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Abstract 
Effective access to knowledge within large declarative 
memory stores is one challenge in the development and 
understanding of long-living, generally intelligent agents. 
We focus on a sub-component of this problem: given a large 
store of knowledge, how should an agent's task-independent 
memory mechanism respond to an ambiguous cue, one that 
pertains to multiple previously encoded memories. A large 
body of cognitive modeling work suggests that human 
memory retrievals are biased in part by the recency and 
frequency of past memory access. In this paper, we evaluate 
the functional benefit of a set of memory retrieval heuristics 
that incorporate these biases, in the context of the word 
sense disambiguation task, in which an agent must identify 
the most appropriate word meaning in response to an 
ambiguous linguistic cue. In addition, we develop methods 
to integrate these retrieval biases within a task-independent 
declarative memory system implemented in the Soar 
cognitive architecture and evaluate their effectiveness and 
efficiency in three commonly used semantic concordances. 

 Introduction   
One challenge in cognitive architecture research is to 
develop long-term memory systems that are capable of 
extracting diverse, useful experiences from agent 
interactions with the world; store large amounts of this 
information for long periods of time; and later retrieve this 
knowledge when it is relevant to making decisions and 
taking action. There is evidence that extending agents with 
long-term memory supports many functional cognitive 
capabilities (Nuxoll and Laird 2007); however, 
maintaining and querying large memories poses significant 
computational challenges that currently make it impossible 
to task these agents with real-world problems. 

 The focus of this paper is on one specific challenge 
facing long-term memory: given a large store of 
knowledge, and an ambiguous cue that matches multiple 
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stored memories, how does the system efficiently 
determine which memory to retrieve? Anderson and 
Schooler (1991), positing that human memory optimally 
solves this problem with respect to the history of past 
memory access, have developed and validated memory 
models that are widely used in the cognitive modeling 
community. However, existing computational 
implementations of these models do not scale to tasks that 
require access to large bodies of knowledge (Douglass, 
Ball, and Rodgers 2009). 

Previous work (Derbinsky, Laird, and Smith 2010) 
developed and evaluated techniques to efficiently support 
queries of large declarative memory stores; however, that 
work supported only a limited class of bias in the case of 
ambiguous cues, and did not evaluate the functional 
benefits of biases within that space.  

Our goal is to develop a suite of possible memory 
retrieval heuristics and evaluate their effectiveness and 
efficiency in a variety of tasks to determine which heuristic 
is best suited to be used for memory retrieval in a cognitive 
architecture. In this paper, we explore an initial set of 
memory retrieval heuristics that incorporate recency and 
frequency of memory access. We evaluate their 
effectiveness and scaling in the word sense disambiguation 
(WSD) task, an important and well-studied problem in the 
Natural Language Processing community (Navigli 2009). 
We are not attempting to solve the WSD problem per se, 
but instead (1) provide evidence that the WSD task is an 
appropriate benchmark for evaluating and comparing 
memory models and (2) evaluate the effectiveness of long-
term memory systems that efficiently bias retrievals 
towards regularities of past access. 

We begin by introducing the word sense disambiguation 
task, including an analysis of the WordNet (Miller 1995), 
SemCor (Miller et al. 1993), and Senseval (Edmonds and 
Kilgarriff 2002) data sets. We then present results of how 
baseline algorithms perform on this task, including the 
relative advantage of a memory-based approach that 
incorporates the recency and frequency of past word sense 
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assignment. We then evaluate two models of memory bias 
that combine recency and frequency, including base-level 
activation (Anderson et al. 2004), a commonly used model 
based upon the rational analysis of memory (Anderson and 
Schooler 1991). We motivate and describe an 
approximation of the base-level model that theoretically 
scales to large bodies of knowledge and we present 
empirical results of an agent implemented in Soar (Laird 
2008), which disambiguates words with this model. We 
conclude with a discussion of future work. 

Word Sense Disambiguation 
The English language contains polysemous words, those 
that have multiple, distinct meanings, or senses, which are 
interpreted differently based upon the context in which 
they occur. Consider the following sentences: 

a. Deposit the check at the bank. 
b. After canoeing, they rested at the bank. 

