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Abstract

The research on low-complexity nonmonotonic description
logics recently identified a fragment of EL⊥, supporting de-
feasible inheritance with overriding, where reasoning can be
carried out in polynomial time. We contribute to that frame-
work by supporting more axiom schemata and all the con-
cepts of EL++ without increasing asymptotic complexity.

Introduction

Description logics (DLs) are an essential component of the
semantic web. Most prominent ontologies are formulated
with DLs; the OWL standard is founded on DLs; DLs
have also been used as security policy languages, capable
of expressing access constraints based on semantic meta-
data, see for example (Uszok et al. 2003; Finin et al. 2008;
Zhang et al. 2009; Kolovski, Hendler, and Parsia 2007). In
order to address the efficiency requirements posed by the
size of the semantic web, researchers have identified de-
scription logics whose reasoning tasks can be carried out
in polynomial time, such as DL-lite (Calvanese et al. 2005)
(that provides a foundation to RDFS) and the EL family
of logics (Baader 2003; Baader, Brandt, and Lutz 2005),
that are general enough to express important biomedical on-
tologies of practical interest such as SNOMED and (most
of) GALEN. These fragments constitute the foundation of
two of the OWL2 dialects. All of these description log-
ics are monotonic, therefore they cannot address some ap-
plication requirements that call for (nonmonotonic) forms
of inheritance supporting overriding and exceptions. A first
such requirement stems from the biomedical domain, where
it is common to define prototypical entities whose default
properties can be later refined in subclasses. Since DLs
currently do not support any such mechanism, some ef-
forts have been devoted to workarounds that—however—
do not provide a general answer to this issue (Rector 2004;
Stevens et al. 2007). Similarly, policy languages usually sup-
port authorization inheritance with exceptions for selected
user subgroups and/or object subclasses; moreover, non-
monotonic inferences are needed to model conflict resolu-
tion strategies and common default policies such as open
and closed policies (cf. (Bonatti and Samarati 2003)).
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A recent work (Bonatti, Faella, and Sauro 2010) provides
a first answer to the above needs by identifying a circum-
scribed version of EL⊥ where concepts can be associated to
default attributes that can be overridden in subconcepts; rea-
soning is in PTIME. In this paper, we extend that framework
by supporting more axiom schemata and all the concept con-
structors of EL++. We show that, for this purpose, the no-
tion of conflict safety adopted in (Bonatti, Faella, and Sauro
2010) to achieve tractability needs to be adapted. More-
over, we add limited support to variable concept names and
prove that unrestricted variable concepts and role composi-
tion make reasoning intractable.

Paper organization: After a preliminary section, where
EL++ and nonmonotonic EL⊥ are recalled, we show the
limitations of the original notion of conflict safety that ap-
pear when the representation language is generalized. Then,
in the fourth section, we provide a solution, prove tractabil-
ity results, and discuss some further extensions that affect
tractability. Two sections devoted, respectively, to related
works and a final discussion conclude the paper.

Preliminaries

We assume the reader to be familiar with the syntax and
semantics of monotonic Description Logics. We refer to
(Baader et al. 2003, Chap. 2) for details and notation. The
sets of concept names, role names, and individual names are
denoted by NC, NR, and NI, respectively. EL++ supports
also a set NF of concrete features. By predicate we mean
any member of NC ∪ NR ∪ NF. Hereafter, letters A, B, H ,
and K range over NC, P and R range over NR, a, b, c range
over NI, and f over NF. Letters C,D range over concepts.

