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Abstract

Blocking is a technique commonly used in manual sta-
tistical analysis to account for confounding variables.
However, blocking is not currently used in automated
learning algorithms. These algorithms rely solely on
statistical conditioning as an operator to identify condi-
tional independence. In this work, we present relational
blocking as a new operator that can be used for learning
the structure of causal models. We describe how block-
ing is enabled by relational data sets, where blocks are
determined by the links in the network. By blocking
on entities rather than conditioning on variables, rela-
tional blocking can account for both measured and un-
observed variables. We explain the mechanism of these
methods using graphical models and the semantics of d-
separation. Finally, we demonstrate the effectiveness of
relational blocking for use in causal discovery by show-
ing how blocking can be used in the causal analysis of
two real-world social media systems.

1 Introduction
Conditional independence is a central concept for learning
and reasoning with causal models (Pearl 2000; Spirtes, Gly-
mour, and Scheines 2000). Explicit tests for conditional in-
dependence are the basic operators used in many algorithms
for learning the structure of such models. These tests iden-
tify conditional independence by explicitly evaluating the
impact of conditioning on specific sets of one or more ob-
served variables.

In this paper, we present relational blocking, a fundamen-
tally new algorithmic operator for learning conditional inde-
pendence by exploiting relational structure among data enti-
ties. Relational blocking behaves in ways that differ fun-
damentally from conditioning. Specifically, it adjusts for
sets of both observed and latent variables when they act as
confounders. Yet it does not induce dependence when these
variables are common effects.

Relational blocking formalizes approaches commonly
used in the social sciences (Trochim 2006). Despite its
widespread use in other fields, it has not been used in al-
gorithms for learning the structure of causal models such as
PC (Spirtes, Glymour, and Scheines 2000) or RPC (Maier et
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al. 2010). We describe relational blocking using recently in-
troduced formalisms for describing directed graphical mod-
els of relational data (Heckerman, Meek, and Koller 2007),
and we use these formalisms to show how blocking is dis-
tinct from simple conditioning. We demonstrate the effec-
tiveness of relational blocking by showing how it reduces
variability and adjusts for entire classes of observed and la-
tent confounders. Finally, we examine the frequency with
which relational blocking can be applied to discover causal
dependencies in data describing social media systems.

2 Example
Consider the problem of understanding the operation of
Wikipedia, a peer-produced encyclopedia of general knowl-
edge.1 Wikipedia articles, or pages, are produced collec-
tively by thousands of volunteer users. Pages are created
and modified by users, and users often organize themselves
into groups called “projects,” each of which covers a general
topic. Within a project, individual pages are assessed by ed-
itors for “quality,” an objective evaluation of key criteria.

One of the most persistent claims about Wikipedia is that
its high quality stems from the large number of users that
collaborate to write each article (Kittur and Kraut 2008). We
call this the many-eyes hypothesis: The more users that re-
vise an article, the higher the quality of that article. If we
knew that this association was causal, then we could increase
the quality of an article by directing more users to revise
it. However, to determine that a causal dependence exists
between editor count and article quality, we must eliminate
other plausible alternative models that could explain an ob-
served dependence.

A naive approach to this question would examine a large
number of pages at a given point in time and estimate the de-
pendence between the number of editors E and the quality
of the page Q. This method tests the assumptions encoded
in the graphical model shown in Figure 1a. Given this de-
sign, the variables are highly correlated: We sampled twenty
random Wikipedia pages from ten projects, and found that a
chi-square test yields χ2=101.83 (n=189, since not all pages
had Q and E values; DOF=12; p = 2.44× 10−16), and ap-
proximately 66% of the variance of page quality could be
attributed to the number of editors. This approach is quite

1http://www.wikipedia.org
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Figure 1: (a) A simple graphical model describes the dependence
between the number of editors E and quality Q of an article, but it
does not account for common causes. (b) A more complex graph-
ical model incorporates latent common causes T associated with
project.

similar to those conducted by many algorithms in machine
learning—it identifies a statistical association between two
variables, but that association is insufficient to establish a
causal dependence. The observed dependence could stem
from a common cause, such as the general topic area T . It is
plausible that pages on topics of high interest to Wikipedi-
ans may be edited by a disproportionately large number of
users (that is, T causes E). Additionally, that same interest
in topic could drive editors to exert special care when edit-
ing, thereby improving quality (T causes Q). If T is a cause
of both E and Q, then E and Q will be marginally dependent
even if their dependence is not directly causal.

