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Abstract

This paper explores a new measure of similarity between
point sets in arbitrary metric spaces. The measure is based on
the spatial overlap of the shapes and densities of these point
sets. It is applicable in any domain where point sets are a
natural representation for data. Specifically, we show exam-
ples of its use in natural language processing, object recogni-
tion in images, and multidimensional point set classification.
We provide a geometric interpretation of this measure and
show that it is well-motivated, intuitive, parameter-free, and
straightforward to use. We further demonstrate that it is com-
putationally tractable and applicable to both supervised and
unsupervised learning problems.

1 Introduction

What does it mean for two things to be similar? This type of
question is commonplace in computational sciences but its
interpretation varies widely. For example, we may represent
proteins, documents, movies, and images as collections of
atoms, words, reviews, and edges respectively. For each of
these representations, we often want to find distance mea-
sures that enable meaningful comparisons between sample
instances.

Our contribution in this paper is to formulate and examine
a new measure, similarity distance, that provides an intuitive
basis for understanding such comparisons. In this paper, our
things are finite, weighted point sets of varying cardinality.
The notion of similarity presented here refers to a measure of
the spatial overlap between these point sets. Namely, when
we consider the similarity of two objects, we are asking: to
what degree do their point set representations occupy the
same region in a metric space? The goal of this paper is to
formalize and answer this question; to compare our solution
to other approaches; and to demonstrate its utility in solving
real-world problems.

It is easiest to begin with an intuitive, visual presentation
of the problem and definition.

1.1 Problem Statement

In this paper, we focus on the concept of spatial overlap as
a measure of similarity. In other words, we would like to
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Figure 1: We consider the two point sets in Example A to
be far more similar to one another than those in Example B.
This is the case even though they occupy far more area in
absolute terms and would be deemed further apart by many
distance metrics.

define a distance function with a range over [0, 1], where
a value of 0 means two point sets perfectly overlap and a
value near 1 means they occupy extremely different regions
of space. To turn this into a similarity function (instead of a
distance) we simply subtract the distance from 1. We make
no assumptions about the cardinality of each set or how they
were generated. Nor do we care about the sizes of the re-
gions of space involved, e.g., the hyper-volumes of their
convex hulls.

An image is useful for illustrating this idea. Consider the
two examples in Figure 1. Each shows two overlapping sam-
ples (shown in red and blue respectively) drawn from Gaus-
sian distributions; we would like to compare the similarity
of these samples, each of which is commonly called a point
set. Our intention is that the point sets in Example A should
be judged much more similar than those in Example B based
on their degree of spatial overlap, despite the points in Ex-
ample A covering orders of magnitude more area than those
in Example B. We discuss the relationship between similar-
ity and distance below, but we note that the relatively tiny
distances involved in Example B would lead many distance
metrics to indicate they are “closer” to one another; this is
the opposite of what we would like to find.

2 Similarity Distance

Similarity distance (dS) is derived from the Kantorovich-
Wasserstein metric (dKW) (Kantorovich 1942; Deza and Deza
2009), which proposed a solution to the Transportation
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Problem posed by Monge in 1781. This problem may be
stated: What is the optimal way to move a set of masses from
suppliers to receivers, who are some distance away? Opti-
mal in this definition means minimizing the amount of total
work performed, where work is defined as mass× distance.
For example, we might imagine a set of factories that stock
a set of warehouses, and we would like to situate them
to minimize the amount of driving necessary between the
two. This problem has been rediscovered in many guises,
most recently in a modified form as the Earth Mover’s Dis-
tance (Rubner, Tomasi, and Guibas 2000), which has be-
come popular in computer vision.

It is useful to view the Kantorovich-Wasserstein distance
as the maximally cooperative way to transport masses be-
tween sources and sinks. Here, cooperative means that the
sources “agree” to transport their masses with a globally
minimal cost. In other words, they communicate to deter-
mine how to minimize the amount of shipping required.

Let us contrast this optimal view with the notion that each
source delivers its mass to all sinks independently of any
other sources, in proportion to its production. We will call
this naive transportation distance (dNT). In other words, the
sources do not communicate. Each simply makes its own
deliveries to every sink proportionally. Note this is not the
worst (i.e., most inefficient) transportation schema. It is sim-
ply what occurs if the sources are oblivious to one another
- when they do not take advantage of the potential savings
that could be gained by cooperation.