Syntax and semantics of the logic EL++ (Baader, Brandt,
and Lutz 2005) are shown in Figure 1.1 Recall that interpre-
tations are pairs I = 〈ΔI , ·I〉 where ΔI is the interpretation
domain and function ·I maps concept names and role names
on subsets of ΔI and ΔI ×ΔI , respectively. Concrete fea-
tures are interpreted by means of an additional fixed struc-
ture D = 〈ΔD,PD〉 called concrete domain, where ΔD is
a domain and PD a set of predicates. Each n-ary p ∈ PD is
interpreted as a relation pD ⊆ (ΔD)n. For all f ∈ NF and all
interpretations I, fI is a partial function from ΔI to ΔD. In

1So-called assertions and ABoxes are not included because they
can be simulated with nominals.
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Name Syntax Semantics

top � �I = ΔI

bottom ⊥ ⊥I = ∅
conjunction C � D CI ∩ DI

existential
restriction

∃R.C {d ∈ ΔI | ∃(d, e) ∈ RI : e ∈ CI}

nominal {a} {aI}
concrete
domains

p(f1, . . . , fn) {x ∈ ΔI | fi(x) is defined (1 ≤ i ≤ n)

and 〈f1(x), . . . , fn(x)〉 ∈ pD}
GCI C � D CI ⊆ DI

RI r1 ◦ · · · ◦ rn � r rI1 ◦ · · · ◦ rIn ⊆ rI

Figure 1: Syntax and semantics of EL++.

general, multiple concrete domains can be supported. They
must be P-admissible to make reasoning tractable; here we
omit the definition to meet space limitations—see (Baader,
Brandt, and Lutz 2005) for all details.

A (strong) knowledge base is a finite set of general con-
cept inclusions (GCIs) and role inclusions (RIs); I is a
model of a strong knowledge base KB iff I satisfies all the
elements of KB as specified in Fig. 1. We write C �KB D
iff for all models I of KB, I satisfies C � D.

Next, we recall the nomonotonic framework introduced
in (Bonatti, Faella, and Sauro 2010). A defeasible inclusion
(DI) is an expression A �n C whose intended meaning is:
A’s elements are normally in C. For all δ = A �n C, let
pre(δ) = A and con(δ) = C.
Example 1 The sentences: “in humans, the heart is usually
located on the left-hand side of the body; in humans with si-
tus inversus, the heart is located on the right-hand side of the
body” (Rector 2004; Stevens et al. 2007) can be formalized
with the EL++ axioms and DI:

Human �n ∃has heart.∃has position.Left ;
Situs Inversus � ∃has heart.∃has position.Right ;
∃has heart.∃has position.Left �

∃has heart.∃has position.Right � ⊥ .

A defeasible knowledge base (DKB) is the disjoint union
KB = KBS ∪ KBD of a strong knowledge base KBS and
a set of DIs KBD. For the sake of readability, C �KBS

D
will be abbreviated to C �KB D.

DIs are prioritized using the following specificity relation
≺: For all DIs δ1 and δ2, let

δ1 ≺ δ2 iff pre(δ1) �KB pre(δ2) and pre(δ2) ��KB pre(δ1) .

With specificity, in case of conflicts the DIs associated to
subconcepts override those associated to their supercon-
cepts, by analogy with the inheritance mechanism of object-
oriented languages.
Example 2 The access control policy: “Normally users
cannot read project files; staff can read project files; black-
listed staff is not granted any access” can be encoded with:
Staff � User

Blacklisted � Staff

UserRequest ≡ ∃subj.User � ∃target.Proj � ∃op.Read
StaffRequest ≡ ∃subj.Staff � ∃target.Proj � ∃op.Read
UserRequest �n ∃decision.Deny
StaffRequest �n ∃decision.Grant
∃subject.Blacklisted � ∃decision.Deny
∃decision.Grant � ∃decision.Deny � ⊥ .

(The expressions of the form C ≡ D abbreviate the two
inclusions C � D and D � C.) Staff members cannot si-
multaneously satisfy the two defeasible inclusions (due to
the last inclusion above). With specificity, the second defea-
sible inclusion overrides the first one and yields the intuitive
inference that non-blacklisted staff members are indeed al-
lowed to access project files.

The semantics of DKBs specializes Circumscription. It con-
sists in maximizing the set of individuals satisfying the DIs
in KBD, resolving conflicts with specificity whenever possi-
ble. During maximization, the extension of some predicates
may vary, while others are fixed. The choice of (Bonatti,
Faella, and Sauro 2010) consists in fixing concept names and
letting roles vary. The rationale is the following: The main
goal is adding default attributes to existing classical ontolo-
gies. An invasive mechanism that can extensively change
the semantics of concepts is undesirable in this context.2 By
fixing concept names, atomic concepts preserve their possi-
ble extensions (i.e., their classical semantics); only attributes
(i.e. role types and values, and concrete feature values) may
change. In general, however, the set of concept names NC

can be arbitrarily partitioned into two sets F and V contain-
ing fixed and varying predicates, respectively. Fixed pred-
icates retain their classical semantics, while varying predi-
cates can be affected by nonmonotonic inferences.