Unfortunately, since topic T is not a measured variable,
we cannot account for its influence on E and Q through sim-
ple conditioning. However, since project structure is based
on topic, we can adjust for this potential common cause by
blocking. Projects govern pages that are thematically simi-
lar, so blocking on project can factor out the latent influence
of topic. This alternative approach helps to differentiate be-
tween the graphical model shown in Figure 1a and the model
in Figure 1b.

Figure 1, and other figures in the rest of this paper,
are expressed as directed acyclic probabilistic entity rela-
tionship (DAPER) models (Heckerman, Meek, and Koller
2007). DAPER models combine the graphical conventions
of entity-relationship (ER) diagrams, graphical models, and
plate diagrams to show sets of probabilistic dependencies
that can span the multiple entity types present in a rela-
tional data set. The DAPER model in Figure 1a contains
only a single entity type and thus is equivalent to a conven-
tional Bayesian network. However, the DAPER model in
Figure 1b shows dependencies that span two entity types in
which an instance of one entity (Project) typically connects
to more than one instance of a second entity type (Page). A
given Project instance is related to several Page instances,
each of which contains an instance of the E variable. Each
of those E variables has the same parent variable T on the
given Project instance.

When we use project links to arrange pages into groups,
we find that the average correlation between editor count and
page quality decreases. A Cochran-Mantel-Haenszel test
yields M2=82.33 (n=189; DOF=12; p = 1.48 × 10−12).
Although lower, this value is still highly significant, and
roughly 53% of the variance would now be attributed to the
number of editors. The effect size has dropped, but it is still

statistically significant.
However, using this approach allows a stronger claim re-

garding the source of the association because we have plau-
sibly factored out at least one potential (unmeasured) com-
mon cause. The ability to factor out multiple variables, ob-
served or latent, is a key benefit of blocking. After ruling out
several plausible common causes of variation, we now have
much stronger evidence that the dependence between edi-
tor count and page quality is causal and that the many-eyes
hypothesis is valid.

The example above highlights three concepts whose in-
tersection forms the basis of this work. First, the Wikipedia
data set is relational, made up of heterogeneous, interre-
lated data instances drawn from a relational network. Sec-
ond, the question being investigated is causal. While there
is a marginal association between editor count and quality,
we are trying to establish a more powerful claim. Lastly,
we were able to adjust for confounding factors (and draw a
stronger causal conclusion) by using blocking as a comple-
ment to traditional conditioning.

3 Relational Blocking
At its core, blocking2 is a data grouping strategy used to re-
duce variation and factor out common causes. The block
design, originating in the agricultural experimental design
work of Fisher (1935), divides data instances into disjoint
groups, or blocks, according to the value of one or more
blocking criteria. Within each block, confounding factors
(often called “nuisance factors”) associated with the block-
ing variable are held constant, reducing any variability in
the outcome (effect) variable that is due to these factors. For
example, the analysis of a drug trial might block on the hos-
pital where the treatment was administered, allowing exper-
imenters to control for any environmental factors associated
with the facility.

In a network setting, units can be blocked using network
structure as well. Relational blocking groups entities that
share links with a common neighbor, called the blocking en-
tity. Blocking in this manner can be used to facilitate causal
discovery in network data sets consisting of entities (e.g.,
people, events, or places) that share some type of relation-
ship or action among them. For example, papers written by
common authors, or movies produced by the same studio,
may form blocks. In this work, we focus on bipartite data
sets, where entities are related in a one-to-many manner, and
leave the analysis of alternative network structures for future
exploration.

The use of relational structure to block by entities rather
than attributes can be thought of as an extension of the clas-
sic twin design, in which pairs of twins are blocks. For more
than a century, researchers have relied on twin data to ac-
count for whole classes of (often unmeasurable) attributes
related to family environment and heredity (Boomsma, Bus-
jahn, and Peltonen 2002).

2The term blocking is overloaded in the statistical sciences. In
this paper, blocking refers to instance grouping, and is distinct from
the concept of path blocking found in the graphical models litera-
ture.

146



The benefit of relational blocking is twofold. The first
is statistical: By organizing experimental units into groups
such that variability within each block is reduced, we can
improve statistical power. Relational blocks hold constant
any attribute associated with the blocking entity. In this
respect, blocking serves the same purpose as conditioning.
However, unlike conditioning, blocking can simultaneously
adjust for the influence of several (even latent) variables.
When applied to hierarchical domains (such as the synthetic
domains described in Section 4), relational blocking serves a
similar purpose to multilevel modeling, where the influence
of factors associated with common group or entity is mod-
eled within the appropriate regression equation associated
with each level of the hierarchy (Goldstein 1995).

