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Abstract

In a number of graph search-based planning problems,
the value of the cost function that is being minimized
also affects the set of possible actions at some or all
the states in the graph. For example, in path planning
for a robot with a limited battery power, a common cost
function is energy consumption, whereas the level of re-
maining energy affects the navigational capabilities of
the robot. Similarly, in path planning for a robot nav-
igating dynamic environments, a total traversal time is
a common cost function whereas the timestep affects
whether a particular transition is valid. In such planning
problems, the cost function typically becomes one of
the state variables thereby increasing the dimensional-
ity of the planning problem, and consequently the size
of the graph that represents the problem. In this paper,
we show how to avoid this increase in the dimensional-
ity for the planning problems whenever the availability
of the actions is monotonically non-increasing with the
increase in the cost function. We present three variants
of A* search for dealing with such planning problems:
a provably optimal version, a suboptimal version that
scales to larger problems while maintaining a bound on
suboptimality, and finally a version that relaxes our as-
sumption on the relationship between the cost function
and action space. Our experimental analysis on several
domains shows that the presented algorithms achieve up
to several orders of magnitude speed up over the alter-
native approaches to planning.

Introduction

In certain planning problems, the resource whose usage
is being minimized also affects the availability of actions.
Moreover, it affects it in such a way that the smaller resource
level leads to the same or smaller set of available actions. For
example, a robot with a limited battery is able to perform
fewer and fewer actions, especially the actions that involve
moving uphill, as its battery level approaches zero. Conse-
quently, minimizing energy consumption is a common cost
function in planning for mobile robots. Another example is
planning for a downhill racecar that runs on its initial poten-
tial energy but loses it to friction as it moves. Yet another
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example is planning for unpowered gliders. Minimizing en-
ergy loss allows the glider to stay in the air longer and go
farther distances.

All of these planning problems possess an important prop-
erty that with every action, the resource, and consequently
the set of available actions, is monotonically non-increasing.
In planning problems represented as a graph search, this
property enables us to remove the value of the remaining
resource from the variables defining each state in the search-
space without affecting the completeness and optimality of
the planner (Tompkins 2005). This can be done because the
cost function that is being minimized is equal to the value
of the variable that is being removed, and when planning
with optimal graph search such as A* search, we are already
keeping all and only states with the smallest cost function.
There is no need to also compute the states whose cost func-
tion, and consequently the remaining level of the resource, is
suboptimal. This however, is not true for planning with sub-
optimal graph searches such as weighted A*, which are im-
portant tools for achieving real-time performance and scal-
ability to large problems. Unfortunately, dropping the state
variable that represents the objective function leads to the
loss of guarantees on completeness and sub-optimality.

In this paper, we develop an optimal search called Cost
Function Dependent Actions A* (CFDA-A*) and then its
suboptimal version, called Weighted CFDA-A*, that does
allow us to drop the state variable that represents the cost
function without sacrificing completeness or sub-optimality
bounds. Furthermore, we extend the algorithm to the prob-
lems in which our assumption on the relationship between
the cost function and action space may sometimes be vio-
lated. The theoretical analysis shows that all three variants
of CFDA-A* possess all the properties normally expected
of A* and weighted A*. Our experimental analysis on two
different domains shows that CFDA-A* and its variants can
be over 1000 times faster than searching the original state-
space with A* or its weighted variant.

Related Work

Somewhat related to our work is the existing work on plan-
ning in domains with state dominance relations (Fujino and
Fujiwara 1992; Bhattacharya, Roy, and Bhattacharya 1998;
Yu and Wah 1988). A state s dominates another s′ if know-
ing that s is reachable guarantees that s′ cannot be in the
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optimal solution. In other words, the cost of an optimal so-
lution that passes through s must be guaranteed to be less
than an optimal solution that passes through s′. This concept
allows dominated states to be pruned and reduces the num-
ber of states to be examined. Most of the work on planning
with state dominance relations however was done not in the
context of planning with heuristic search-based planning.