Now for the formal definitions. The set F , the DIs KBD,
and their ordering ≺ induce a strict preference ordering over
interpretations, defined below. Roughly speaking, I is pre-
ferred to J if some DIs are satisfied by more individuals in
I than in J , possibly at the cost of satisfying less lower-
priority DIs. Formally, for all δ = (C �n D) and all inter-
pretations I let the set of individuals satisfying δ be:

satI(δ) = {x ∈ ΔI | x 
∈ CI or x ∈ DI} .
Definition 3 Let KB be a DKB. For all interpretations I
and J , and all F ⊆ NC, let I <KB,F J iff:

1. ΔI = ΔJ ;
2. aI = aJ , for all a ∈ NI;
3. AI = AJ , for all A ∈ F ;
4. for all δ ∈ KBD , if satI(δ) �⊇ satJ (δ) then there exists δ′ ∈

KBD such that δ′ ≺ δ and satI(δ′) ⊃ satJ (δ′) ;
5. there exists a δ ∈ KBD such that satI(δ) ⊃ satJ (δ).

The subscript KB will be omitted when clear from context.
Now a model of a DKB can be defined as a maximally pre-
ferred model of its strong (i.e. classical) part.

Definition 4 (Model) Let F ⊆ NC. An interpretation I is a
model of CircF (KB) iff I is a (classical) model of KBS and
for all models J of KBS , J 
<F I.

In order to enhance readability, <var and Circvar stand for <∅
and Circ∅, respectively; <fix and Circfix stand respectively
for <NC

and CircNC
.

In (Bonatti, Faella, and Sauro 2010) we introduced a spe-
cial reasoning task for retrieving the default properties of

2For example, a varying concept name may become unsatisfi-
able when its default properties override some default property of
a super-concept.
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any given concept A. This is not completely trivial, because
in general a member of A may belong to some B � A,
whose specific default properties may override some of the
prototypical properties of A. In order to avoid this problem
(that results in incomplete answers), the members of A’s
subclasses are implicitly removed by rewriting subsump-
tion A � C to CWAKB(A) � C, where CWAKB(A) =
A � �{¬B | B ∈ NC and A 
�KB B} � �{¬{a} | a ∈
NI and A 
�KB {a}}. In (Bonatti, Faella, and Sauro 2010)
we argued that this transformation preserves the intended
default attributes of A. By

CircF (KB) |=cw A � C

we mean that CWAKB(A) � C is satisfied by all the mod-
els of CircF (KB). We proved that |=cw can be decided in
polynomial time under the following assumptions:

1. F = NC (i.e., Circfix is adopted);

2. the language is EL⊥, that is, the restriction of EL++ ob-
tained by eliminating nominals, concrete domains, and
role inclusions;

3. KB and subsumptions are restricted to instances of the
inclusion schemata (1) below, where A and B range over
atomic concepts;

A � B A1 � ∃R.A2 A1 �A2 � B

∃P.A � B ∃P.A1 � ∃R.A2 ∃P.A1 � ∃R.A2 �⊥ (1)

4. KB is conflict safe; roughly speaking, this means that
whenever two DIs A1 �n C1 and A2 �n C2 have incom-
parable priorities and C1 � C2 is unsatisfiable w.r.t. KB,
either A1 and A2 are disjoint, or there must be a more
specific DI A1 � A2 �n C3 that blocks at least one of
the two conflicting DIs. In Bonatti, Faella, and Sauro we
proved also that if KB is not required to be conflict safe
then reasoning becomes coNP-hard.