The occurrences of the word bank in the two sentences 
clearly denote different meanings: ‘financial institution’ 
and ‘side of a body of water,’ respectively. Word sense 
disambiguation is the ability to identify the meaning of 
words in context in a computational manner (Navigli 
2009). The task of WSD is critical to the field of NLP and 
various formulations have been studied for decades. 

Our interest is in general competence across a variety of 
domains, and so we adopt the all-words WSD formulation, 
where the system is expected to disambiguate all open-
class words in a text (i.e. nouns, verbs, adjectives, and 
adverbs). As input, the agent receives a sequence of 
sentences from a text, each composed of a sequence of 
words. However, as the focus of this work is memory, not 
unsupervised natural language processing, we supplement 
the input with the following two sources of additional 
structure, each of which is not uncommon in the WSD 
literature. First, each input word is correctly tagged with its 
contextually appropriate part-of-speech. Second, the agent 
is assumed to have access to a static machine-readable 
dictionary (MRD), such that each lexical word/part-of-
speech pair in the input corresponds to a list of word senses 
within the MRD. For each sense, the MRD contains a 
textual definition, or gloss, and an annotation frequency 
from a training corpus. Thus, for each input word, the 
agent’s task is to select an appropriate sense from the 
MRD, from which there may be multiple equally valid 
options for the given linguistic context. 

Data Sets 
To evaluate our work, we make use of three semantic 
concordances: each a textual corpus and lexicon linked 

such that every substantive word in the text is linked to its 
appropriate sense in the lexicon (Miller et al. 1993).  

We begin with SemCor, the biggest and most widely 
used sense-tagged corpus, which includes 352 texts from 
the Brown corpus (Kucera and Francis 1967). We use the 
186 Brown corpus files that have all open-class words 
annotated, which includes more than 185,000 sense 
references to version 3 of WordNet (Miller 1995). 
WordNet 3, the most utilized resource for WSD in English, 
includes more than 212,000 word senses. To prevent over-
fitting in our results, we also utilize the Senseval-2 and 
Senseval-3 all-words corpora (Edmonds and Kilgarriff 
2002), linked with WordNet 3. These data sets are nearly 
two orders of magnitude smaller than SemCor, comprising 
only 2,260 and 1,937 sense references, respectively.1 

Task Analysis 
In our formulation of the WSD task, an agent is provided a 
lexical word/part-of-speech pair and must select an 
appropriate sense, for the current context, from amongst a 
static list defined by the MRD. Let s represent the set of 
candidate senses from the MRD and let a represent the set 
of appropriate sense assignments in this context. 

Given an arbitrary input word, an important measure that 
characterizes the difficulty of the task is |s|, the cardinality 
of the set of candidate senses, referred to as polysemy level 
in the literature. However, as some open-class words in all 
of our data sets are tagged with more than one appropriate 
sense (0.33% in SemCor; 4.25% Senseval-2; 1.91% 
Senseval-3), it is also important to consider |a|, the 
cardinality of the set of appropriate sense assignments. In 
this section, we characterize these measures across each of 
the data sets, and resolve the joint distribution of these 
values to derive expected task performance, given a 
random sense selection strategy. 

To begin, we define a derived joint measure, certainty: 
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For a given lexical word/part-of-speech pair, since the set 
of suitable sense assignments is non-empty (|a| > 0) and 
comprises a subset of the full set of candidate senses (a ⊆⊆  s 
and |a| ≤ |s|), the range of certainty is (0, 1], where a value 
of 1 is, intuitively, unambiguous (any selection from 
amongst the candidate set is appropriate) and as a value 
becomes closer to 0, it becomes increasingly ambiguous 
(an appropriate selection is increasingly rare).  

Given this nomenclature, Figure 1 represents the 
distribution of certainty within the SemCor data set, 
plotting the cumulative proportion of corpus words against 
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certainty. Both this plot and the descriptive analysis below 
aggregate the distribution with respect to part-of-speech; 
while our work does not investigate methods that are 
differentially sensitive to part-of-speech, we see 
distinctions in this distribution, which may be useful to 
future work. We only plot and textually analyze SemCor, 
the largest data set, but Table 1 summarizes pertinent 
outcomes for all three semantic concordances. 