Within the area of planning with heuristic searches, there
were also several graph searches developed that exploited
the dominance relations to gain speedups (Tompkins 2005;
Korsah, Stentz, and Dias 2007; Gonzalez and Stentz 2005;
Xu and Yue 2009). For instance, similarly to our algorithm,
the ISE framework (Tompkins 2005) reduces the dimen-
sionality of a graph search problem by removing the cost
function from the set of state variables under certain con-
ditions. DD* Lite (Korsah, Stentz, and Dias 2007) on the
other hand does not remove any dimensions but prunes
dominated states as it discovers them during the search.
The other algorithms (Gonzalez and Stentz 2005; Xu and
Yue 2009) exploit the state dominance relations to speedup
a heuristic search in the context of specific planning do-
mains. To the best of our knowledge however, none of these
algorithms are addressing the use of suboptimal heuristic
searches such as weighted A*, which are highly beneficial
in scaling to large planning problems and/or achieving real-
time performance (Gaschnig 1979; Zhou and Hansen 2002;
Likhachev, Gordon, and Thrun 2003; Bonet and Geffner
2001). Filling this gap is the main contribution of our pa-
per.

Notations and Assumptions

We assume the planning problem is represented as searching
a directed graph G = (S,E) where S is the state space, or
set of vertices, and E is the set of directed edges in the graph.
We use A(s) ∀s ∈ S to denote the set of actions available at
state s. The function succ(s, a) takes a state s and action a
and returns the resulting state. In other words, (s, succ(s, a))
corresponds to an edge in E. We assume strictly positive
costs c(s, s′) > 0, for every (s, s′) ∈ E. The objective of
the search is to find a least-cost path from state sstart to
state sgoal (or set of goal states). For any s, s′ ∈ S, we define
c∗(s, s′) to be cost of a least-cost path from state s to state
s′.

We will denote xd as the state variable that corresponds
to the cost function, and xi as the set of all other state vari-
ables. To model the fact that one of the state variables is
the cost function, we define the set of state variables x as
x = {xi, xd}, where xd = c∗(sstart, s). The main assump-
tion we are making is that for any given xi, the set of ac-
tions is monotonically non-increasing as the cost increases.
Formally, for any s, s′ ∈ S such that xi(s) = xi(s

′), if
xd(s) < xd(s

′), then A(s′) ⊆ A(s) (assumption 1).
An example of when this assumption holds would be

planning for a robot with a limited battery. The cost func-
tion is the amount of energy consumed and as the battery is
used up there are fewer actions the robot can perform. For
instance, there may be steeper parts of the terrain that can
only be climbed if the robot has enough charge left.

1 g(ŝstart) = 0; OPEN = ∅;
2 insert ŝstart into OPEN with f(ŝstart) = h(ŝstart);
3 while(ŝgoal is not expanded)
4 remove ŝ with the smallest f -value from OPEN;
5 s = {xi(ŝ), g(ŝ)};
6 for each a in A(s)

7 s′ = succ(s, a)

8 ŝ′ = {xi(s
′)}

9 if ŝ′ was not visited before then
10 f(ŝ′) = g(ŝ′) = ∞;
11 if g(ŝ′) > g(ŝ) + c(s, s′)
12 g(ŝ′) = g(ŝ) + c(s, s′);
13 f(ŝ′) = g(ŝ′) + h(ŝ′);
14 insert ŝ′ into OPEN with f(ŝ′);

Figure 1: Optimal CFDA-A*

Optimal CFDA-A*

In A*, discovered states s are put into a priority queue
called the OPEN list and are sorted by the function f(s) =
g(s)+h(s), where g(s) is the cost function representing the
best path found so far from the start state to s, and h(s) is a
heuristic estimate of the cost from s to the goal. The heuris-
tic must not overestimate the actual cost to the goal and must
satisfy the triangle inequality. Initially, the start state is put
into OPEN. On each iteration, the state s with lowest f(s) is
removed from OPEN and gets expanded. During expansion,
A* iterates over the successors of s. If any of these states
have not been discovered previously or if a cheaper path to
them was found, they are put/re-inserted into OPEN with
their updated f -values. Every state expanded under A* has
the optimal (minimum) g-value. Therefore, when the goal
is expanded, A* finds the optimal solution. In optimal A* a
state cannot be re-expanded since a shorter path to a state
cannot be found after the state has been expanded. There-
fore, it is not necessary to maintain a list of states that have
already been expanded (often called the CLOSED list).

An optimal version of CFDA-A*, shown in Figure 1, is
basically an A* search except that it is executed on a new
graph Ĝ which has a reduced state space Ŝ. In Ŝ, the di-
mension xd is removed, and therefore each state ŝ ∈ Ŝ is
only defined by xi. In other words, the search maps each
state s = {xi, xd} in the original state space S onto a state
ŝ = {xi} in the new state space Ŝ (line 8) and maps each
state ŝ ∈ Ŝ onto s ∈ S with the smallest g-value that
is reachable during the graph search (line 5). The transi-
tions between ŝ and ŝ′ are defined as the transitions between
the corresponding states s and s′ in the original state space
(line 7).