The restriction to conflict safe KBs in practice means that
ontology authors should define consistent prototypical en-
tities, which is reasonable in typical application domains.
If unresolved conflicts arise from multiple inheritance, then
knowledge engineers are responsible for removing conflicts
with specific DIs. Fortunately, conflict safety checking as
well as a simple automatic repair strategy are in PTIME (see
(Bonatti, Faella, and Sauro 2010) for more details).

Limitations of Conflict Safety

Conflict safety suffices to make reasoning tractable only if
KB conforms to the restricted axiom schemata in (1). If
more general axioms are allowed, then conflicts may arise
that are not detected by the definition of conflict safety. As
a consequence, deciding whether Circfix(KB) |=cw A � D
holds is coNP-hard in the generalized framework. This can
be proved by reducing SAT to |=cw. For each clause ci in the
SAT instance, introduce two roles Ci and C̄i. Intuitively, the
meaning of ∃Ci and ∃C̄i is: ci is/is not satisfied, respectively.
For each propositional symbol pj introduce roles Pj , P̄j . In-
tuitively, ∃Pj and ∃P̄j represent the truth of literals pj and
¬pj , respectively. An additional role P ∗ will be illustrated
later. Next, we need three concept names B0, B1 and B2

such that B0 � B1 and B1 � B2, and a role F̄ . Intuitively,
∃F̄ represents the falsity of the set of clauses. Axiomatize
clauses by adding:

∃Pj � ∃Ci , ∃P̄k � ∃Ci ,

for all disjuncts pj and ¬pk in ci. The space of possible truth
assignments is generated by the following inclusions:

B1 �n ∃Pj (2)
B1 �n ∃P̄j (3)

B0 � ∃P ∗ (4)
∃Pj � ∃P̄j � ∃P ∗ � ⊥ . (5)

DIs (2) and (3) have the same priority and “block” each other
in B0, due to (4) and (5); so (2) and (3) induce a complete
truth assignment. Then we introduce a defeasible inclusion
with lower priority: B2 �n ∃C̄i . This defeasible inclusion
“assumes” that ci is not satisfied. The other axioms may de-
feat this assumption (if the selected truth assignment entails
∃Ci) due to the disjointness axiom: ∃Ci � ∃C̄i � ⊥ .

Finally, add the inclusions ∃C̄i � ∃F̄ to say that the set
of clauses is not satisfied when at least one of the clauses is
false. Now let KB denote the above set of inclusions. It can
be proved that the given set of clauses is unsatisfiable iff:

Circfix(KB) |=cw B0 � ∃F̄ .

It follows that reasoning is coNP-hard although this KB is
conflict safe (because the right-hand sides of the incompara-
ble DIs (2) and (3) are mutually consistent w.r.t. KBS ). The
above reduction relies on an inclusion that does not con-
form to (1), namely, (5), that could also be indirectly en-
coded if (1) were extended with the more general schema
∃P1 � ∃P2 � ∃R, as the reader may easily verify.

A similar problem arises with concrete domains. Take
for example the P-admissible domain 〈Q, {=1,+1}〉, where
=1(f) is satisfied iff feature f has value 1, and +1(f, g) is
satisfied iff f +1 = g (Baader, Brandt, and Lutz 2005). The
above reduction can be easily adapted by uniformly replac-
ing ∃Pj with =1(fj) and ∃P̄j with =1(f̄j); moreover, (4)
should be replaced by B0 � +1(fj , f̄j), so that =1(fj) and
=1(f̄j) cannot be simultaneously satisfied in B0 (the same
result was obtained by (5) in the previous reduction).

Summarizing, we have:

Theorem 5 Let KB range over conflict safe DKBs. Decid-
ing Circfix(KB) |=cw A � ∃P is coNP-hard if KB may
contain any of the following features:

1. instances of the schema ∃P1.A1�∃P2.A2�∃P3.A3 � ⊥ ;
2. instances of the schema ∃P1.A1 � ∃P2.A2 � ∃R.A ;
3. concrete domains.

Consequently, we are going to strengthen conflict safety in
order to restore tractability in the generalized framework.