We first draw out the proportion of words with certainty 
value 1, those that require no disambiguation, by reading 
the second plotted point from the right for each part-of-
speech. While for adverbs and adjectives this statistic is 
about 39% and 31%, respectively, for nouns and verbs it is 
about 19% and 5%. Across the entirety of SemCor, this 
statistic is 19.54%, establishing the absolute minimum for 
task performance in this formulation of WSD using 
SemCor. We next assess the median certainty for each 
part-of-speech by reading the x-axis as each part-of-speech 
intersects 50% on the y-axis. For adverbs, the median is 1/2; 
for adjectives and nouns it is 1/3; for verbs it is 1/9; and the 
overall median certainty in SemCor is 1/4. Finally, the 
average certainty, and thus the expected performance given 
a random selection strategy, is 38.73%. 

Baseline Task Performance Results 
To contextualize the performance results of a memory-
based approach to the WSD task, we first implemented a 
set of baseline algorithms from the WSD literature. The 
results from these baselines are summarized in Table 2, 
including random selection, derived as expected 
performance in the previous section. Note that all 
algorithms we implement select a sense for all input words, 
and thus precision and recall are identical for all results, so 

we simply report them jointly as “task performance.” 
 WordNet includes, for each word sense, an annotation 
frequency from the Brown corpus and the first baseline 
selection policy, frequency bias, exploits this information 
by choosing the most frequent sense for each lexical 
word/part-of-speech input pair. As the SemCor textual 
corpus is a subset of the Brown corpus, we expected this 
resource to be highly informative and, unsurprisingly, this 
algorithm yields nearly twice the performance of pure 
random selection. As the Senseval data sets were not 
derived from the Brown corpus, it is unsurprising that the 
absolute performance advantage of this heuristic is not as 
great when applied to these corpora. However, the relative 
improvement for Senseval-3 is greater than that of SemCor 
(98.33% versus 97.24%), which likely reflects the 
increased difficulty of Senseval-3 (see Table 1). 
Incorporating a frequency bias is not uncommon in the 
WSD literature, sometimes termed commonest, but it does 
tend to suffer, as found here, when the frequency 
distribution of the MRD is not representative of the corpus. 

The remaining baselines were two variants of the Lesk 
algorithm for word sense disambiguation (Lesk 1986). The 
Lesk algorithm is a commonly used baseline metric 
(Vasilescu, Langlais, and Lapalme 2004) that assumes that 
words in a given “neighborhood” (such as a sentence) tend 
to share a common topic, and thus biases sense selection 
based upon shared terms in sense definitions and context. 
We explored the classic algorithm, with constant-sized 
neighborhood windows, as well as a “simplified” Lesk 
algorithm (Kilgarriff and Rosenzweig 2000), which defines 
word context as simply the terms in the neighborhood, as 
opposed to their definitions. The performance of the Lesk 
family of algorithms is known to be highly sensitive to the 
exact wording of sense definitions, and so it is common to 
supplement Lesk with heuristics and additional sources of 
semantic meaning, such as in Banerjee and Pedersen 
(2002). Thus, for both classic and simplified Lesk, we 
evaluated four supplemental heuristics: (1) the use of a 
stop list, which excludes definition terms that are common 
to the target language, such as “a” and “the”; (2) excluding 
example sentences from sense definitions, to avoid 
uninformative overlapping terms; (3) the use of the Porter 
Stemming (Porter 2006) algorithm to strip word suffixes, 
to facilitate overlap of words with common linguistic roots; 
and (4) a bias towards the corpus frequency information, 
applied in the case of equivalent sense evaluation. We 

SemCor Senseval-2 Senseval-3 
Unambiguous 19.54% 19.69% 15.02% 
Median Certainty 0.25 0.25 0.2 
Minimum Certainty 0.0169 0.0204 0.0169 
Expected Performance 38.73% 40.56% 32.98% 

Table 1. Semantic Concordance Task Analysis Summary. 