2.1 Preliminary Definitions

We define a weighted point set A as finite collection of points
{ai ∈ X}, where each point has an associated weight ωi ∈
[0, 1], such that

∑
i
ωi = 1. Thus, ω corresponds to a discrete

probability distribution over some domain, for example, X
could be R

d.
The similarity distance dS(A,B) between two such point

sets A and B is simply the ratio of these two metrics,
namely:

dS(A,B) =
dKW(A,B)

dNT(A,B)
. (1)

By this definition, dS(A,B) measures the optimization
gained by adding cooperation when moving the source A
onto the sink B. 1 Thus, it is a dimensionless quantity that
ranges between zero and one. For clarity, let us examine dS

at its two extremes. If dS(A,B) = 0, then dKW(A,B) = 0, im-
plying the maximally cooperative distance between A and
B is zero. This can occur only when A = B; namely they
perfectly overlap; this means each source is co-located with
a sink expecting precisely as much mass as it produces.

In contrast, suppose dS(A,B) → 1. This tells us that co-
operation does not help during transportation. This occurs
when A and B are so far apart that the points in A are much
closer to other points in A than those in B and vice-versa.
Thus, cooperation does not yield any significant benefit. In
this case, dKW(A,B) → dNT(A,B), implying dS(A,B) → 1.

1Note that dNT = 0 iff both point sets contain exactly the same
singleton point. In this case, dS is undefined.
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Figure 2: The graph on the right plots similarity distance as
a function of separation distance between the two point sets
shown on the left. As can be seen, similarity distance grows
non-linearly as the distance between the point sets increases
and then quickly approaches its asymptotic limit of 1.

As dNT(A,B) ≥ dKW(A,B) by definition, this provides the up-
per bound for dS(A,B) of 1. We see this in Figure 2, where
the similarity distance between the two illustrated point sets
quickly approaches 1 as they are separated. Conversely, as
the point sets increasingly overlap, their similarity distance
approaches zero rapidly.2

2.2 Formal Definitions

Kantorovich-Wasserstein Distance The discrete formula-
tion of dKW is easily obtained through the discrete version of
the Mallow’s Distance (Levina and Bickel 2001). The opti-
mization problem for computing dKW(A,B) thus corresponds
to the following minimization problem:

Consider two point sets A = {a1, . . . , am}, with associated
weights pi and B = {b1, . . . , bn}, with associated weights
qi, with both sets of weights summing to one. Treating A
and B as random variables taking values {ai} and {bj} with
probabilities {pi} and {qj} respectively, dKW is obtained by
minimizing the expected distance between A and B over all
joint distributions F = (fij) of A and B:

EF‖A−B‖ =

m∑

i=1

n∑

j=1

fij‖ai − bj‖2 =

m∑

i=1

n∑

j=1

fijdij

where F is subject to:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (2)
n∑

j=1

fij = pi, 1 ≤ i ≤ m (3)

m∑

i=1

fij = qj , 1 ≤ j ≤ n (4)

m∑

i=1

n∑

j=1

fij =

m∑

i=1

pi =

n∑

j=1

qj = 1 (5)

Once so formulated, this optimization problem may be
solved using the transportation simplex algorithm. Although
this algorithm is known to have exponential worst case run-
time, it is remarkably efficient on most inputs and therefore

2Code implementing our approach and all data used in this pa-
per are freely available at http://biocomp.wisc.edu/data.
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widely used. We discuss runtime complexity and an approx-
imation technique for enormous point sets in sections 2.3
and 2.4.
Naive Transportation Distance We now define a naive so-
lution to the transportation problem. Here, each “supply”
point is individually responsible for delivering its mass pro-
portionally to each “receiving” point. In this instance, none
of the shippers cooperate, leading to inefficiency in ship-
ping the overall mass from one probability distribution to
the other.

Over weighted point sets corresponding to discrete distri-
butions, we define naive transportation distance dNT as:

dNT(A,B) =

m∑

i=1

pidKW({ai}, B) =

m∑

i=1

n∑

j=1

piqj d(ai, bj) (6)

The naive distance is therefore the weighted sum of
the “ground” distances d between individual points. It is
straightforward to directly calculate dNT in O(k2) time, where
k = max(m,n).