Strong Conflict Safety

In this section we generalize the old approach to a “stan-
dard” fragment of Circfix(EL++). For the sake of simplic-
ity, we assume that KB’s strong concept inclusions are in-
stances of the following schemata that generalize (1), where
F ranges over the (fixed) concepts NC ∪ {{a} | a ∈
NI

} ∪ {⊥,�}, metavariables V, V1, V2, V3 range over the
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(variable) concepts of the form p(f1, . . . , fn) and ∃R.B, and
B ranges over NC ∪ {�}:

F � V V � F V1 � V2 V1 � V2 � V3 .

KB may contain EL++ role inclusions with no role compo-
sition. These schemata constitute a normal form for classical
EL++ without role composition and a normal form for the
fragment of Circfix(EL++) with no role composition and no
quantifier nesting (that increase complexity, see below).

A DI A �n ∃R.B is blocked when B is empty, because
circumscription cannot affect fixed concepts. In real ontolo-
gies (especially biomedical ontologies), concept names are
typically meant to be nonempty, as witnessed by the use of
concept satisfiability checking as a debugging tool. In prac-
tice, nonemptiness assumptions need not be made explicit in
a classical (monotonic) setting, while in circumscribed EL⊥

and EL++ their omission may improperly block the deriva-
tion of default attributes, cf. (Bonatti, Faella, and Sauro
2010). Due to space limitations, here we simply assume that
all concept names B are explicitly declared to be nonempty
(say, with inclusions like � � ∃aux .B, where aux is a fresh
role). A more articulated approach will be discussed in an
extended version of this paper.

We say that KB is standard if it satisfies the above as-
sumptions (i.e., no quantifier nesting, no role composition,
and nonempty concept names).

In order to characterize the DIs applicable to a concept
name A, we collect the DIs that apply to A’s super-concepts
H and are not blocked by more specific DIs applicable to A:

nonblocked(A,H) =
{
δ ∈ KBD | pre(δ) ≡KB H,

CWAKB(A) � con(δ) � inh(A,H) ��KB ⊥}
,

where inh(A,H) collects the default properties that can be
inherited from the concepts between A and H , excluding H:

inh(A,H) =
�

{con(δ′) | δ′ ∈ nonblocked(A,B), B ∈ [A,H)} ,
[A,H) = {B ∈ NC | A �KB B,B �KB H,H ��KB B} .

Finally, the set of all properties that can be inherited by A is:

inh(A) =
�

{con(δ) | δ ∈ nonblocked(A,H) and A �KB H} .
Now, by analogy with the old notion of conflict safety, we
require A�inh(A) to be satisfiable; in other words, the set of
DIs that are not individually blocked by any group of more
specific DIs should be simultaneously applicable:

Definition 6 A standard KB is strongly conflict safe iff for
all A occurring in KB (A ∈ NC), A � inh(A) is satisfiable
w.r.t. KB.

In practice—as in the old framework—this means that con-
flicts that cannot be resolved by specificity must be explicitly
removed with specific DIs. Strong conflict safety restores
tractability if quantifiers are not nested. Let depth(C) be the
maximum quantifier nesting level of C:

Theorem 7 If A � inh(A) is satisfiable with respect to a
standard KB and depth(C) = 0, then Circfix(KB) |=cw

A � C iff A � inh(A) �KB C .

Proof. In the following, we say that an individ-
ual actively satisfies a DI δ, if it satisfies both
pre(δ) and con(δ). Moreover, we set nonblocked(A) =⋃

A�KBH nonblocked(A,H).
[if] Let I ∈ Circfix(KB) such that (i) x ∈ AI and (ii) by def-
inition of |=cw and CWAKB(A), if x ∈ BI then A �KB B.
We prove that x actively satisfies a defeasible inclusion δ if
and only if δ ∈ nonblocked(A). As a consequence, x ∈ CI .

By contradiction, either x actively satisfies δ 
∈
nonblocked(A) or x violates δ ∈ nonblocked(A). We de-
fine an interpretation I ′ s.t. I ′ <fix I. We only redefine the
roles and features involving x.