 SemCor Senseval-2 Senseval-3 
Random 38.73% 40.56% 32.98% 
Frequency Bias 76.39% 65.56% 65.41% 
Lesk 63.40% 58.17% 53.46% 
Simplified Lesk 65.52% 56.28% 53.66%

Table 2. Baseline Task Performance Results. 
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Figure 1. SemCor Cumulative Word Proportion vs. Certainty. 
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evaluated the combinatorial set of these parameters across 
both algorithms. The maximum results for both classic and 
simplified algorithms occurred using the stop list, pruned 
definitions, and frequency bias, but not the Stemming 
algorithm. For the classic algorithm, we achieved 
maximum task performance with a neighborhood size of 2. 
However, as summarized in Table 2, the Lesk variants 
consistently underperformed, compared to frequency bias. 

These baseline results are specific to our implementation 
and data sets, and are not intended for representation of or 
comparison to modern NLP techniques, but instead provide 
a reasonable baseline for our memory-based results. 

Evaluating a Memory-based Approach 
The main thrust of our research is to understand and 
develop memory mechanisms that effectively support 
agents in a variety of tasks, while computationally scaling 
as the amount of stored knowledge grows to be very large. 
Thus far in this paper we have characterized one important 
task, word sense disambiguation, including an analysis of 
WSD across three data sets and the types of performance 
we can expect from baselines that do not adapt their sense 
selection policy to the task instance. In this section, we 
describe and evaluate a simple approach to the WSD task 
that is available to those agents with a declarative memory. 

Our approach is as follows: given a lexical word/part-of-
speech input, the agent cues its memory for a sense that 
satisfies these constraints and selects the first retrieved 
result. We make two assumptions in our evaluation of this 
approach. First, the agent’s long-term memory is preloaded 
with at least the contents of the data set’s MRD, which 
affords the agent the potential to perform perfectly on the 
task, as it is not constrained by a limited vocabulary. In the 
case of our data sets, this assumption requires that the 
agent’s memory mechanism scale computationally to at 
least the knowledge contained in WordNet. Later we return 
to explore the computational feasibility of this assumption. 

Our second assumption is that immediately after the 
agent attempts to disambiguate a word, it is supplied with 
the set of appropriate senses for that input. This evaluation 
paradigm is important to isolate the effect of memory bias: 
it eliminates unintended divergent learning, which could 
occur sans truthful feedback and might obfuscate results. 

In our evaluation, the agent’s a priori knowledge and 
approach to the WSD task remains constant. However, we 
experimentally alter the agent’s memory retrieval 
mechanism, changing how correct sense assignments in the 
past bias future retrievals. We investigate the degree to 
which the recency and frequency of past assignments 
inform future retrievals. Our set of experimental heuristics 
is motivated by the rational analysis of memory (Anderson 
and Schooler 1991), which demonstrated, across a set of 

linguistic tasks, reliable relationships between recency and 
frequency of past events and future memory accesses. 
When integrated within a memory system, these retrieval 
heuristics are independent of the WSD task, and can thus 
be applied and evaluated on additional WSD data sets, as 
well as tasks beyond WSD or linguistic settings. 

We begin by evaluating recency and frequency biases 
individually, and then proceed to explore two candidate 
memory models that combine these heuristics. For each 
heuristic, we apply a greedy selection strategy, retrieving 
the word sense with the greatest bias value, and selecting 
randomly from amongst ties. 

Unlike the non-adaptive WSD baselines, memory-
endowed agents have the potential to improve with added 
corpus exposure, and thus we performed 10 sequential runs 
for each experimental condition, where the agent attempts 
to disambiguate the entirety of the corpus during each run. 
We report performance on the first, second, and tenth run 
of each of the data sets: the first run affords direct 
comparison to baseline results, the second run illustrates 
speed of learning, given relatively little corpus exposure, 
and the tenth speaks to asymptotic performance. Table 3 
reports expected performance, as opposed to the sample 
average of individual probabilistic runs, and thus even 
small differences should be considered relevant. 

Individual Memory Bias Task Results 
The first heuristic we evaluate is recency, which biases 
ambiguous retrievals towards the last selected sense for 
each input. This bias, drawing on the one sense per 
discourse heuristic (Gale, Church, and Yarowsky 1992), 
performs well if the same sense is used repeatedly in 
immediate succession, but does not improve performance 
after the first full exposure to the data set, as demonstrated 
by no difference in performance between runs 2 and 10 in 
Table 3 (top), independent of the semantic concordance. 