The second benefit relates to causal reasoning. The causal
sufficiency assumption (Spirtes, Glymour, and Scheines
2000) states that any possibly confounding variables are
observed. When blocking, factors that are held constant
within each block can be eliminated as possible common
causes of treatment and outcome, enabling stronger claims
of causal sufficiency and pruning the space of alternative
causal models. By eliminating entire classes of potential
common causes, including both measured and latent vari-
ables, the causal sufficiency assumption is relaxed, in that
confounding factors can be accounted for even if they are
unobserved.
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Figure 2: Different generative models for bipartite one-to-many
data. In case (a), X directly influences Y . In (b), X and Y have a
common cause (Z), and blocking and conditioning will both render
them conditionally independent. In (c), blocking and conditioning
are able to factor out the influence of confounder Z, but the two
remain conditionally dependent. Case (d) depicts Z as a com-
mon effect of X and Y ; here, X and Y are rendered dependent
when conditioned on Z (Berkson’s paradox), yet remain indepen-
dent when Z is held constant through blocking using entities of type
A. In all models, the thin gray arrows represent the deterministic
dependence between IDA and Z.

4 Blocking vs. Conditioning
It may be tempting to view blocking merely as a form of con-
ditioning. While the two serve common purposes—reducing

variability and adjusting for common causes—they do not
produce the same statistical results. To illustrate this point,
we generate synthetic bipartite data and compare the results
of blocking and conditioning for different generative mod-
els of attribute structure. Each data set consists of entities
of two types, A and B, connected in a one-to-many manner.
In all cases, there are 10,000 B entities, with the number of
A entities varying between different experiments. Each A
entity carries two attributes, Z and H , with the former con-
sidered measured and the latter latent. The B entities also
have two attributes, X and Y , both of which are measured.

In each experiment, the goal is to assess the dependence
between X and Y while either blocking on A or condition-
ing on Z. Note that Z is generated as a continuous variable;
in each experiment it is discretized to a fixed number of lev-
els in order to compare the results of blocking and condition-
ing using the same hypothesis test (we use Guo’s weighted
Pearson’s r correlation (2003)). While not presented here,
we found that the results of experiments using partial corre-
lation with an untransformed Z were qualitatively similar.

To represent blocking with a graphical model, we intro-
duce an identity variable IDA (Rattigan and Jensen 2010).
The models in Figure 2 depict bipartite, one-to-many models
with the identifier variable included. With this framework,
we can formally define relational blocking:

Definition 1 Let A and B be two entity sets in a k-partite
network. A block contains a set of B entities that link to a
common A entity. Let ID be the unique identifier of a block,
and let X and Y be two attributes of B. Relational block-
ing is a process that evaluates the conditional independence
of X and Y given ID by grouping B entities into disjoint
blocks.

The thin gray directed edge connecting IDA and Z de-
notes a deterministic dependence between the two. Cer-
tainly, IDA determines Z, since the value of IDA indicates
the value of Z with a simple lookup. The reverse is not true,
however, as several A entities may share the same value of
Z while having different identifiers.

Despite being common in real data sets, the consequences
of determinism in graphical models is rarely discussed in the
machine learning literature. The presence of deterministic
dependence slightly complicates the rules of d-separation.3
The following definition is adapted from Spirtes et al.
(2000), and Geiger (1989):

Definition 2 Let X, Y, and W be three disjoint sets of ver-
tices in DAG G. Let Det(V) be the set of all variables deter-
mined by V. Then, X and Y are d-separated by W if and
only if for all undirected paths P between X and Y either
(1) ∃v ∈ colliders(P ) such that v ∧ descendants(v) /∈ W
or (2) ∃v ∈ noncolliders(P ) such that v ∈ Det(W).

4.1 Common Causes
The first set of experiments simulate the scenario outlined in
the introduction. Figures 2a and 2b represent two generative

3Some authors use the term D-separation (with a capital ‘D’)
to denote d-separation with determinism; in this work, we will not
rely on this typographical convention.
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models where X and Y are marginally dependent, denoted
X ⊥⊥/ Y . In the first case, X has direct influence on Y ; in
the second, their marginal dependence is due to a common
cause.