Theorem 1 The algorithm terminates, and when it does, the
found path from ŝstart to ŝgoal corresponds to the least-cost
path from sstart to sgoal in S

Proof Sketch: The path p̂ ∈ Ĝ from ŝstart to ŝgoal corre-
sponds to the path p ∈ G from sstart to sgoal by taking each
state ŝk = {xi} ∈ p̂ and making it sk = {xi, g(ŝ)} ∈ p. As-
sume p̂ does not correspond to a least-cost path p∗. Then p∗
must contain a state s that CFDA-A* did not consider or else
it would have found the same path. However, the only states
from S that CFDA-A* ignores are ones that have larger (less
optimal) xd. In other words, there is a cheaper path to xi(s),
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Figure 2: (a) Running normal weighted A* on this graph
may return no solution if s2 is expanded sub-optimally such
that its g-value exceeds α. (b) For a similar reason, the sub-
optimality bound can be violated on this graph if the cost of
the long path is greater than ε times the minimum cost of the
lower path.

then the one in p∗. More detailed proofs can be found in our
tech report (Phillips and Likhachev 2011).

Weighted CFDA-A* with bounded

sub-optimality

Weighted A* is a common generalization of the A* algo-
rithm which puts states s into the OPEN list according to
f(s) = g(s) + ε ∗ h(s) (Pohl 1970). The scalar ε > 1 in-
flates the heuristic. As ε increases, the f function becomes
more heavily driven by the heuristic component and will of-
ten find the solution by expanding far fewer states. While
the solution is no longer guaranteed to be optimal, its cost
is guaranteed to be no more than ε times the cost of an opti-
mal solution (Pohl 1970). While normal weighted A* allows
a state to be expanded more than once (whenever a shorter
path to the state is found), it turns out that the same guar-
antees can be provided even if we allow each state to be
expanded only once (Likhachev, Gordon, and Thrun 2003).
The limit helps in assuring the run-time complexity, since
without it, the number of state expansions can be exponen-
tial in the number of states.

Running CFDA-A*, as described in the previous section,
but with the inflated heuristics, destroys its guarantees on
completeness and solution quality. Figure 2(a) demonstrates
this problem. The issue occurs when a state s1 is expanded
sub-optimally (due to the inflated heuristic) and its sub-
optimal g-value leads to the absence of a critical action be-
tween s1 and s2. Figure 2(b) shows how the ε bound on the
solution quality may also get ignored. The example shows
that if there is more than one path to the goal, and the lower-
cost path is not found due to sub-optimal expansions, then
the algorithm will find a longer path to the goal and termi-

nate, independently of how much costlier it is.
Weighted CFDA-A* shown in Figure 3 solves this prob-

lem by introducing two versions of each state ŝ, an optimal
version and a sub-optimal version. To achieve this, we re-
define ŝ as ŝ = {xi, o}, where o is a boolean variable rep-
resenting the optimality of ŝ. The invariant that Weighted
CFDA-A* maintains is that when expanding any state ŝ
whose o(ŝ) = true, the algorithm guarantees that its g(ŝ)
is optimal. Similarly, when expanding any state ŝ whose
o(ŝ) = false, the algorithm guarantees that its g(ŝ) is no
more than ε times the optimal g-value.

When expanding, optimal states generate both optimal
and sub-optimal successors, but sub-optimal states generate
only sub-optimal successors. Sub-optimal states go into the
OPEN list with the usual f = g + ε ∗ h, but optimal states
go in with an inflated f = ε ∗ (g + h). The following can
be said about this ordering. First, sub-optimal states tend to
come out earlier than optimal ones because optimal states
have both terms of the f -value inflated instead of inflating
just the heuristics for sub-optimal states. This is beneficial
for runtime because a sub-optimal search usually finds a path
to goal much faster due to the drive of the inflated heuristic.
Second, the optimal states, with respect to each other, are
expanded in the exact same order as they would be in the
optimal A* search. The only difference is that their f -values
are just scaled by a positive constant, but this has no effect
on the relative ordering of the optimal states. This property
restores the completeness guarantee to our algorithm: even
if the sub-optimal states get blocked from the goal such as
in Figure 2(a), the optimal states will expand in exactly the
order they would in the optimal algorithm and will therefore
get past this trap. As soon as an optimal state is expanded at
the blocking point, it will generate optimal and sub-optimal
successors past the block, and the sub-optimal states can
again move quickly towards the goal. For the same reasons,
this approach also restores the bound on sub-optimality, as
stated in Theorem 2.