The next heuristic is frequency, which biases ambiguous 
retrievals towards the sense that has been retrieved most 
often. This bias performs well if particular senses of words 
are generally more common than others in a corpus, as 
opposed to being highly dependent upon sentence context. 

Finally, to establish an upper bound on the degree to 
which recency and frequency can individually contribute to 
WSD performance, we implemented an oracle bias. For 
each input, this heuristic scores both the recency and 
frequency algorithms described above and returns the 
result from the two algorithms that provided the best score.  

We draw two conclusions from Table 3. First, under the 
assumptions of our evaluation, the run 10 results suggest 
that memory retrieval agents perform better than the 
baselines from Table 1, with the potential for additional 
reasoning mechanisms to improve performance further. 
And second, nearly all memory bias results for run 10 are 
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better than all baselines in the respective test set (excl. 
SemCor/Recency). This suggests that history of sense 
assignment, with relatively little corpus exposure, yields a 
performance benefit in the WSD task, an advantage that is 
not dependent upon MRD definition quality (unlike Lesk). 

Exploring Joint Memory Bias Models 
The top two rows in Table 3 present evidence that recency 
and frequency of word sense assignment can individually 
yield performance benefits in the WSD task. Additionally, 
the relative gain in the oracle results (up to nearly 8% in 
SemCor) indicates that there is room for improvement. 
However, applying these findings to a memory system 
requires a model of how these heuristics combine in a task-
independent fashion to bias memory retrieval (recall that 
the oracle algorithm is not possible to implement, as it 
requires the memory system to evaluate correct sense 
assignments during word sense selection). In this section, 
we explore memory bias models that jointly incorporate 
recency and frequency of memory access. 

We first consider base-level activation (Anderson et al. 
2004), which computes the activation bias of a memory 
using an exponentially decaying memory access history: 
 

ln(
j

−d

t )
j=1

n

∑  
 
where n is the number of accesses of the memory, tj is the 
time since the jth access, and d is a free decay parameter. 

The second model, threshold, is a novel bias, which tests 
the hypothesis that the recency bias is proxy for meaning in 
local context (Gale et al. 1992): within a relatively small 
temporal frame, recent memories are informative of 
immediate context, and thus potentially more effective than 
globally learned frequency. Our model retrieves a memory 
according to the recency bias but, if the last memory access 
of that retrieval is older than a threshold, it resorts to the 
selection of the frequency heuristic. 

We performed exploratory sweeps within each data set 
for model parameters and evaluated both models in the 
same fashion as the individual memory biases above (see 
Table 3, bottom two rows): both perform competitively, 
and threshold bests recency and frequency run 10 results 

across all data sets. The SemCor results used base-level 
decay parameter of 0.7 and threshold of 300, whereas both 
Senseval corpora used decay 0.4 and threshold 6. 

Evaluating Memory Model Scalability 
Our goal in this paper is to explore memory heuristics that 
are both effective and efficient in the WSD task. The 
results in Table 3 show that incorporating recency and 
frequency of past memory access to bias future retrievals, 
both individually and jointly, supports WSD task 
performance, as compared to non-memory baselines (see 
Table 2). We now evaluate the degree to which these 
heuristics can support efficient WSD memory retrievals. 

The first attempt to access WordNet within a cognitive 
architecture illustrated the difficulty of the task: the 
declarative memory module of ACT-R could not encode 
even a third of WordNet. Douglass, Ball, and Rogers 
(2009) augmented ACT-R with a database and achieved 40 
msec. retrievals, but with no memory bias. For context, 
prior work in dynamic environments, such as robotics and 
interactive computer games, has indicated that ~50 msec. is 
necessary for reactive control. Later, Derbinsky, Laird and 
Smith (2010) developed computational methods to 
efficiently support queries of large memory stores. They 
achieved sub-millisecond retrievals across all of WordNet, 
but supported only those bias models that are locally 
efficient: those for which updates can be completed in 
constant time and affect a constant number of elements.  