Under the framework of d-separation (Pearl 1988), this
marginal dependence is evident from the existence of a
collider-free path connecting X and Y in either case. From
data, we can differentiate the two models with a conditional
independence test. Conditioning on Z has no effect on the
independence relationship between X and Y in model 2a,
but interrupts the d-connecting path in model 2b, rendering
X and Y conditionally independent: X ⊥⊥ Y | Z.

The data for model 2b are generated such that X,Y =
βZZ + ε. For all values of βZ , blocking is comparable to
conditioning in terms of Type I error, maintaining an error
level of less than 7% for α = 0.05, with conditioning less
than 6%.

This similarity in performance can be explained by the
semantics of d-separation and the observation that, as de-
fined above, blocking is equivalent to conditioning on IDA.
When conditioning on variable Z, data are grouped such that
the value of Z is held constant within each group. Similarly,
blocking holds constant the entity A within each group. In
model 2b, Z lies on the only d-connecting path between X
and Y . Per the above definition, conditioning on Z or any
set of variables that determines Z will render X and Y con-
ditionally independent. Since IDA fully determines Z, con-
ditioning on it (that is, blocking) will d-separate X and Y .

4.2 Common Effects
An additional case is described by the model shown in Fig-
ure 2d. In this case, X and Y are marginally independent,
while Z is generated such that Z = βX ′ + βY ′ + ε, where
X ′ and Y ′ are the sums of the values of the X and Y val-
ues for each related B entity. This case presents an example
of Berkson’s paradox (Berkson 1946), where conditioning
on a common effect (i.e., collider) will induce dependence
between marginally independent variables. Here, blocking
and conditioning lead to opposite conclusions. As expected,
conditioning on Z does indeed induce dependence between
X and Y ; however, blocking on A does not, even though
doing so effectively adjusts for variable Z as in the condi-
tioning case.

These effects can be seen in Figure 3. Conditioning pro-
duces the expected result: As we increase the strength of
effect parameter β, conditioning induces a dependence be-
tween X and Y more frequently. Blocking, on the other
hand, does not produce any of the conditional dependence
described by Berkson’s paradox. The d-separation criteria
stated above agree with our empirical results—conditioning
on the collider Z creates a d-connecting path, while block-
ing (conditioning on IDA) does not.

The differences between blocking and conditioning can-
not be attributed to statistical power. For the case presented
above, the block size (10 instances) is an order of magnitude
smaller than the conditioning groups (100). To compen-
sate for this difference, we randomly split each condition-
ing group into subgroups of 10 instances (labeled as “split”
in Figure 3). Even with conditioning groups of equal size
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Figure 3: Unlike conditioning, blocking does not induce condi-
tional dependence when holding constant a common effect of two
marginally independent variables. The line labelled split indi-
cates a conditioning analysis with statistical power identical to the
blocking analysis.

to the blocks, the proportion of significant p-values is un-
changed.

These results clearly indicate that blocking and condition-
ing are fundamentally different operations. The difference
between blocking and conditioning is illustrated in Figure 4.
For a small dataset generated under the model in Figure 2d,
the data have been stratified into contingency tables for both
blocking and conditioning. Even for this illustrative exam-
ple, the results of statistical tests can differ, as the p-value for
the conditioning case is 0.009 (indicating significance at the
0.01 level), compared to 0.033 for blocking (not significant
at 0.01).
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Figure 4: Blocking and conditioning are distinct operations, as
they stratify the data in different ways. For the above relational
data set, conditioning groups the data into two strata, yielding a
combined χ2 value of 9.44 (p=0.009) while blocking groups the
data into three strata, producing a χ2 value of 8.75 (p=0.033).

4.3 Latent Confounders
Conditioning and blocking do not perform equivalently in
the presence of latent variables. Figures 5a and 5b depict
generative models for data with a latent variable H acting
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Figure 5: Models for bipartite data with latent variables. Models
(a) and (b) depict cases where a latent common cause H exerts
influence on X and Y . In these cases, blocking is able to render
X and Y conditionally independent, while conditioning does not.
In models (c) and (d), X and Y have both a latent common cause
Hc and a latent common effect He. Here, blocking will distinguish
between the two models.