Figure 3 shows the weighted CFDA-A* variant. There are
a few differences from the pseudocode of optimal CFDA-
A* explained previously. The addition of a CLOSED list on
lines 1,4,13 ensures that a state can only be expanded at most
once. On lines 6, 9, and 10 we see that if an optimal state is
being expanded, we generate both optimal and suboptimal
versions of each successor. But if a suboptimal state is being
expanded, then only suboptimal successors are generated.
Also, lines 15-18 now reflect how the f -value can be set
in one of two ways depending on whether the successor is
optimal or not.

Theorem 2 The algorithm terminates, and when it does,
the found path from ŝstart to ŝgoal corresponds to a path
from sstart to sgoal that has a cost no greater than ε ∗
c∗(sstart, sgoal).

Proof: If we can show that the path from ŝstart to ŝgoal has
a cost no greater than ε∗c∗(ŝstart, ŝgoal), then we can apply
Theorem 1 to prove the claim. Let c∗(ŝstart, ŝ) = g∗(s).
Assume for sake of contradiction that upon expansion of
ŝgoal, g(ŝgoal) is greater than ε times the optimal g-value
(g(ŝgoal) > ε ∗ g∗(ŝgoal)). Then g(ŝgoal)

ε > g∗(ŝgoal) be-
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1 g(ŝstart) = 0; O(ŝstart) = true; OPEN = ∅; CLOSED = ∅;
2 insert ŝstart into OPEN with f(ŝstart) = ε ∗ h(ŝstart);
3 while(ŝgoal is not expanded)
4 remove ŝ with the smallest f -value from OPEN and insert ŝ in CLOSED;
5 s = {xi(ŝ), g(ŝ)};
6 If O(ŝ) = true then Opt = {true, false}, else Opt = {false}
7 for each a in A(s)

8 s′ = succ(s, a)

9 for o in Opt

10 ŝ′ = {xi(s
′), o}

11 if ŝ′ was not visited before then
12 f(ŝ′) = g(ŝ′) = ∞;
13 if g(ŝ′) > g(ŝ) + c(s, s′) and s′ /∈ CLOSED
14 g(ŝ′) = g(ŝ) + c(s, s′);
15 if O(ŝ′)
16 f(ŝ′) = ε ∗ (g(ŝ′) + h(ŝ′));
17 else
18 f(ŝ′) = g(ŝ′) + ε ∗ h(ŝ′);
19 insert ŝ′ into OPEN with f(ŝ′);

Figure 3: Weighted CFDA-A*
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Figure 4: The original graph (top) is reduced (bottom) by
removing dimension xd. In this example, running the normal
weighted A* on the reduced graph will return no solution
because of the edge that depends on the g-value. Weighted
CFDA-A* resolves this problem.

cause ε is positive.
Now any state ŝ on the optimal path satisfies g∗(ŝ) +

h(ŝ) ≤ g∗(ŝgoal). By substitution, g∗(ŝ) + h(ŝ) ≤ g(ŝgoal)
ε .

Therefore, ε ∗ (g∗(ŝ) + h(ŝ)) ≤ g(ŝgoal). This ε ∗ (g+ h) is
how we sort optimal states in the OPEN list. Since g∗(ŝstart)
is the first state in the OPEN list, by induction, g∗(ŝgoal)
would be discovered and expanded before g(ŝgoal). There-
fore, when the goal state is expanded, g(ŝgoal) would be op-
timal, which is a contradiction. This means that the optimal
goal state would have to be expanded before a suboptimal
state that is not bounded by ε. �

The following theorem relates the complexity of
Weighted CFDA-A*, in particular, that it reduces the dimen-
sion xd to a binary value, since for every xi, we now have
only two states: an optimal state and a suboptimal state.
Theorem 3 For every collection of states with the same xi

in S, Weighted CFDA-A* performs at most two expansions.