2.3 Computational complexity

The complexity of computing similarity distance is domi-
nated by computation of the Kantorovich-Wasserstein dis-
tance dKW, which is a well-studied problem; using the Hun-
garian method has worst case complexity O(n3) (Li 2010) in
unrestricted metric spaces. Recently a number of linear or
sublinear time approximation algorithms have been devel-
oped for this problem and several variations, e.g., (Li 2010;
Ba et al. 2009). We have tested our implementation, which
uses the transportation simplex algorithm, over several hun-
dred thousand pairs of point sets drawn from standard sta-
tistical distributions and real world data sets. The runtime
has expected time complexity of (1.38 × 10−7)n2.6 seconds,
fit with an R2 value of 1, where n is the size of the larger
of the two point sets being compared. (We are particular
to provide the quadratic coefficient, rather than describe the
runtime using order notation, as its small value is what al-
lows this approach to be used on larger scale problems.)

2.4 Hyperclustering

Because similarity distance measures the relative density
differences between point sets, it is not overly sensitive to
their exact numbers or locations. We use this intuition to
approximate similarity distance by grouping nearby points
into a single weighted point.

We call these groups of nearby points “hyperclusters” and
construct them by recursively splitting the original point sets
via k-means (with random initialization) until the maximum
interpoint distance within each hypercluster is less than a
specified threshold. In Figure 3, we show how the error and
runtime change for a pair of point sets as the number of hy-
perclusters change. Empirically, this technique allows sim-
ilarity distance to be approximated closely for sets of mil-
lions of points. For example, precisely computing similarity
distance for point sets of size 100,000 would take almost 16
days, but an approximate answer can be computed in 46.9
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Figure 3: Error in similarity distance when approximated by
hyperclustering, averaged over 30 runs. (A) Here, we sam-
ple two sets of size 1000 from the same distribution. Their
exact similarity distance is 0.108, which takes 14.3 seconds
to compute precisely. We vary the number of hyperclusters,
corresponding to a reduction in problem size, and plot the
error and overall computation time. (B) Here, we sample
two sets of size 100 from poorly-overlapping distributions.
The actual similarity distance is 0.879, which takes 16.12
seconds to compute precisely. Note in both cases there is
negligible loss in accuracy even when the point set size is
reduced by up to 80%.

seconds to within 0.01 of the true value.3 In extensive ex-
perimentation with this approximate form of similarity dis-
tance, errors of up to 0.05 have little effect and correspond
to natural variation in samples drawn from the same distri-
bution.

3 Related Work

Prior work on quantifying similarity between point sets or
measuring a distance between them generally falls within
one of three categories, most of which are not specifically
designed to measure overlap or similarity. These measures
are also very sensitive to their parameters, which often re-
quires extensive search for a given problem, making their
use problematic in unsupervised learning problems.

3.1 Point-set Distance extensions

The first set of approaches are inspired from point-set and
Hausdorff distances. Point-set distance is defined between a
single point x and a set of points A as infy∈A d(x, y). Haus-
dorff distance is an extension of this concept. The directed
Hausdorff distance DHaus(A,B) between two sets of points
A and B is supx∈A infy∈B d(x, y) and the Hausdorff distance
between sets A and B is the larger of DHaus(A,B) and
DHaus(B,A). Other metrics inspired from point-set distance
are discussed in Deza and Deza (2009). We discuss this class
of distances further in section 3.4.

3.2 Root Mean Square Distance

A second method of computing distances between point sets
is to assume an order between the points in them and align

3We determined this by solving similarity distance analytically
for several common distributions, thereby providing a way to eval-
uate approximations.
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Panel 1 2 3 4 5 6 ρ

dKW 0.337 0.337 0.337 0.337 0.337 0.337 0.000
Lin. rescaling 0.205 0.478 0.325 0.871 0.282 0.162 0.097
Mean-var norm. 0.914 1.698 1.176 1.991 1.599 0.801 -0.108
Rank norm. 0.205 0.501 0.320 0.500 0.339 0.182 -0.053
dS 0.656 0.834 0.619 0.056 0.873 0.443 1.000

Figure 4: All six examples in this figure were constructed
to have the same dKW and Earth Mover’s Distance (= .337),
between the blue and red point sets, while having markedly
different spatial properties from each other. This is reflected
in their similarity distances, as shown above each example.
The table further illustrates that one cannot simply normal-
ize dKW to obtain the measure provided by dS. The final col-
umn shows Pearson correlation coefficients of each normal-
ization with similarity distance, demonstrating that none of
them capture the notion of spatial overlap.

them using an algorithm such as Kabsch (1976) or Pro-
crustes (Goodall 1991). Once an alignment is found, a dis-
tortion measure (such as least root mean square distance)
can be calculated by summing up distances between corre-
sponding pairs of points. Clearly this method can only work
for point sets of the same cardinality and is susceptible to
disproportionate influence by outlying points. While mod-
ifications exist to overcome these problems, these general
methods of summing distances between pairs of points yield
little information about similarity or shape congruence.