1. Let δ ∈ nonblocked(A). Observe that con(δ) can be
a conjunction of concept names, existential restrictions
∃R.B and concrete predicates p(f1, . . . , fn). For each ex-
istential restriction ∃R.B in con(δ), let y ∈ BI , we set
(x, y) ∈ RI′

. For each predicate p(f1, . . . , fn) in con(δ),
let h1, . . . , hn ∈ ΔD be such that (h1, . . . , hn) ∈ pD.
Such concrete values exist because δ ∈ nonblocked(A)
and hence p(f1, . . . , fn) is satisfiable w.r.t. KB. We set
fI′
j (x) = hj for all j = 1, . . . , n. In this way, x satisfies

in I ′ all DIs in nonblocked(A).

2. Recursively, if there is a concept C s.t. x ∈ CI′
and

C �KB ∃S.K, then let y ∈ KI , we set (x, y) ∈ SI′
. Ad-

ditionally, if C �KB p(f1, . . . , fn), let h1, . . . , hn ∈ ΔD

be such that (h1, . . . , hn) ∈ pD, we set fI′
j (x) = hj for

all j = 1, . . . , n. Finally, if R �KB S and (x, y) ∈ RI′
,

we set (x, y) ∈ SI′
. This rule helps ensuring that I is a

classical model of KB.

First, I ′ is a classical model of KB due to step 2 and the
assumption that A � inh(A) is satisfiable.
Next, we show that I ′ is preferred to I w.r.t. <fix. Clearly,
any DI δ ∈ nonblocked(A) that x violates in I is strictly
improved by I ′. Now, let δ 
∈ nonblocked(A) be such that
x actively satisfies it in I, and let H = pre(δ). We show
that there is another DI with higher priority than δ that is
strictly improved by I ′. Since x only satisfies A and its su-
perclasses, we have A �KB H . Since δ 
∈ nonblocked(A),
CWAKB(A) � con(δ) � inh(A,H) is unsatisfiable in KB.
Since CWAKB(A) � con(δ) is satisfiable, inh(A,H) is not
empty and there is B ∈ [A,H) and δ′ ∈ nonblocked(A,B)
such that x violates δ′ in I. Notice that δ′ has a higher pri-
ority than δ because B �KB H and H 
�KB B.

[only if] We prove the contrapositive. Assume that A �
inh(A) 
�KB C. We define an interpretation I in Circfix(KB)
that contains an individual x such that: (i) x ∈ AI , (ii)
if x ∈ BI then A �KB B, and (iii) x 
∈ CI . We set
ΔI = {dB | B ∈ NC} ∪ {da | a ∈ NI}, where each in-
dividual dB (resp., da) satisfies only the concept name B
(resp., nominal a) and its superclasses. We only specify the
roles and features involving x, as the others are not relevant.

1. Let δ ∈ nonblocked(A). For each existential restriction
∃R.B in con(δ), we set (x, dB) ∈ RI . For each predicate
p(f1, . . . , fn) in con(δ), let h1, . . . , hn ∈ ΔD be such
that (h1, . . . , hn) ∈ pD. We set fI

j (x) = hj for all j =
1, . . . , n.
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2. Recursively, if there is a concept C s.t. x ∈ CI and
C �KB ∃S.K, then we set (x, dK) ∈ SI . Addition-
ally, if C �KB p(f1, . . . , fn), let h1, . . . , hn ∈ ΔD be
such that (h1, . . . , hn) ∈ pD, we set fI

j (x) = hj for all
j = 1, . . . , n. Finally, if R �KB S and (x, y) ∈ RI , we
set (x, y) ∈ SI .

It remains to show that I ∈ Circfix(KB). Due to step 2 and
the fact that A � inh(A) is satisfiable w.r.t. KB, I is a clas-
sical model of KB. Moreover, assume by contradiction that
there exists an interpretation I ′ that is a model of KB and
such that I ′ <fix I. Since concept names are fixed, we have
(i) x ∈ AI′

, and (ii) if x ∈ BI′
then A �KB B. Then,

there is a DI δ that is actively satisfied by x in I ′, violated
by x in I, and such that no other DI with higher priority than
δ has the same property. Observe that δ 
∈ nonblocked(A).
Let H = pre(δ), since x ∈ HI′

and by (ii) above, we have
A �KB H . All DIs that have higher priority than δ and are
satisfied by x in I are satisfied in I ′ as well. Formally, for all
B ∈ [A,H) and for all δ′ ∈ nonblocked(A,B), x actively
satisfies δ′ in I ′. By definition of inh(A,H), we obtain that
CWAKB(A) � con(δ) � inh(A,H) is satisfiable w.r.t. KB.