Example

Using the example in Figure 4, we demonstrate how our al-
gorithm avoids the pitfalls shown in Figure 2 using optimal

states. We assume that ε = 3.0. The heuristic function is just
the number of edges to the goal. The top graph represents
the original graph. The states grouped in dotted boxes have
the same xi but different xd. In the bottom graph, this di-
mension has been removed. Thus, s2 and s2′ have become
the same state, as have s5 and s5′ . However, this has caused
a cost dependent edge between s2 and s3.

The start state is s0 and the goal is s5. Weighted CFDA-
A* first expands sopt0 , ssub2 , and ssub1 , where the superscript
opt denotes an optimal state and sub denotes a suboptimal
state. Since, the g-value of ssub2 at time of expansion is 3, it
does not generate any successors. The state ssub1 also gener-
ates no successors because ssub2 has already been expanded.
If we were running regular weighted A*, the search would
have ended here and declared that there was no solution.
However, in weighted CFDA-A*, sopt1 , and sopt2 are still in
the OPEN list. sopt1 would be expanded first, updating the
g-value of sopt2 to 2. Then, when sopt2 is expanded, it gener-
ates both optimal and sub-optimal versions of state s3. Now,
the lower-priority sub-optimal states will again be expanded
starting with ssub3 , followed by the goal state ssub5 .

Weighted CFDA-A* with Proper Intervals

The final extension to our algorithm allows it to work on
the problems where assumption 1 may sometimes be vio-
lated. We assumed that for any pair of states s = {xi, xd},
s′ = {x′

i, x
′
d}, if xi = x′

i and xd < x′
d, then A(s′) ⊆ A(s)

in G, and since s′ has a worse g-value, we can replace both
of these states with ŝ in Ĝ. This is not true if for some xi the
valid values of xd are not one contiguous interval, because
they are separated by invalid states in G. In these cases, the
broken assumption leads to incompleteness. In Figure 5(b),
s1 represents the state with the smallest g-value in xi that is
reachable. When expanding this state, the action that moves
to x′

i only generates s2 but not s3. In some scenarios the later
interval may be the only way to the goal. Not generating this
successor causes incompleteness. However, if the planning
problem includes a spend action that increments xd without
changing xi, then CFDA-A* regains its guarantees. In Fig-
ure 5(b), this allows s1 to reach a higher (downward in the
figure) g-value before executing the action so that it gener-
ates s2 and s3.

We now define a proper interval as a maximal contiguous
series of valid values of xd for a particular xi. In Figure 5, x′

i
has two proper intervals. With the addition of a spend oper-
ation that allows positive movement along xd, the only state
in a proper interval that matters is the one with the small-
est g-value. We can therefore augment states for Ĝ with a
variable that identifies the proper interval for the xi. More
formally, a state is now defined as ŝ = {xi, p, o}, where
p is the proper interval index. In Figure 5(c), the intervals
have been converted to a graph. There are two states for x′

i
with interval index p being 0 and 1. State s1 has an action
that goes to s2 if g(s1) < 4 and the same action always
goes to s3, but sometimes requires a spend operation to get
it past the collision period (g(s1) < 6). With the intervals
and spend operation we once again have the guarantee that
the set of successors is monotonically non-increasing as the
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Figure 5: (a) A scenario with three locations (xi, x
′
i, x

′′
i ) and

a train which arrives at x′
i at time 4 and leaves at time 6. (b)

The intervals shown for the three locations. Since xi and x′′
i

are free for all time, they each have one interval (therefore
one state). Location x′

i has a safe interval before the train
passes (t < 4) and after (t > 6) resulting in two states for
this location (s2, s3). (c) The intervals converted into a graph
with a cost function dependent action. The edge (s1, s2) only
exists if g(s1) < 4. The edge going to s3 always exists due
to the spend operation.

cost increases.
Figure 6 shows the algorithm for CFDA-A* with proper

intervals. On line 9 we see that after getting the successor
state s′ ∈ S we iterate over the proper intervals for that xi.
After forming ŝ′ for this interval, on line 14 we compute
cspend which is how much the g-value needs to be incre-
mented before executing action a in order to arrive at inter-
val p at the smallest g-value. This value may not exist indi-
cated on lines 15-16 either because the interval we are trying
to get to ends before g(ŝ) + c(s, s′) (we already missed it)
or the smallest g-value we could arrive at interval p would
require incrementing g(ŝ) past the end of its proper interval
before executing the action. If such a cspend does exist, then
on lines 17-18, it is used as an additional cost in the g-value
update step.