The recency and frequency heuristics are locally 
efficient: both rely upon memory statistics that can be 
maintained incrementally and only update a single memory 
at a time. We implemented these heuristics within the 
semantic memory module of the Soar cognitive 
architecture (Laird 2008) and summarize run-time results 
across all data sets in Table 4. We report the maximum 
time in milliseconds, averaged over ten trials, for a Soar 
agent to retrieve a memory on a 2.8GHz Intel Core i7 
processor, a measure of agent reactivity on modern 
commodity hardware. Both recency and frequency 
heuristics perform far faster than the 50 msec. threshold. 

Unfortunately, neither joint model appears to be locally 
efficient. The threshold model conditionally requires two 

  SemCor  Senseval-2  Senseval-3 
  Run 1 Run 2 Run 10  Run 1 Run 2 Run 10  Run 1 Run 2 Run 10 

Recency  72.34% 74.43% 74.43%  61.74% 84.02% 84.02%  54.32% 79.29% 79.29% 
Frequency  71.69% 76.21% 76.53%  62.13% 88.89% 89.28%  54.85% 84.30% 84.86% 

             
Oracle  79.51% 83.77% 84.08%  63.68% 89.93% 90.23%  57.25% 86.23% 86.77% 

             
Base-level  74.45% 77.90% 78.47%  62.17% 87.01% 88.47%  54.41% 82.19% 83.84% 
Threshold  73.58% 77.82% 78.11%  62.34% 88.99% 89.39%  55.11% 84.50% 85.06% 

Table 3. Memory Bias Task Performance Results by Semantic Concordance: Individual (top), Oracle (middle), and Joint (bottom). 
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searches using two different heuristics. Consequently, we 
have not evaluated the scaling characteristics of this model. 
The base-level model includes a time decay component 
that changes frequently for all memories. We implemented 
a highly optimized version and were able to achieve 13.25 
msec. retrievals in SemCor; however, this time is not 
bounded, growing with the store size. This heuristic, 
however, also affords a useful monotonicity: from the time 
that bias is calculated for a memory, that value is 
guaranteed to over-estimate the true bias until the memory 
is accessed again in the future. This characteristic affords a 
locally efficient approximation: the memory system 
updates activation only when a memory is accessed.  

To evaluate this approximation, we consider query time, 
WSD task performance, which is comparable to results in 
Table 3, and model fidelity (a measure of interest to 
cognitive modelers), which we define as the smallest 
proportion of senses that the model selected within a run 
that matched the results of the original model. 

We implemented this approximation within the semantic 
memory module of Soar and the results are summarized in 
Table 5 (d=0.5). To guarantee constant time bias 
calculation (Petrov 2006), we used a history of size 10. We 
also applied an incremental maintenance routine that 
updated memories that had not been accessed for 100 time 
steps, so as to avoid stale bias values. The query times 
across all data sets are far below our requirement of 50 
msec. and an order of magnitude faster than the original. 
The run 10 WSD results were comparable to the original 
(see Table 3) and model fidelity was at or above 90% for 
all runs of all data sets. These results show that our 
approximation can support effective and efficient retrievals 
across large stores of knowledge. 

Future Work 
This paper has focussed on effectively and efficiently 
applying historical forms of memory bias in the word sense 
disambiguation task. We need to determine the extent to 
which these biases benefit agents in other tasks, especially 
those that are non-linguistic in nature. We also plan to 
explore the efficient incorporation of additional sources of 
bias, such as present context, which may lend functional 
benefits to WSD, amongst other problems. Finally, a great 
deal of work still needs to be done to understand how best 
to utilize high quality memory retrievals in context of other 
computational mechanisms in a cognitive architecture. 
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 SemCor Senseval-2 Senseval-3 
Recency 0.85 msec. 0.82 msec. 0.80 msec. 
Frequency 0.87 msec. 0.82 msec. 0.78 msec. 

Table 4. Individual Bias Evaluation: Max. Query Time. 
 

 SemCor Senseval-2 Senseval-3 
Max. Query Time 1.34 msec 1.00 msec 0.67 msec 
Run 10 WSD Perf. 77.65% 89.03% 84.56% 
Min. Model Fidelity 90.30% 95.70% 95.09% 

Table 5. Base-level Approximation Evaluation. 
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