On the other hand, the only reason why δ 
∈
nonblocked(A) is that the conjunction CWAKB(A) �
con(δ) � inh(A,H) is not satisfiable w.r.t. KB, which is a
contradiction.

Since classical EL++ subsumption is in PTIME, we imme-
diately get:

Corollary 8 If KB is strongly conflict safe and depth(C) =
0, then deciding Circfix(KB) |=cw A � C is in PTIME.

Examples: The reduction illustrated in the previous sec-
tion is not strongly conflict safe: inh(B0) = ∃Pj � ∃P̄j be-
cause none of the two DIs is blocked by any group of more
specific DIs; consequently, by (5), B0 � inh(B0) is not sat-
isfiable in KB. On the contrary, it is easy to verify that the
knowledge bases in examples 1 and 2 are strongly conflict
safe. An interesting artificial example is:

A � A1 , A � A2 , A2 � B ,

A1 �n ∃R1 , A2 �n ∃R2 , B �n ∃P .

First assume the additional inclusion ∃R1�∃R2�∃P � ⊥.
This KB is not strongly conflict safe: inh(A) = ∃R1 �
∃R2 � ∃P (because no DI is blocked by any more spe-
cific DIs) therefore inh(A) is unsatisfiable in KB. Indeed,
for some individuals the first DI blocks the third one, for
others the opposite happens, so Circfix(KB) entails the dis-
junctive inclusion A � ∃R1 � ∃P . Such disjunctions in
general increase complexity. Similarly, if the additional in-
clusion is ∃R1 � ∃P � ⊥, there is an unresolved conflict
across two diverging branches of the taxonomy and KB is
not strongly conflict safe. Finally, if the additional inclusion
is ∃R2�∃P � ⊥, then KB is strongly conflict safe: the con-
flict between the second and third DIs is resolved by speci-
ficity and Circfix(KB) entails A � ∃R1 � ∃R2. Any con-
flict arising across different branches must be explicitly re-
solved. For instance, consider again the conflict arising from
∃R1 � ∃P � ⊥. It may be resolved in favor of the first
DI with A �n ∃R1 (which overrides the third DI). Sym-
metrically, it can be resolved in favor of the third DI with

A �n ∃P . As a (mechanizable) default strategy, it is possi-
ble to block all conflicting DIs in A by introducing a fresh
role F and the inclusions

A �n ∃F , ∃F � ∃R1 � ⊥ , ∃F � ∃P � ⊥ .

Unfortunately, the hypothesis depth(C) = 0 is essential
to the correctness of the above results. In the following we
show a reduction of SAT that exploits nested existentials in
the query. Each pair of literals pj and ¬pj is encoded by two
(fixed) concept names Pj and P̄j , respectively, constrained
to be disjoint by Pj � P̄j � ⊥. For all clauses ci, the concept
name C̄i represents ci’s falsity:

�
{P̄j | pj ∈ ci} ∪ {Pk | ¬pk ∈ ci} � C̄i .

Two more concepts F, F̄—representing the truth values of
the given clause set—are axiomatized by:

C̄i � F̄ , F � F̄ � ⊥ .

Now, if the clause set is unsatisfiable, then F can be satisfied
by an individual d only if d belongs neither to Pj nor to P̄j ,
for some j. Such “undefined” truth values are detected with:

Pj � ∃Uj � ⊥ , P̄j � ∃Uj � ⊥ , ∃Uj � ∃U , F �n ∃Uj .

Let KB be the union of A0 ≡ ∃R.F and the above set of
inclusions. It is not hard to see that Circfix(KB) |=cw A0 �
∃R.∃U iff the given clauses are unsatisfiable. Consequently,
deciding |=cw is coNP-hard in the presence of quantifier
nesting, even if nesting is confined in the query and the max-
imum nesting level is one.