3.3 Match Kernels

Pyramid match (Grauman and Darrell 2007) and other
match kernels have been developed as efficient ways to de-
termine similarity between point sets especially with vision
applications in mind. The focus in match kernels however is
to find similarity while not penalizing non-similarity. These
kernels find closest pairs among individual points and only
take into account these pairs for the kernel computation.
Thus, such methods do not capture a notion of the “shape” of
the point sets, but instead only their intersection, regardless
of the importance of their non-overlap.

3.4 Others

Kondor and Jebara (2003) propose a kernel which takes into
account the density of point sets. They require a Gaussian
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Figure 5: In the example above, point sets corresponding
to two documents are plotted in the semantic subspace de-
fined by god and medical. In each plot, one document is
display in a blue italic font and the other is displayed in a
red non-italic font. On the left, the two documents are from
the same newsgroups whereas on the right they are from dif-
ferent newsgroups. Similarity distance captures the intuitive
notion of spatial overlap corresponding to these classifica-
tions. (Only two of 6 dimensions are visualized here.)

distribution to be fit to each point set (or another distribu-
tion) and define a kernel based on a probabilistic divergence
measure such as Bhattacharyya distance. This approach is
further kernelized by mapping the elements of each point set
to a new Hilbert space before fitting the parametric model.
The two main issues with this approach are that it assumes
a fixed distribution and is quite inefficient due to expensive
computations involving matrix multiplications, inverses and
determinants.

Many of the approaches mentioned above are lossy in the
sense they rely on only some of the pairwise interactions be-
tween points. In doing so, they collapse the problem into
calculating the distances between small sets of the original
points. However, this provides little information about how
similar the overall shapes of the entire points sets are. They
are also neither bounded nor scale-invariant, making abso-
lute judgments of similarity difficult.

3.5 Normalizations of dKW

Another possible approach to measuring similarity between
two point sets would be to first normalize the point sets and
then apply the Kantorovich-Wasserstein distance. Natural
examples of normalization schemes include linear scaling,
mean-variance normalization, and rank normalization (Stol-
cke, Kajarekar, and Ferrer 2008). These normalizations can
be useful in various circumstances, but Figure 4 and the
Pearson correlation coefficients in the table show that they
do not capture any notion of spatial overlap.

4 Applications

In this section we examine applications of similarity dis-
tance used in isolation and as a kernel to a variety of su-
pervised and unsupervised machine learning problems.

4.1 Document Classification

By modeling the topic of a document as a shape, we can
use similarity distance for text classification. We demon-
strate this using the 20 Newsgroups dataset (Lang 1995) as
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Figure 6: (A) Probability density function plots along each dimension for point sets sampled in Experiment 2. (B) Examples
of two point sets that are sampled from distributions shown in red and blue in (A). (C) All points in all point sets used in
Experiment 2. The points in one example point set are connected with lines. (D) This panel shows the same data as (C), but in
a 2-D space reconstructed via approximate multidimensional scaling using pairwise similarity distances between the point sets.
Each point in this panel thus represents an entire point set from the original data, and distances between points in this panel
correspond to similarity distances between the point sets they represent. The separating line is an imaginary separator that a
support vector machine might create using a kernel based on similarity distance.

Classifier Accuracy Precision Recall F-Measure

Baseline C4.5 (J48) 73.33% 0.763 0.733 0.726
(bag-of-words) Naive Bayes 75.00% 0.789 0.750 0.741

Random forest 78.33% 0.784 0.783 0.783
SVM (RBF kernel) 76.67% 0.800 0.767 0.760
SVM (polynomial kernel) 83.33% 0.847 0.833 0.832

Semantic space SVM (Pyramid match kernel) 75.36% 0.742 0.719 0.730
1-nearest neighbor (dS) 85.00% 0.860 0.850 0.849
2-, 3-, 4-nearest neighbor (dS) 85.00% 0.854 0.850 0.850
5-nearest neighbor (dS) 81.67% 0.835 0.817 0.814
SVM (1− dS) kernel 92.75% 0.909 0.938 0.923

Table 1: Results of text experiment using 10-fold cross vali-
dation. Results from our approach are shown in red, the best
of which is in bold face. See text for details.