as a common cause of both X and Y . Since H is un-
observed, conditioning is impossible for model 5a, while
blocking performs as if it is controlling for an observable
variable. In the case of model 5b, both a measured (Z) and
latent (H) variable exert influence on X and Y , such that
X,Y = βZZ+βHH+ε. The plot in Figure 6 depicts Type I
error rate at the α=0.05 level with βZ held constant at 0.5,
and βH varying from 0 to 0.5. Since blocking accounts for
all confounders, it can be used to establish conditional inde-
pendence in the presence of unmeasured factors. Thus, in
cases where two variables are marginally dependent, condi-
tioning alone is inadequate for ruling out alternative models
such as those in models 5a or 5b.
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Figure 6: The effects of blocking and conditioning differ for data
generated under the models shown in Figure 5b. Conditioning can
only adjust for measured variable Z, and is susceptible to high
rates of Type I error as the strength of the latent effect βH in-
creases. Blocking accounts for both H and Z, it is not affected
by βH .

The models depicted in 5c and 5d show cases where X
and Y have both a latent common cause (Hc) and latent
common effect (He). In both cases, X and Y are marginally
dependent. Blocking renders X and Y conditionally inde-

pendent for model 5c, but not 5d. As a result, any find-
ing that X ⊥⊥/ Y | IDA cannot be “explained away” by
the presence of (latent) common effects when blocking (this
property follows directly from the results detailed in Sec-
tion 4.2). Thus, while blocking can adjust for multiple latent
confounders, it introduces no threat to causal conclusions in
the presence of latent common effects.

4.4 Power
The small example in Figure 4 illustrates another distinc-
tion between blocking and conditioning: Since identifiers
and variables are related in a non-injective manner, block-
ing necessarily stratifies the data into smaller groups. To
investigate the effects of the smaller groupings on statistical
power, we generated synthetic data using the model found in
Figure 2a such that Y = βXX + ε. Figure 7 depicts statisti-
cal power as a function of effect size, sample size, and block
size. In each case, blocking does slightly decrease statistical
power, which is expected given the smaller strata. However,
given the large size of many modern relational data sets such
as Wikipedia, these effects of this decrease are minimal.
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Figure 7: Although relational blocking groups the data into
smaller strata than conditioning, there is little effect on statistical
power.

5 Blocking in Practice
To assess the practical utility of relational blocking, we an-
alyzed two domains derived from the peer-production sys-
tems Wikipedia and Stack Overflow. Each data set was com-
prised of multiple related entity types and attributes. The
data schema for each can be found in Figure 8. Blocking was
applicable to 80% of the questions identified by practitioners
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Figure 8: Data schemata for Wikipedia and Stack Overflow. Each
pair of X and Y variables within to the same entity can be tested
for dependence, and related parent entities can be used for block-
ing. For example, Wikipedia Page.Quality and Page.Edits can
be blocked through Project or User, while Stack Overflow Ques-
tion.Score and Question.Length can only be blocked through User.

as the most interesting, and blocking produced substantial
changes in results in 28% of the quantitative assessments of
actual causal dependencies.

Table 1: Details of Wikipedia data
Entity Attributes Block Ents.
Page Adopted by Project, Age, Project, User

Assessment, Editors, Edits,
Featured, Importance,
Length Notice, Number of
Links, Protected, Quality,
Views

User Role, Edits, Membership Page, Project
in Project

Edit Size, Vandalism, Minor, Page, User
Reverted

5.1 Wikipedia
Although Wikipedia has been the subject of several recent
studies (e.g., Kittur 2008), we know very little about how
it functions, particularly from a causal standpoint. These
aspects make Wikipedia an ideal candidate for studying the
applicability and utility of relational blocking.

Our version of the data contained User entities and Edit
events in addition to the Pages and Projects discussed in
Section 2. The details of the entity types and associated at-
tributes can be found in Table 1. In all, there are twenty at-
tributes that are applied to three target entity types (Projects
lack intrinsic attributes of their own, and are only used as
blocking entities). This schema allows for 174 different re-
lationships apropos to the bipartite models illustrated in Fig-
ure 2, for which 348 blocking schemes are available (each
X , Y attribute pair can be blocked with two different enti-
ties).

We took a qualitative approach to determining the ap-
plicability of relational blocking. We surveyed ten people,
each with a bachelors or masters degree in Computer Sci-
ence, to obtain a sample of interesting causal questions in
the Wikipedia domain. Respondents were given a simple
list of attributes and asked to indicate ten pairs of causes

and effects they found compelling for study (attributes were
presented in one of five random orderings to eliminate bi-
ases associated with presentation). The group generated a
list of 99 causal discovery tasks (one respondent provided
only 9 tasks), 71 of which were unique. Of these, 57 (80%)
can be addressed with a simple relational blocking approach
such as the one outlined in Section 2. While not definitive,
these results indicate that relational blocking can be readily
applied to the types of problems that interest practitioners.