Theorem 4 The algorithm terminates, and when it does,
the found path from ŝstart to ŝgoal corresponds to a path
from sstart to sgoal that has a cost no greater than ε ∗
c∗(sstart, sgoal).

Proof Sketch: We can apply Theorem 2 if assumption 1
applies. For some s, s′ ∈ S, where xi = x′

i and xd < x′
d,

s does not have a superset of the actions of s′ because an
action a could lead to an invalid state for s but a valid one
for s′ due to invalid intervals along minimized dimension.
This is remedied by adding a proper interval index as part of
the state and a spend operation so that the state s can have
all the successors of s′ by spending until s′ before executing
a.

1 g(ŝstart) = 0; O(ŝstart) = true; OPEN = ∅; CLOSED = ∅;
2 insert ŝstart into OPEN with f(ŝstart) = ε ∗ h(ŝstart);
3 while(ŝgoal is not expanded)
4 remove ŝ with the smallest f -value from OPEN and insert ŝ in CLOSED;
5 s = {xi(ŝ), g(ŝ)};
6 If O(ŝ) = true then Opt = {true, false}, else Opt = {false}
7 for each a in A(s)

8 s′ = succ(s, a)

9 for each proper interval p in xi(s
′)

10 for o in Opt

11 ŝ′ = {xi(s
′), p, o}

12 if ŝ′ was not visited before then
13 f(ŝ′) = g(ŝ′) = ∞;
14 cspend = extra increment before a to arrive in p with smallest g-value;
15 if cspend does not exist
16 continue;
17 if g(ŝ′) > g(ŝ) + c(s, s′) + cspend and s′ /∈ CLOSED
18 g(ŝ′) = g(ŝ) + c(s, s′) + cspend;
19 if O(ŝ′)
20 f(ŝ′) = ε ∗ (g(ŝ′) + h(ŝ′));
21 else
22 f(ŝ′) = g(ŝ′) + ε ∗ h(ŝ′);
23 insert ŝ′ into OPEN with f(ŝ′);

Figure 6: Weighted CFDA-A* with Proper Intervals
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Figure 7: Planning for a limited battery comparing the full
state space and our reduced state space over various ε. (a)
Average expansions (on the log10 scale). (b) Average sec-
onds (on the log10 scale). When the plot drops below the
breaks, the planning time was less than or equal to 0.0001
(≤ −4 on the log10 scale) seconds and was too small to
measure.

Experimental Analysis

We performed simulation experiments in two domains to
show the benefits of using our algorithms.

Robot with a Limited Battery

The domain of the robot with a limited battery exhibits the
benefits of weighted CFDA-A* (without the need of proper
intervals). The original state space of this domain is x, y, en-
ergy consumed. There is an energy consumption limit (when
the battery is exhausted). The environments are randomly
generated fractal costmaps commonly used to model out-
door environments (Yahja et al. 1998). The robot had to
move from the upper left corner to the lower right. The cost
of any cell ranges from 1 to 6 . The cost of traversing a cell is
the distance traveled (in cells) times the cost of the cell. This
cost is assumed to be the energy consumed by that action.
The heuristic used was Euclidean distance. We ran two sets
of experiments.

The first experiments compare the full state space
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Figure 8: Planning for a limited battery with a reduced state
space comparing ε = 1.0 and ε = 3.0 over various map size.
(a) Average expansions (b) Average seconds
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Figure 9: Examples of random (a) indoor, (b) outdoor maps
used for planning in dynamic environments.

weighted A* against our weighted CFDA-A*. We generated
50, 51-by-51 random fractal environments. For much larger
environments, the full state space search didn’t find solutions
most of the time (especially for low ε). The graph shown
in Figure 7(a) shows the average number of expansions for
various values of ε on a log10 scale. CFDA-A* shows up to
1000 times less expansions for smaller ε. After ε = 4.0, the
two are similar, because the cost function becomes so domi-
nated by the heuristic (particularly because the max cell cost
is only 6) that both methods end up expanding a straight line
from the start to the goal. Figure 7(b) shows that the actual
planning times have roughly the same speed up as the expan-
sions. After ε = 4.0 the planninng times become too small
to measure.