a testbed. The task here is to determine which of two news-
groups a given message came from. We do this by map-
ping the words in each message to points in a “semantic
space” so that similar sets of words (documents) have simi-
lar shapes (See Pado and Lapata (2007) for an overview of
work on semantic spaces). The basis for this space is chosen
by selecting a set of reference words occurring in documents
that have high mutual information for predicting the source
newsgroups. Each word is mapped to a vector consisting of
its similarities with each of these reference words, with sim-
ilarity between two words being defined by their pointwise
mutual information (PMI) (Terra and Clarke 2003). We esti-
mate these PMIs using ratios of the number of hits reported
by Google for individual words and pairs of words (Turney
and Littman 2005). This construction has a distinct advan-
tage compared to the standard bag-of-words approach be-
cause it makes use of semantic relations between words.

For our experiment we chose 30 articles at random from
each of two newsgroups: alt.atheism and sci.med, and se-
lected 6 reference words: (christian, doctor, god, medical,
say, atheists). We mapped each word to a vector in R

6 as
follows:

f(w) = (PMI(christian, w), . . . ,PMI(atheists, w))

We performed classification using k-nearest neighbors
(kNN) and support vector machines using pyramic match
kernel and a kernel derived from similarity distance (1− dS)

to compare documents. To establish a baseline we also used
C4.5, Naive Bayes, random forest and SVMs with common
kernels on indicator bag-of-words vectors. Classification
metrics in Table 1 show that similarity distance is able to
exploit semantic relationships between words (reflected by
their mutual information) to successfully classify samples in
this experiment. Additionally, similarity distance provides
an easy way to visualize and understand the results, some-
thing which is uncommon in many classification tasks; an
example is shown in Figure 5.

4.2 Object Recognition in Images

We applied similarity distance to an image classification task
on a subset of the publicly available ETH-80 dataset (Leibe
and Schiele 2003), using the data and experimental setup
of (Grauman and Darrell 2007). The subset contains 5 views
of each object in the database. Our experiment used a total
of 256 descriptors in 128 dimensions per image. We trained
an SVM classifier using a variety of kernels on the following
problem: how well can the category of a holdout object be
identified after training on the rest of the data including other
instances of objects from that category? Accuracy results are
shown in Figure 7.

4.3 Classification of Synthetic Data

A common assumption in machine learning is that data from
different classes come from different underlying distribu-
tions. It may be the case that instances come in “bags” of
points from the same distribution (for example multiple ob-
servations at a single time point). We simulate an example
where we sample sets of points from two different multi-
variate statistical distributions and see how well similarity
distance can classify instances.

The density functions in one dimension of both distribu-
tions are plotted along the x-axis, and along the other dimen-
sion on the y-axis in Figure 6.

We sample point sets from each distribution with varying
numbers of points and train an SVM to separate between
them using Pyramid Match and (1 − dS) as similarity func-
tions. Similarity distance was able to achieve a 79.4% 10-
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Algorithm Accuracy
Similarity distance kernel 94%

Match Kernel (Wallraven et al. 2003) 90%
Pyramid Match Kernel 89%

Figure 7: Example images and classification results from
the ETH-80 dataset. Two instances from the 8 classes are
shown.

fold cross-validated classification accuracy, whereas Pyra-
mid Match achieved an accuracy of 68.3%. Note that point
sets from each class appear very similar (an example from
each class is shown in Figure 6(B)), and it is the relative
density at various locations that separates them. In this par-
ticular case, the means and variances of the two distributions
are nearly identical along each dimension.

4.4 Clustering

Similarity distance has been used in clustering (Coen 2005;
2006), e.g., in learning the vowel structure of an unknown
language, and in comparing different clusterings (Coen,
Ansari, and Fillmore 2010). In the latter of these, set the-
oretic approaches have long dominated partitional analyses
of cluster assignments. Similarity distance lets us compare
clusterings spatially in terms of their actual geometric ar-
rangements in addition to their category assignments.

5 Conclusion

This paper has formally examined a new measure of similar-
ity between point sets that is based on their spatial overlap.
It captures an inherent mathematical property between the
datasets that has strong intuitive appeal. In measuring over-
lap, it takes no parameters, making it suited for both super-
vised and unsupervised learning problems. Its spatial depen-
dence also suggests how to approach various problems, i.e.,
by mapping instances to shapes that can be distinguished.
Thus, it is well-suited to problems that can be viewed spa-
tially and has a number of surprising mathematical proper-
ties that we are currently investigating.
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