Table 2: Details of Stack Overflow data
Entity Attributes Block Ents.
Question Ans. Count, Mean Ans. User

Score, Mean Ans. Comment
Count, Mean Ans. Length,
Comment Count, Favorite
Count, Has Accepted Ans.,
Length, Score, View Count

Answer Accepted, Comment Count,
Score, Length Question, User

5.2 Stack Overflow
In addition to the Wikipedia data set discussed in Section 2,
we examined data from Stack Overflow, an online technical
resource that allows users to pose questions as well as an-
swer others’ questions.4 For our study, we examined depen-
dence between attributes on Questions (blocking on Users)
as well as attributes on Answers (blocking on Users or Ques-
tions), and found a significant change in effect size in 28% of
all cases. The complete list of attributes is found in Table 2.

For each of the 57 same-entity attribute pairs, we assessed
their marginal and conditional independence using all avail-
able data for the month of March 2010. For pairs of con-
tinuous attributes (e.g. Score, Comment Count), we utilized
a blocked Pearson’s r statistic (Guo 2003); for nominal at-
tributes, we applied a Cochran-Mantel-Haenszel test. When
one attribute was continuous and the other nominal, we dis-
cretized the continuous attribute to five levels using agglom-
erative clustering). In all cases, experiments involving Ques-
tion entities had a sample size greater than 50k, while those
involving Answer entities had samples of over 100k. Given
these large samples, p-values for even the smallest effect
sizes were significant, so we focused on associations with
marginal effect sizes greater than 0.1 (the effect size for both
statistics can be measured on a scale of 0.0–1.0).

Of the 57 attribute pairs, twenty exhibited a marginal as-
sociation greater than 0.1. Of these, sixteen (28%) demon-
strated a strong reduction in the size of effect when block-
ing, suggesting a dependence structure similar to the model
found in Figure 2c (albeit with a latent Z). For instance,
Question Score and View Count exhibit an effect size of
r2 = 0.51 in the marginal case, but this drops to 0.12
in the conditional case (the associated z-scores are 214.16
and 59.49, respectively; both p-values are significant at the
1 × 10−8 level). This result suggests that while Score and

4http://stackoverflow.com
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View Count are associated, latent attributes on the Question
author (e.g., expertise, writing style) are a common cause for
both and explain most of the variation.

Four attribute pairs exhibited little change in effect size
when blocking was applied, which provides evidence for the
model in Figure 2a. For instance, the Score of a provided
Answer is highly associated with Accepted status. Authors
of Stack Overflow Questions can optionally “accept” a good
Answer from among those provided; since many choose to
accept the one with the highest score, this result is not sur-
prising.

6 Conclusions and Future Work
In this work, we have presented relational blocking as a tech-
nique to facilitate learning the structure of causal models.
Blocking is similar in function to simple conditioning in its
ability to reduce variability and increase statistical power.
However, unlike conditioning, blocking does not induce de-
pendence when accounting for common effects. Blocking
is able to adjust for whole classes of confounders simulta-
neously, whether observed or latent, effectively relaxing the
causal sufficiency assumption and strengthening causal con-
clusions.

We have illustrated the use of blocking using synthetic
data and found our approach to perform well in terms of
Type I and Type II error. Furthermore, by explaining our re-
sults using the graphical models framework and d-separation
criteria, we are able to provide a theoretic understanding of a
commonly used technique employed in the social sciences.
In addition, we have demonstrated the utility of blocking on
two real world data sets.

Our approach is currently limited to relational data sets
with one-to-many relationships. We currently see two pos-
sible methods for extending the work to more complex net-
work structures containing many-to-many relationships: (1)
By sampling links we can create a one-to-many projection
of any graph, allowing us to block; (2) By grouping block-
ing entities as a preliminary step, we create blocks that share
common sets of neighbors rather than a single parent entity.
Blocking can also extend to data incorporating spatial and
temporal dynamics in addition to dyadic relationships. Fi-
nally, we have described blocking as a new algorithmic op-
erator, and the next logical step is to incorporate it into a
constraint-based system for fully automated causal discov-
ery in complex data sets.
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