Our second experiment shows the advantage of using
weighted CFDA-A* over optimal CFDA-A*. To test this we
compared the weighted CFDA-A* (with ε = 3.0) against
the optimal on maps of varying size ranging from 33-by-33
to 2049-by-2049. For each map size we had 5 trials (to aver-
age out noise). We tried 7 different map sizes so there were
35 trials in total. The graph in Figure 8(a) shows the average
number of expansions for various map sizes. This plot shows
that having an inflated heuristic produces a significant speed
up over optimal planning in spite of the fact that the state
space is two times larger (optimal and sub-optimal states) in
order to maintain the guarantees. Figure 8(b) shows similar
results for the corresponding planning times.

Planning in Dynamic Environments

Planning in dynamic environments is the problem of finding
a collision free path from the start location and time to a goal
location. There are both static and moving obstacles in the
environment and in order to find an optimal path, planning
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Figure 10: Average expansions (log10 scale) for indoor
(black) and outdoor (gray) dynamic environments compar-
ing full state space (dashed line) to CFDA-A* (solid line)
for varying ε.

must be done in the space-time state space. Also, for many
robots, the direction they are facing affects where their mo-
tions take them so we’ve incorporated θ into the search space
as well. The planning in dynamic environments domain re-
quires proper intervals in order for our weighted A* variant
to maintain guarantees. This experiment shows the benefits
of using our weighted CFDA-A* with proper intervals. The
original state space is x, y, θ, time. The maps we ran on
were 500-by-500 with θ discretized into 16 angles and time
discretized into 0.1 seconds. We assumed we knew the tra-
jectories of the dynamic obstacles in advance. For each map,
there were 200 dynamic obstacles with randomly generated
time parameterized paths to follow. We ran two types of ex-
periments, on indoor maps and outdoor maps. The indoor
maps were comprised of randomly generated narrow hall-
ways and rooms. The halls were narrow enough that some
dynamic obstacles filled the entire width and could not be
passed by the robot. An example of this type of environ-
ment is shown in Figure 9(a). The outdoor maps were more
open with about 20 percent of the map covered with circles
of varying size. An example of an outdoor map is shown in
Figure 9(b). Backward 2D Dijkstra search that accounted for
static obstacles (but no dynamic obstacles) was used as the
heuristic.

Our experiments compared a planner on the original full
state space against Weighted CFDA-A* with proper inter-
vals. The black curves in Figure 10 show the average ex-
pands for the indoor trials across various values for ε. The
plot shows 10 times fewer expansions not only for opti-
mal but also for the weighted CFDA-A*. It is also impor-
tant to note that weighted CFDA-A* runs significantly faster
than optimal CFDA-A* search. The gray curves in Figure 10
show the average expands for the outdoor trials across vari-
ous values for ε. There is also an improvement here, however
it is not as dramatic. This is because in the indoor case the
robot must wait for obstacles to pass (because of the tight
hallways) very often. For our algorithm, a wait (i.e., spend
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Figure 11: Average seconds (log10 scale) for indoor (black)
and outdoor (gray) dynamic environments comparing full
state space (dashed line) to CFDA-A* (solid line) for vary-
ing ε.

operation) of arbitrary length is handled intelligently with
a single successor, but for the full state space, waiting in
place requires many expansions along the time dimension
(one for each timestep). In the outdoor case this matters less
because the environment is so open it is almost always faster
to dodge around dynamic obstacles instead of waiting them
out. In Figure 11, the actual planning times show roughly
the same speed up as the expansions.
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Conclusions

Many domains minimize a cost function that is also a di-
mension in the search space, because it affects the possible
actions. Our algorithm allows for the removal of this dimen-
sion from the search space resulting in a graph with Cost
Function Dependent Actions. CFDA-A* can solve these
types of graphs in the optimal case. Weighted CFDA-A*
uses optimal and suboptimal states with a clever expan-
sion order in order to continue to provide this reduction in
the size of the state space while maintaining the theoreti-
cal properties of completeness and bounded sub-optimality.
Finally, our algorithm can be extended to handle more com-
plicated problems that violate our key assumption overall,
but still maintain it within proper intervals. This replaces
the dimension in question with a more compact represen-
tation that works with both optimal and weighted CFDA-
A*. We’ve shown strong theoretical guarantees on all of our
algorithms as well as significant experimental results from
two domains: planning with a limited battery and planning
in dynamic environments. While not addressed directly in
our paper, the guarantee of bounded sub-optimality easily

allows our method to be extended to anytime planning meth-
ods like ARA* (Likhachev, Gordon, and Thrun 2003).
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