providing him with truthful,
but possibly partial, information relevant to the action selec-
tion. We first provide an algorithm to compute the optimal
policy for information disclosure games. We observed that
unsurprisingly, people do not follow the most rational re-
sponse, and therefore provide an innovative machine learn-
ing based model that effectively predicts peoples behavior
in these games. We integrate this model into our persua-
sion model in order to yield an innovative way for human
behavior manipulation. Extensive empirical study in multi-
attribute road selection games confirms the advantage of the
proposed model.
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Future work will be to study the application of the pro-
posed method to settings similar to the multi-attribute road
selection problems, such as the interaction between a travel
agent and her customers.
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