A similar negative result holds for Circvar (and hence
CircF ). It suffices to observe that every nested concept
∃P.∃R.A can be simulated by a non-nested concept ∃P.B,
where B is a fresh variable concept defined by B ≡ ∃R.A.3
This reduction can be further adapted to prove that role com-
position affects tractability. Summarizing:

Theorem 9 Let KB range over strongly conflict safe DKBs.
Deciding CircF (KB) |=cw A � C is coNP-hard if some of
the following conditions may hold:

1. depth(C) > 0 (i.e., quantifiers can be nested);
2. F ⊂ NC (i.e., there are variable concepts);
3. KB is extended with RIs with role composition.

The expressiveness of variable concept names can be par-
tially recovered. It is not hard to see that variable concept
names can be allowed wherever an unqualified restriction
∃P would be. Essentially, this means that the only constraint
is: in each concept ∃R.A, A must be a fixed atom.

Related Work

The idea of maximizing the set of individuals satisfying
a distinguished set of (possibly prioritized) axioms can be
found in Defeasible Logic (Nute 1994; Antoniou et al. 2001)
and Courteous Logic Programs (Grosof 1997). Reproducing
the same semantics in a description logic framework is not
trivial, e.g. Herbrand domains are infinite due to existential

3If B is fixed, then this construction changes KB’s semantics:
the equivalence fixes the (otherwise variable) expression ∃R.A.
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quantification, so rule instantiation yields infinite sets, and
decidability may be affected. The alternative is instantiat-
ing rules only on constants that explicitly occur in KB; this
means that default properties do not apply to the implicit
(unnamed) individuals that exist due to existential quantifi-
cation. These issues have been tackled (but not completely
solved) in autoepistemic frameworks (Donini, Nardi, and
Rosati 1997; 2002) using standard names as interpretation
domains. These approaches, as well as those based on de-
fault logic (Baader and Hollunder 1995) and circumscrip-
tion (Bonatti, Lutz, and Wolter 2009), in general range from
NExpTimeNP to undecidability. A few restricted fragments
based on circumscription lie within the second level of the
polynomial hierarchy (Cadoli, Donini, and Schaerf 1990;
Bonatti, Faella, and Sauro 2009). Similarly, the recent ap-
proaches (Giordano et al. 2009; Casini and Straccia 2010)
are intractable. The only fragment in PTIME currently
known is (Bonatti, Faella, and Sauro 2010), that here has
been extended as explained in the previous sections.

Discussion and Conclusions

We proved that the extension of EL⊥ with default attributes
introduced in (Bonatti, Faella, and Sauro 2010) can be gen-
eralized to EL++ without role composition, and to more
general inclusion schemata without affecting tractability.
For this purpose, conflict safety must be adapted in order to
handle conflicts arising from groups of three or more inclu-
sions. Moreover, the argument of existential quantifiers must
always be a fixed concept. We proved that unrestricted vari-
able predicates and quantifier nesting make reasoning coNP-
hard. Note that strong conflict safety is not always more re-
strictive than conflict safety: the latter requires a “repairing”
DI δ with pre(δ) ≡KB pre(δ1) � pre(δ2) whenever KB con-
tains two incomparable conflicting defaults δ1 and δ2, while
strong conflict safety allows the conflict to be resolved by
any number of DIs whose left-hand side is not necessarily
equivalent to pre(δ1) � pre(δ2). One of the interesting fea-
tures of the old framework is the ability of checking conflict
safety and providing default automatic repair (by blocking
all the conflicting DI pairs) in polynomial time. The same is
possible in the new framework: Note that the sets inh(A) un-
derlying strong conflict safety can be computed by solving a
polynomial number of EL++ subsumptions (each of which
is in PTIME). When A� inh(A) is unsatisfiable, the respon-
sible DIs can be blocked by adding more DIs to A. The next
steps will concern the support of explicit priorities, efficient
implementations, and experimentations aimed at verifying
the framework’s scalability.
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